The Influence of Bali Brand Equity on Tourists Traveling Behavior

I Ketut Surya Diarta

School of Postgraduate Study Doctorate Degree in Tourism Udayana University Coressponding author: <u>suryadiarta_unud@yahoo.com</u>

ARTICLE INFO ABSTRACT

Received 16 March 2015 Accepted 20 August 2015 Available online 07 September 2015 There is already known that brand equity of tourism destination can influence tourist decision making to choose a destination to be visited. However, there is no information on how tourism destination brand equity influences tourist's behavior during their vacation in destination such as extend tourist length of stay, encourage to be revisit tourist, and willing to recommend for others. This research aims to analyze the effect of Bali brand equity on tourists traveling behavior. The research was conducted from January to November 2015 in five main tourism objects in Bali. Data were collected through survey of 240 foreign tourists and analyzed using multivariate analysis of variance (MANOVA). The research result shows that the influence of Bali brand equity to tourists traveling behavior as a whole through destination brand awareness, destination brand image, destination brand association, and destination perceived quality. While, individually: (a) the frequency of visiting Bali is affected by distinctive features for stunning natural beauty of Bali and safe and peaceful Bali tourism destination, (b) the length of stay during vacation in Bali is affected Bali as one of the world's main destination, strong brand Bali recall, warm-politely-friendly local people, safe and peaceful destination, and excellent tourism physical facilities, and (c) the frequency recommending Bali to others is affected by distinctive features for stunning natural beauty of Bali, warm-politelyfriendly local people, and safe and peaceful destination. Give stressing on the attributes of destination that develop tourist's positive behavior to Bali as a tourism destination will determine the success of Bali in world tourism market competition.

Keywords: destination, brand, equity, Bali, behavior

Introduction

Background

Importance of tourism to the world economy is reflected in the UNWTO key trends and outlook international tourism in 2014 (World Tourism Organization, 2005) that tourism as one of the keys to the development of the world, creating prosperity and welfare. This is motivated by some empirical data on the contribution of world tourism in 2014, where tourism contributes for 9% of world GDP, creates one among the 11 types of existing jobs, creating export value of USD 1.5 trillion, which is equivalent to 6% of world exports and 29% of all exports in the services sector (World Tourism Organization, 2005).

One of the important data about the distribution of world tourism is the number of tourist arrivals is not evenly distributed in each country and continent. The world's top ten tourism destinations have almost 50 percent of the total world international tourist arrival. The remaining contested by all countries in the

world that develop tourism industry as one effort to push its economy. This means, tourism destinations have a very strong competition to gain tourists in world tourists market (Chang, 2008).

The importance of tourism destinations brand development to increase international tourist's arrival which affected the increase in foreign exchange has been recognized by some countries. One empirical example is New Zealand brand "100% Pure New Zealand" in 1999 was able to double the revenue from foreign tourists exceeded 3 billion dollars New Zealand in 2005.

Anchored in the context of tourism destination marketing, the brand must have a high equity to attract tourists. Chang (2008) adds that the purpose of brand equity in tourism is "maximizing the uniqueness of destinations to distinguish it from other destinations in reaching the target market". Destination brand equity itself is essentially to optimize the uniqueness of the destination as a differentiator to other destinations in reaching the target market. More specifically, brand equity "incites beliefs, evoke emotions and prompt behaviors" (Kotler and Gertner, 2002 in Chang, 2008). The number of tourism destinations with each uniqueness and advantages make the more competitive tourism industry. According to Lee and Leh (2011) knowing destination's brand equity is important to support destination verv marketing strategy. The high brand equity of a destination will influence the behavior of foreign tourists before, during, and after having vacation in tourism destination.

Bali, as one of the tourism destination in the world, is also has a brand equity that influences international tourists to choose Bali as their tourism destination. International tourists visit Bali as a tourism destination, in part, due to the high-value brand equity of Bali as tourism destination. On one hand, there is already known that the brand equity of tourism destination influences tourist decision making to choose a destination to be visited. On the other hand, there is no information on how the brand equity of tourism destinations in influencing the tourists behavior during their vacation in destination. For example, how brand equity of Bali attracts tourists to extend their length of stay, to encourage tourists to be repeater guests (revisit tourists), as well as to grow tourists willingness to recommend Bali as tourism destinations for family, friends or others.

