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FLUID DYNAMICS

This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN) 
and feed-forward neural networks (FFNN), using stream flow data of the Kızılırmak River, the longest 
river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh-
bors and embedding dimension. The optimal delay time was obtained with the mutual information 
function; the number of nearest neighbors was obtained with the optimization process that minimi-
zes RMSE as a function of the neighbor number and the embedding dimension was obtained with 
the correlation dimension method. The correlation dimension of the Kızılırmak River was 2.702d = , 
which was used in forming the input structure of the FFNN. The nearest integer above the correlation 
dimension (i.e., 3) provided the minimal number of required variables to characterize the system, and 
the maximum number of required variables was obtained with the nearest integer above the value 2 1d +  
(Takens, 1981) (i.e., 7). Two FFNN models were developed that incorporate 3 and 7 lagged discharge 
values and the predicted performance compared to that of the kNN model. The results showed that the 
kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the 
kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that 
the correlation dimension (if it existed) could successfully be used  in time series where the determina-
tion of the input structure is difficult because of high inter-dependency, as in stream flow time series. 

Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no 
paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN), usando datos de flujo del río 
Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, 
número de vecindarios cercanos y dimensión de encrustamiento. El tiempo óptimo de retraso fue obtenido 
con la función de información mutua; el número de vecindarios cercanos fue obtenido con la optimización de 
procesos que minimizan   el RMSE como una función del número de vecindarios y la dimensión de incrus-
tación fue obtenida con el método de dimensión correlativa. La dimensión de correlación del río Kizilirmak 
fue utilizado en la formación de la estructura de ingreso de las redes FFNN. La integración cercana sobre la 
dimensión de correlación proveyó el número mínimo de variables requeridas para caracterizar el sistema y el 
número máximo de variables requeridas fue obtenido con el número entero por encima del valor (Takens, 
1981). Se desarrollaron dos modelos de redes FNNN que incorporan 3 y 7 valores de descargas retrasadas y el 
desempeño de predicción comparado con el modelo kNN. Los resultados muestran que el modelo kNN fue 
superior al modelo de redes FFNN en el flujo de pronósticos. Sin embargo, como un resultado del modelo de 
estructura kNN, el modelo falla en los valores pico. Adicionalmente, se encontró que la dimensión de correla-
ción (de existir) podría ser usada eficientemente en series temporales donde la determinación de estructura de 
ingreso es difícil por la gran interdependencia, como en las series temporales de flujo.
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1. Introduction

Reliable and accurate stream flow forecasting is essential for water 
resources management. Stream flow simulations and forecasts are also 
important for optimization of water resources planning and allocation. 

Therefore, in addition to many other reasons, understanding stream flow 
dynamics constitutes one of the most important problems in hydrology 
and water resources. For this purpose, many data-driven models have been 
developed, including linear, nonlinear, parametric and nonparametric mo-
dels for hydrologic time series prediction in the past decades (Marques et 
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al., 2006). Generally, in regard to system dynamics, there are two basic 
assumptions that underlie different modeling techniques, stochastic and 
chaotic dynamics. Regarding the former assumption, the observed hy-
drologic time series originated from a stochastic process with an infinite 
number of degrees of freedom. To this assumption, the mean behavior of 
a time series could be captured with linear models such as autoregressive, 
autoregressive moving-average (Al-Awadhi and Jolliffe, 1998; Toth et al., 
2000), autoregressive integrated moving-average (Chang et al., 2002; Lisi 
and Villi, 2001) and seasonal autoregressive integrated moving-average 
(Modarres, 2007; Ooms and Franses, 2001; Pekárová et al., 2009), from 
which great results have been obtained. However, to utilize these models, 
a priori assumptions are required, such as stationarity and Gaussian dis-
tribution. As most hydrological time series involve non-stationarity and 
non-Gaussian conditions, the data should be transformed before it can be 
used in stochastic models. However, after this transformation, nonlinearity 
still exists, and time series are processed with a linearity assumption (Chen 
et al., 2008). Recent studies have shown that the complex nonlinear be-
havior of stream flow dynamics should not necessarily be the outcome of 
a stochastic process. With the advent of deterministic chaos theory, a few 
hydrologic modeling studies have suggested irregular behavior could be 
the outcome of simple deterministic systems influenced by a few nonli-
near interdependent variables (Khokhlov et al., 2008; Sivakumar, 2003; Yu 
et al., 2011). Numerous researchers have tried to reveal chaotic behavior 
in hydrologic time series, such as river flow (Ng et al., 2007; Sivakumar, 
2007; Sivakumar et al., 2001), lake level (Frison et al., 1999; Khokhlov 
et al., 2008) and rainfall (Dhanya and Kumar, 2011; Sivakumar et al., 
2006). Because the studies revealed possible chaotic behavior in stream 
flow dynamics, the requisition for chaotic prediction methods in stream 
flow was obvious. The most employed prediction method for chaotic hy-
drological time series is the k-nearest neighbor (k-NN), which was used in 
this study (Elshorbagy et al., 2002; Liu et al., 1998; Sivakumar, 2003; Wu 
et al., 2009). However, in the hydrology literature, the studies that com-
pare the modeling capability of the k-NN approach with other nonlinear 
modeling techniques are limited. To obtain more insight into the modeling 
capability of k-NN, another widely used nonlinear modeling technique 
the feed-forward neural network (FFNN) (Araghinejad et al., 2011; Deka 
et al., 2012; Kuo-Lin, 2011; Vafakhah, 2012; Wu and Chau, 2010) was 
employed. Additionally, in determining the number of input parameters 
for FFNN, to the author’s knowledge, the chaotic procedure in this study 
is the first proposed. The values for the dominant variables obtained from 
the chaos analysis were used as the minimum and maximum input para-
meters in the FFNN. 

Generally, the prediction techniques for a dynamic system can genera-
lly be divided into two approaches: local and global (Wu and Chau, 2010). 
Because the local approach uses only nearby states to make predictions, the 
k-nearest neighbor can be included in this class, and FFNN can be clas-
sified as the latter one. Therefore, in this study, we preliminarily evaluate 
which nonlinear approach, local or global, is more efficient in forecasting 
stream flow time series. The two nonlinear approaches’ modeling capabi-
lities are compared for the Kızılırmak River, the longest river in Turkey.  
The paper is organized as follows. Section 2 introduces the study area and 
the stream flow time series that are used. In Section 3, the basic principles 
of the k-NN and the feed-forward neural network as a sub-class of ANN 
are described. Following this, in Section 4, the obtained results are given 

with a detailed discussion. The conclusions of the paper are presented in 
Section 5.

2. Study area and data

The Kızılırmak River basin is located between 37°58'-41°44' North 
latitudes and 32°48'-38°22' East longitudes. The Kızılırmak River flows 
through a 1,355 km long course, the longest in Turkey. In the basin, the 
continental climate is dominant, for which summers are characterized with 
moderate precipitation and winters are characterized with severe cold.  The 
annual mean precipitation and temperature are 446.1 mm and 13.7°C, 
respectively. The flow regime of the river is irregular resulting from rainfall 
and snow-melt. The lowest discharges are observed between July and Fe-
bruary, and the river starts to rise in the beginning of March and reaches its 
highest level in April (Çakmak et al., 2007). The data that were used cover 
the period of January 1960 to September 2004 (Figure 1), and the main 
statistical parameters of the stream flow time series are given in Table 1.

Figure 1. Daily discharge data at the 15-1501 (Yamula)  
gauge station of the Kızılırmak River

3. Methodology 

3.1. k-Nearest Neighbor Approach

The temporal evolution of a system can be described by a multi-di-
mensional phase space. The most frequently used reconstruction method 
for a univariate or multivariate time series is the delay time method which 
was developed by Packard et al. (1980) and Takens (1981). The main idea 
behind phase-space reconstruction is that the system is characterized by self-
interaction, and the observed time series can hold the information about the 
dynamics of the entire system (Sivakumar et al., 2002). The past observa-
tions can be embedded in an m-dimensional state space according to:

where , m is the embedding dimension of the  
vector and  is the delay time. To characterize a dynamic system with an 
attractor dimension d, (  )-dimensional space is required (Takens, 

Table 1. The statistics of the Kızılırmak River discharge data

Station  
no/name

Obs. 
period

Drainage 
area  
(km2)

Elevation 
above sea 

(m)

Mean
(m3/s)

Std. 
Dev.