Based on the background above, the research on the effect of Bali brand equity as a tourism destination on tourists traveling behavior gets a strong foothold to be conducted. It is also justified by the fact that there is unavailability of data on what variables of brand equity of Bali as a tourism destination that significantly affects the behavior of foreign tourists in destination.

Research Purpose

This research aims to analyze the effect of Bali brand equity on tourists traveling behavior.

Literature Review

Understanding consumer behavior

Consumer behavior according Swarbrooke and Susan (2007) is "a process that involves individual and group activities when selecting, buying, using, or leaving a product, service, idea, or experience to satisfy the needs and desires of consumers". Furthermore Hoffman and Bateson (2010) states that consumer behavior has at least three properties, namely:

- a. Consumer behavior is dynamic in which a consumer, consumer groups, and the community has changed over time. Consequently, the generalization of consumer behavior is usually limited to a certain period, products, and individuals or groups.
- b. In order to understand the customer and develop appropriate marketing strategies, we need to understand what they think, feel, do, and what affects consumer thought and feeling.
- c. There are exchange between individuals that is consistent with the definition of marketing that emphasizes the importance of the exchange. In fact, the role of marketing is to create exchanges with consumers through the formulation and implementation of marketing strategies.

When we want to optimize the effectiveness and efficiency of marketing then we must seek to understand how consumers make decisions to buy or select or use a tourism product. Associated with tourism, understanding tourist behavior allows us to intervene in any part of marketing strategy that is considered necessary in order to achieve the goals that have been set (Swarbrooke and Susan, 2007). Furthermore, understanding the tourist behavior is useful in the development of tourism products and services in order to meet the expectations of tourists.

The tourist planned decision making process in traveling

Tourist behavior has become essential in tourism destination marketing strategy. Select, purchase, and consume tourism products including tourism destination involves a set of psychological processes and environmental influences that must be considered (Kozak and Decrop, 2009). Generally, according to Kozak and Decrop (2009) decision-making process as tourists' behavior in traveling can be classified into three stages: pre purchase, consuming, and post consuming.

1. Pre-purchase stage

This stage is characterized by potential travelers that have the motivation, needs, and wants to take a vacation to certain destination. They try to find various tourism destination information and evaluate the various alternatives available to select one of the most suitable destinations based on some criteria.

2. Consuming stage

This phase tourists enjoy travel in destinations and consume products and services provided. This phase consists of series of events and activities that help travelers sense, connect, and express their symbolic value into choices and activities performed during the vacation. Traveler experiences at destinations are very subjective and are created because of sensations. emotions. and social interactions that lead to learning and understanding of the real situation in the destination.

3. Post consuming stage After traveled to destination then the traveler evaluates his experience with the information obtained from various sources with their own real experiences in destination. The evaluation results is usually a feeling of satisfaction or dissatisfaction that led to the decision or desire to re-visit or divert to other destinations. Other result is usually recommendation or no recommendation to friends or family based on his experience (Kozak and Decrop, 2009).

The effect of Tourism Destination Brand Equity on Travelling Behavior

Related to traveling behavior of tourists based on consumer behavior theory as stated by Konecnik and Gartner ()2007 and Chen and Tseng (2010) that the traveler's behavior in the context of brand equity reflected in destination brand loyalty which is reflected in at least three indicators, namely: (1) the frequency of visiting destinations, (2) the length of stay in destination, and (3) the frequency of recommending destinations to others. Aspects of these behaviors are influenced by perceptional aspects, namely cognitive level (destination brand awareness) and affective level (destination brand image, destination brand association. and destination brand perceived quality).

According to Aaker (in Chang, 2008) brand equity is defined as "a set of brand assets and liabilities linked to a brand, its name and symbol". Then, Ming, Ismail and Rasiah (2011) define brand equity as "the incremental utility and value added to a product by its brand name". Thus, brand equity lies on how much asset or added value owned by a related product names and symbols attached to it. The application of Consumer Based Brand Equity specifically for tourism destinations was introduced by Konečnik (2005), followed by the subsequent publications by Konecnik and Gartner (2007) and Konecnik Ruzzier (2013), a tourism destination brand built by: (a) destination awareness, (b) destination image, (c) perceived quality, and (d) destination Richie and Richi (in Jalilvand, lovalty. Esfahani and Samiei, 2010) stated that brand equity should be able to be taken into consideration and persuade tourist to travel to the destination.