(m3/s)

Median
(m3/s)

Coeff. of 
Variation

Skewness Kurtosis

15-
1501/Yamula

1960-
2004 15182 990 66.47 87.66 31.20 1.32 2.94 14.59
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1981). However, Abarbanel et al. (1990) proposed that m d>  would be suffi-
cient. As it is seen in Eq. (1), the main parameters that should be determined 
in the phase-space reconstruction method are the delay and the embedding 
dimension parameters. The most commonly used methods for determining 
these parameters are the mutual information (MI) and the correlation di-
mension methods, respectively. Another commonly used method for deter-
mining the delay parameter is the autocorrelation function (ACF). However, 
because the ACF does not measure the nonlinear dependence, in this stu-
dy, we employed a MI function that was based on joint probabilities that 
enabled us to measure the nonlinear dependency beyond linear correlation. 
The mutual information was computed according to:

 

where  and  are successive values,  and  are the 
individual probabilities of  and , respectively and  is 
the joint probability density. To determine the optimal delay time parame-
ter, it is advised to use the local minimum of the MI (Frazer and Swinney, 
1986), i.e., no increase or decrease in the mutual information function’s 
successive values for a specific lag time. However, in some MI functions, it 
is rather difficult to determine a local minimum. Therefore, to determine 
the optimal delay time, we recommend using the following formula to am-
plify the successive differences between the calculated MI function values 
(Tongal et al., 2013):

where currentMI  is the mutual information value of which relative chan-
ge will be calculated, nextMI  is the successive value of currentMI  The first local 
minimum could be taken where the relative change of mutual information as 
a function of delay time started to become constant with lag time.

With a properly selected time delay, the considered time series can be 
reconstructed in the m-dimensional phase space by calculating the correla-
tion exponent from the correlation integral ( ( )C r ) as follows:

 

where H is the Heaviside step function with ( ) 1H u =  for 0u > , and 
( ) 0H u =  for , , r is the radius of a sphere centered on 

iY  or jY ,  is the Euclidean norm, and N  is the number of data points. 
( )C r  gives the probability of two randomly selected vectors that lie within 

a certain distance (Ng et al., 2007). The dimension d of the state space is 
related to the correlation integral as:

Additionally, the logarithm of both sides of Eq. (5) gives a linear rela-
tionship where the slope equals to the correlation exponent d. If the corre-
lation exponents increase as a function of embedding dimension, then the 
considered system can be thought of as stochastic, otherwise it is chaotic. 
In the latter situation, the correlation exponents reach a saturation value, 
which provides the correlation dimension of the system. The correlation 
dimension is a parameter that gives the number of dominant processes that 
are acting in the system dynamics (Sivakumar and Jayawardena, 2002). 
With the determination of the optimal delay time and embedding dimen-
sion, the state space of the system can be constructed, from which inter-
preting the dynamics of an m-dimensional map  is possible using the 
following equation:

where te  is a noise term and  and  are vectors of dimen-
sion m that describe the state of the system at times t (current state) and 
t T+ (future state), respectively. If the function  is known, it is possible 
to predict the future trajectory of a system. The  function can be found 
with the k-nearest neighbor (k-NN) approach which was proposed by Far-
mer and Sidorowich (1987). In this approach, the nearby states are used 
to obtain future forecasts. One of the most commonly used functions for 
k-NN is the weighted form:

where ( )ia t  are the nearest neighbors of the last observed value (i.e., 
prediction starting point) and  are the weights to be adjusted using 
the information from the n-nearest points. L denotes that these weights are 
different for each forecasted point. For more details, please refer to Wu and 
Chau (2010), Ng et al. (2007), Laio et al., (2003) and Liu et al. (1998). 

3.2. Feed-Forward Neural Networks 

Artificial neural networks (ANN) use a multilayered approach that 
approximates complex mathematical functions to process data. An ANN 
is a system that is composed of discrete layers with each layer including at 
least one neuron. With a connection weight, each node of a layer is con-
nected to the node(s) of the preceding layer but not to nodes of the same 
layer (Sahoo et al., 2009).  Considering the feed forward neural network 
architecture in Figure 2, if the layers and the neurons in the layers increase, 
the architecture of the ANN becomes more complex, which complicates 
the solution process. Therefore, it is important to select an optimal ANN 
architecture. In this study, the numbers of neurons in the layers were deter-
mined with a trial and error process that minimized the root mean square 
error calculated from the differences between the predicted and observed 
values. 

Figure 2. A typical feed forward neural network architecture

In Figure 2, the input signal propagates from layer to layer through 
the network in a forward direction. The weight vectors between the layers 
( ijW  and jkW ) were randomly generated in the range between -1 and 1. The 
total output of a jth hidden neuron was computed according to:

where iQ  is the value of the ith input parameter to the hidden layer 
neurons, jb  is the bias for the jth hidden layer neuron and n is the total 
number of input neurons. The calculated total input signal, jS , that 
received the jth hidden layer neuron was converted to an output signal 
using an activation function . The output signal of the jth hidden 
layer neuron was  for the n th pattern of the training data set. 

Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
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The output neuron received signals from all hidden-layer neurons and 
converted them to a single signal as output using an activation function 

. Thus, the input and output signal of the kth output neuron were, 
respectively: 

where kb
 
is the bias and N  is the total number of neurons in the 

hidden layer (Sahoo et al., 2009). By comparing the estimated output 
with the desired output, the weights were adjusted with well-known 
error propagation algorithms including Levenberg-Marquardt (LM), Ba-
yesian regularization (BR) and Gradient descent with momentum and 
adaptive learning rate back-propagation algorithm (GDX). In this study, 
we employed the LM algorithm as a learning algorithm. Detailed in-
formation about the LM algorithm can be found elsewhere (Aqil et al., 
2007; Daliakopoulos et al., 2005). In this study, the Tangent Sigmoid 
transfer function, of which the validity has been proven in hydrological 
applications, was used: 

where u is the jS  and kS  in the hidden layer and output layer, respec-
tively. 

3.3. Performance Indices

To evaluate the model performances, the following performance indices 
were used; Nash-Sutcliffe Coefficient of Efficiency (CE), Mean Absolute Error 
(MAE), Persistence Index (PI), Root Mean Square Error (RMSE), Relative Vo-
lume Error (RVE) and Coefficient of Determination (R2). Nash and Sutcliffe 
(1970) proposed the coefficient of efficiency in the following form:

where iO  and iP are the observed and predicted values, respectively, 
and O is the mean value of the observed values. Mean absolute error is a 
measure that evaluates the absolute deviation of the predicted values from 
the observed ones. It is calculated as:

The Persistence Index (PI) proposed by Kitanidis and Bras (1980), 
compares the predictions of a model with the best estimate for the future, 
which is given by the last observation (Randrianasolo et al., 2011). The 
index has the following form:

where  is the last observed value at time i minus the lead time L. 
RMSE is one of the most widely used criterions to assess model efficiency, 
and it evaluates the forecast errors with the following form:

Because this criterion is sensitive to large forecast errors (i.e., the errors 
are amplified by squaring), it provides a good measure for the goodness-of-fit 
at high flows. Additionally, it has the same units as the observed values; thus, 
it enables the interpretation of the magnitude of error. The RVE criterion 
shows the total relative error resulting from the model predictions as:

R2 describes the proportion of the total variance in the observed data 
that can be explained by the model and is formulated as below:

R2 changes between 0 (no relation) and 1 (perfect fit), which describes 
how much of the observed dispersion is explained by the model.

4. Results and discussion

To determine the chaotic dynamics within the stream flows, the co-
rrelation dimension method was applied. To calculate the correlation in-
tegrals, the delay time ( ) was computed using the mutual information 
function and its relative change with lag time (Figure 3). 

Figure 3. Mutual information function and its relative change with lag 
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In Figure 3, it was difficult to select the first local minimum from 
the original MI function. The amplified differences (i.e., the relative 
change of the MI) between the successive values were more informative 
about where the first local minimum could be found. In the MI relati-
ve change, the mutual information function was stable and fluctuated 
around a constant value after 30 days. By determining the delay value, 
the correlation integrals were computed by the Grassberger-Procaccia al-
gorithm for different embedding dimensions (m) from 1m =  to 25m =  
(Figure 4a).