Aaker (in Ming, Ismail and Rasiah, 2011) stressed that the destination brand awareness is the beginning of the emergence of brand loyalty on a tourism destination. If tourists have the awareness of the brand destination then it is likely they have a certain image about the tourism destination concerned. Consequently, the positive image on the brand destinations will increase the possibility of traveling to Bali, repeating visit to Bali, or extending their length of stay in Bali and if they are satisfy they will recommend the destination to others.

Destination brand image is an important factor in building tourist trust to the destination. Ming, Ismail and Rasiah (2011) states that there are direct and indirect impacts of the destination brand image to the tourist trust level and affect the next decision in the future. Travelers who have a good image of a tourist destination then it is likely to have a positive influence to the destination, raises his loyalty to the destinations and eventually return back as a repeater guest, increase the length of stay in destinations, and most likely recommend that destination to others.

Destination brand association is any mental relationships associated with a tourism destination that may involve attributes of products or services in a destination that relate either directly or indirectly with tourists 1999). Destination (Tuominen. brand association also affect whether or not traveler has a comfort feeling during vacation in destination. Traveler who has a strong association with destination tends to be longer stay in destination. If they are satisfied, therefore, they would recommend the destination to others.

The quality of products according to Parasuraman et al. (in Suh and Pedersen, 2010) has an effect on choosing product behavior. According to Chiou et al. (in Suh and Pedersen, 2010) in the context of tourism, the destination quality perceived by tourist generates conative response on the respective destination. This determines the conative response which resulted in the purchase of products offered by a destination and the loyalty of tourists to destinations for instance to be a repeater guest and stay longer in the destination as well as the willingness to recommend the destination to others. Studies Gil et al. (in Suh and Pedersen, 2010) showed that the higher the quality of a tourist destination perceived by tourists then the stronger possibility travelers behave positively towards that destination.

Methodology

The survey of 240 foreign tourists (Appendix 1) as respondents carried out from January 2015 until November 2015 in five main tourism objects in Bali namely: Tanah Lot (107 respondents), Ulun Danu Beratan (44 respondents), Uluwatu (43 respondents), Penelokan Batur (28 respondents), and Taman respondents). Avun (18 Criteria for respondents are: (a) overnight tourists but not as transit travelers, (b) visited at least one of the five major tourist attractions that is used as location. research (c) alreadv have psychological evaluation and perception on tourism objects visited, (d) respondents are willing to, capable for and comfortable in providing information needed to answer the research objectives. This research uses a quantitative research design. Data were analyzed using multivariate analysis of variance (MANOVA) with SPSS 16.0 for Windows software (Santoso, 2014).

Brand equity of Bali as a tourism destination is measured using five main variables measurement. namely: (a) destination brand awareness, (b) destination brand image, (c) destination brand association, (d) destination brand percieved quality, and (e) destination brand loyalty (Jamal and Naser, 2002; Konečnik, 2005; Konecnik and Gartner, 2007; Türkyılmaz and Özkan, 2007; Chen and Tseng, 2010; Konecnik Ruzzier, 2013). While, tourists traveling behavior is measured using three variables, namely: (a) the frequency of visited Bali (times), (b) length of stay during vacation in Bali (days), (c) the frequency recommending Bali to others (times).

General model for MANOVA analysis used in this research (Santoso, 2014) is:

$$Y_1 + Y_2 + Y_3 = f(X_1 + X_2 + ... + X_n)$$

in which:

 Y_1 = the frequency of visiting Bali (times) Y_2 = length of stay during vacation in Bali (days),

 Y_3 = the frequency recommending Bali to others (times).

 $X_1, X_2,..., X_n$ = brand equity of Bali parameters

Destination brand awareness consists of 7 parameters (X1 to X7) and three hypotheses:

- Hypothesis (1a): destination brand awareness significantly affect the frequency of tourist arrivals to Bali
- Hypothesis (1b): destination brand awareness significantly affect the length of stay during the vacation in Bali
- Hypothesis (1c): destination brand awareness significantly affect the frequency of recommending Bali tourism destinations to others

Destination brand image consists of 9 parameters (X8 to X16) and three hypotheses:

- Hypothesis (2a): destination brand image significantly affect the frequency of tourist arrivals to Bali
- Hypothesis (2b): destination brand image affect the length of stay during the vacation in Bali
- Hypothesis (2c): destination brand image significantly affect the frequency of recommending Bali tourism destinations to others