(a)

(b)

Figure 4. (a) Correlation integrals as a function of different embedding 
dimensions (m) (b) correlation exponents obtained from correlation  

integrals as a function of embedding dimensions

From the scaling regions (i.e., nearly linear sections of each inte-
gral plots) of the calculated correlation integrals, the correlation ex-
ponents were calculated with the least squares estimation method and 
each calculated correlation exponent was plotted against its embedding 
dimension as seen in Figure 4b. Because the correlation exponent va-
lues increased with the embedding dimension up to a certain value (i.e. 

2.702d = ) and then fluctuated around this value, chaotic behavior was 
indicated. This value was the correlation dimension calculated for the 
Kızılırmak River and the nearest integer above this value provided the 
minimum embedding dimension for reconstructing the phase-space or 
the number of variables (i.e., the number of dominant variables) neces-
sary to model the dynamics of the system (Khokhlov et al., 2008; Si-
vakumar and Jayawardena, 2002; Stehlik, 1999). Thus, the results from 
these analyses showed that the required minimum number of varia-
bles to model the system dynamics was 3 (3 2.702> ) and the maximum 
number of variables to model the system dynamics was 7 ( ). 
In the k-NN model development, the embedding dimension was taken 
as 3 by considering the required minimum embedding dimension ob-
tained from the above analysis. The required nearest neighbor numbers 
for k-NN analysis was determined with a trial and error process that 
minimized RMSE as a function of nearest neighbor number. Figure 
5 shows that the RMSE decreased as a function of nearest neighbor 
number until nearest neighbor number equaled 33 days and after this 
value, RMSE started to increase. Therefore, the optimal nearest neigh-
bor number was selected as 33 days.

Figure 5. Determination of the nearest neighbor  
number as a function of RMSE criterion

With these results, the required parameters for the k-NN model were 
obtained. To determine whether the obtained correlation dimension could 
be used as the lag value for the discharges, the following model structures 
were built. To the author’ knowledge, this study was the first to take the 
correlation dimension as the of required lag value for the discharges. By 
considering the correlation dimension value as the required number of 
variables that characterize the system, the following FFNN model struc-
tures were constructed that incorporate a minimum of 3 (3 2.702> ) and 
maximum of 7 ( ) lagged values.

Typically, the training data set is selected as 70%-80% of a time series 
and the remaining part is used as the calibration and test period (Banerjee 
et al., 2011; Daliakopoulos et al., 2005; Riad et al., 2004). In this study, 
approximately 78% (36 years) of the entire data set was selected as the 
training period, and the remaining part, approximately 22% (10 years), 
was selected for the test period. 

Table 2. The model structures that considered minimum and maximum lagged discharges

FFNN model structures with minimum and maximum variables Variable numbers

FFNN-I model 3

FFNN-II model 7

Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
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(a)

(b)

Figure 6. Determination of the number of neurons in the hidden  
layers for the (a) FFNN-I and (b) FFNN-II models as a function of RMSE

The FFNN model structures contained one input layer, two hidden 
layers and one output layer. The number of neurons in the hidden layers 
was determined using an optimization process that minimized RMSE as 
a function of the number of neurons (Figure 6). The results from these 
models are given in Figure 7.

From Figure 7, the inadequacy of the k-NN model is obvious; 
failing to capture the peak flows. The reason for this is that the k-NN 
model predicted the next value by considering the past observed va-
lues as much as the number of nearest neighbors. To obtain accurate 
peak flow prediction, the number of peak values in the past obser-
ved period should be as much as the nearest neighbor number. If 

the number of observations of peak flow in the training period is 
smaller than the nearest neighbor number, than the model fails in 
the accurate prediction of peak flows.  This is also valid for low flow 
predictions. From Figure 7, there is a section at the end of the test 
period in which no flow was observed. The k-NN model constantly 
over-predicted this period. However, the FFNN models performed 
better in peak flow predictions than the k-NN model. To acquire 
more insight into the models’ performance, the performance indices 
were calculated and are given in Table 3. 

(a)

(b)

(c)

Figure 7. The observed river flow and predicted river flow for the entire test period 
for the (a) k-NN (b) FFNN-I and (c) FFNN-II models

By means of the performance indices, the best model was selected as 
the k-NN model and the worst model was selected as the FFNN-I model. 
The highest PI, CE and R2 and the lowest RMSE, RVE and MAE values 
were obtained with the k-NN model. As the results showed, there was 
not much difference between the CE and R2 values, and stand-alone eva-
luation of these performance indices does not give much insight into the 
model comparison. In addition to these criteria, RMSE, RVE, MAE and 
PI demonstrated the clear superiority (nearly twice as much) of the k-NN 
model over the FFNN model. Therefore, in the model comparison, it was 
important to take into account other performance indices that emphasized 
different features of the predicted values.