Destination brand association consists of 10 parameters (X17 to X26) and three hypotheses:

- Hypothesis (3a): destination brand association significantly affect the frequency of tourist arrivals to Bali
- Hypothesis (3b): destination brand association affect the length of stay during the vacation in Bali
- Hypothesis (3c): destination brand association significantly affect the frequency of recommending Bali tourism destinations to others

Destination brand perceived quality consists of 11 parameters (X27 to X37) and three hypotheses:

- Hypothesis (4a): destination perceived quality significantly affect the frequency of tourist arrivals to Bali
- Hypothesis (4b): destination perceived quality affect the length of stay during the vacation in Bali
- Hypothesis (4c): destination perceived quality significantly affect the frequency of recommending Bali tourism destinations to others

For all hypotheses, decion-making criterion is:

- If number of sig. > 0,05 then H_0 is accepted
- If number of sig. < 0.05 then H_0 is rejected

Before performing factor analysis, first the research instruments were tested concerning the reliability and validity of the questionnaire. Based on the research instrument reliability test was obtained Cronbach's Alpha of 0.917> 0.60 (reliable) as can be seen on Appendix 2. Furthermore, test of research instrument validity was obtained Corrected Item-Total Correlation > r table (0.11) (valid) as can be seen on Appendix 3 (Santoso, 2014).

Results and Discussion

Respondent Characteristics

Of the 240 respondents, 42.50% were male and 57.5 % female, a difference of 15.0%. The average age of respondents was 40.09 years with a range between 18 years old to 81 year old. A total of 76.67 percent of respondents visit Bali as their first destination in this traveling time prior to other destinations in the world. While, the remaining 23.33 percent visited Bali after other destinations, both destinations in Indonesia and abroad.

The average frequency of visiting Bali was 5.48 times. The number of respondents who has his first traveling to Bali is 39.2 percent while the remaining 60.8 percent are repeater guests. The average length of stay in Bali is 18.08 days and the average frequency of recommending Bali tourism destinations as a travel destination to others is 7.33 times.

Related to travel arrangements to Bali. 83.4 percent of respondents do personal travel arrangements while the remaining 16.7 percent arranged by travel agents. As many as 25.8 percent of respondents travel to Bali alone. 50.0 percent was accompanied by family members, and 24.2 percent travel in the group.

Effect of destination brand awareness on foreign tourists traveling behavior

Based on the MANOVA analysis, there are two test results: (a) between groups (multivariate tests) and (b) individually (test of between-subjects effects) (Santoso, 2014) as can see in Table 1, Appendix 4, and Appendix 5.

Multivariate Tests and Test of Tabel 1. Between-Subjects Effects Destination Brand Awareness

No	Destination Brand	Multivariate Tests	Test of I	Between-Subject	s Effe ct
	awareness	Sig. Roy's	Sig. Y1	Sig. Y2	Sig. Y
	parameters	Largest Root	(Hypothesis	(Hypothesis	(Hypo
			1a)	1b)	1c) SI
1	X3	.010	.444	.034	.110to
	Bali as one	(significantly		(significantly	ap
	of the	affects)		affects)	W
	world's				pa
	main				in
	destination				11
2	X5	.020	.908	.041	.759de
	Strong	(significantly		(significantly	sp
	brand Bali	affects)		affects)	C2
	recall				1
3	X2	.688	.573	.700	.860
	Familiarity				de
	of brand				ac
	Bali				de

 Y_1 = the frequency of visiting Bali (times) Y_2 = length of stay during vacation in Bali (davs)

 Y_3 = the frequency recommending Bali to others (times).

Source: Appendix 4 and 5

a. Multivariate test

simultaneously Between group, parameter X3 and X5 (Bali as one of the world's main destination and strong brand Bali recall) significantly affect all together tourists traveling behavior simultaneously (Y1, Y2, Y3: the frequency of visited Bali, length of stay during in Bali length of stay during in Bali, and the frequency recommending Bali to others) (sig. Roy's Largest Root < 0.05).