Table 3. Forecasting performance of the nonlinear models

Kızılırmak River
Performance Indices RMSE RVE MAE PI CE R2

k-NN model 4.4776 10,634 1.6686 0.8803 0.9965 0.9970
FFNN-I model (3-7-3-1) 13.2685 23,571 4.3124 -0.0511 0.9689 0.9699
FFNN-II model (7-6-7-1) 9.8451 20,838 3.4546 0.4219 0.9829 0.9829

Hakan Tongal
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These results showed that the correlation dimension could be used 
in the determination of the FFNN model structure by taking the lagged 
values as the minimum and maximum dominant variable number. To the 
authors’ knowledge, this study is the first to show that the correlation di-
mension could be used in determining of number of lagged values of the 
discharges. This is important where the autocorrelation function remains 
high for higher lags such as in this case (Figure 8).

Figure 8. Autocorrelation function of the Kızılırmak River

It is difficult to determine the optimal lag values in the model struc-
ture where the autocorrelation function values start to become statistically 
insignificant. For instance, in Figure 8, the autocorrelation function be-
comes statistically insignificant on the 90th day. To determine the optimal 
lag values that will be considered in the model structure, various models 
should be considered that incorporate combinations of lag values up to 
90. Obviously, this is quite time consuming. However, by considering the 
correlation dimension of the examined system, it is possible to construct 
two models that incorporate minimum and maximum lagged values that 
are determined from the correlation dimension. This result is evidence 
that chaos theory could be used in simplifying the modeling procedure, in 
which the determination of the input structure is rather difficult. 

5. Conclusions

Hydrological systems are complex and dynamic in nature as their cu-
rrent and future states depend on numerous variables (Tongal et al., 2013). 
Therefore, it is important to determine the number of dominant varia-
bles acting within the system dynamics. In regards to this, the methods 
from chaos theory provided us a proper framework. In this study, one of 
the chaotic forecasting methods, the k-NN method, was employed for 
the Kızılırmak River, the longest river in Turkey. The necessary parame-
ters for this method are the delay time, the embedding dimension and 
the nearest neighbor number. The optimal delay time was determined 
from the mutual information function and the nearest neighbor number 
was determined from the optimization process that minimized RMSE as 
a function of the nearest neighbor number. In determining the optimal 
delay time from the MI function, we calculated the relative differences 
between the successive values of the MI function. The optimal delay time 
was selected as 30 days.  To determine the embedding dimension for the 
k-NN method, the correlation integrals were calculated for various em-
bedding dimensions, i.e., 1m =  to 25m = . When the obtained correlation 
exponents from the correlation integrals were plotted as a function of the 
embedding dimension, the correlation exponents reached a value (correla-
tion dimension, 2.702d = ), which gave us the dimension of the system. 
The dimension of the system shows the number of dominant variables 
that are acting within the system dynamics. For this system, the minimal 
number of dominant variables was 3 (3 2.702> ) and the maximum was 7 
( ). To the author’ knowledge, this study is the first to examine 

whether the obtained correlation dimension could be used in the model 
development phase. In feed-forward neural network input parameter de-
termination, the two models (FFNN-I and FFNN-II) that were described 
incorporated lagged discharge values of 3 and 7, respectively. The number 
of hidden layer neurons was determined from a trial and error process 
that minimized RMSE. The predictions obtained from the models showed 
that the k-NN model, which is one of the most commonly used chaotic 
prediction approaches, was superior to the FFNN models, which are a 
sub-class of another nonlinear prediction approach, the artificial neural 
networks. However, the k-NN model failed to predict the peak flows, in 
which the FFNN demonstrated better performance. Therefore, the k-NN 
model (with averaging method) should not be used, when peak flow fore-
casting is important. Additionally, the results showed that the correlation 
dimension method can successfully be used instead of the time-consuming 
trial and error process to determine input parameters for ANN, where the 
interdependency of time series is high.
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