Parameter X3 is part of brand recognition indicator while parameter X5 is derived from brand recall indicators. Brand tourism destination is usually raised in the minds of travelers (recognition process) and stimulates them to consider choosing a particular tourism destination to be chosen (Percy and Rossiter, 1992). When tourists will travel to Europe, Asia, or America then in their mind already has certain brand recognition to those destinations. If a destination does not have particularly a well-known brand then this process will be skipped and the certain tourism destination is escaped from tourists' attention. Bali, as a brand of tourism destination, has an advantage in this case because its brand recognition is very high in the world. This causes both X3 and X5 influencing significantly the behavior of travelers during acation in Bali.

³ Sometimes tourist's decision-making tuation whether to visit or not to visit a burism destination is not determined by the opearance of the brand destination first, but as triggered by a traveler needs to a destination category articular (suc as tention to travel in suitable tourism estination weather or having adventure, ports, culture, and other attractions). In this ase, tourists just recall the tourism brand estinations that best meets their need and ecide to travel to brand destination selected in ccordance with these needs. Bali as a tourism estination brand is quite successful in this regard because after being recognized as a cultural tourism destination it is very easy for potential tourists to recall Bali brand if they want to travel in cultural tourism destination category. This resulted X5 together with X3 parameters significantly influence to tourists traveling behavior during their vacation in Bali. In summary, between groups, destination brand awareness significantly affects tourist traveling behavior.

b. Test of Between-Subjects Effects

Individually, only two parameter measurements (X3 and X5) significantly effect on tourism traveling behavior. Firstly, X3 (Bali as one of the world's main destination)

http://ojs.unud.ac.id/index.php/eot

e-ISSN: 2407-392X. p-ISSN: 2541-0857

significantly effect on Y2 (length of stay during in Bali) with sig. 0.034 <0.05. Secondly, X5 (strong brand Bali recall) also significantly effect on Y2 (length of stay during in Bali) with sig. 0.041 <0.05. Based on the analysis, only hypotheses 1b (destination brand awareness significantly affects the length of stay during the vacation in Bali) can be proven in this regard.

This indicates that Bali as a world tourism destination brand has succeeded in making the tourists stay longer in Bali or make tourists want to extend their vacation time to enjoy the Bali compared to move on other tourism destinations. But, there is not enough significant evidence to say that the X3 parameter influents to other tourist traveling behaviors such as increasing the frequency of visiting Bali or recommending Bali to others. The same thing happened on the parameters X5 (strong brand Bali recall) were only able to significantly influence the behavior of Y2 (length of stay during in Bali) but not against Y1 or Y3. In summary, destination brand awareness only affects the length of stay of tourist during vacation in Bali.

Parameters X3 and X5 are the parameters of the destination brand awareness factor. According to Keller (1993), destination brand awareness is very important in potential tourist's decision-making process to visit certain destination, namely:

- a. As a tourism destination brand name appears in the minds of potential tourists they associate it with a destination to be visited. Consequently, if the brand destinations awareness is high enough to be put in the minds of travelers, it is likely influencing the decision-making process to select certain tourist destinations compares to the unknown destination. Here, the role of parameter X3 and X5 are very important.
- b. Destination brand awareness influence tourist's decision making as one of the consideration in destination choice judgment. Several studies Keller (1993) show that the minimum level of brand awareness is sometimes enough to have a significant effect on the trips to destination especially when tourists do not have any else information or have never traveled to

the destination before. The results of the analysis support this assumption that the role parameter X3 or X5 significantly individually influences to the Y2 even though not for Y1 or Y3.

c. Brand awareness influences the decision by providing the making process differences in source of information in the decision making process. This difference is influenced by the brand associations in the tourist's memory and directly impact on brand image of destination (Keller, 1993). The ability of tourist to remember (recall) Bali as a world tourism destination will bring about tourists to the association of cultural tourism destinations in Southeast Asia and it is enough to help building the image as a tourism destination of Asian culture and in Bali will be confirmed that the culture is more specific to the Hindu culture.

Briefly, the effect of brand destination awareness to the tourist traveling behavior vividly described by Aaker (in Ming et al., 2011) which stressed that the destination brand awareness is the beginning of the emergence of destination brand loyalty. If tourist have the awareness of a certain tourism destination because of its brand, he is likely to develop a certain image related to that destination. Consequently, the high positive images of Bali as a tourism destinations brand caused by a high awareness enlarge the chance for tourist to choose and to travel to Bali and to extend their length of stay in Bali, as shown in above analysis. All of that sequential process will eventually greatly help Bali as a tourism destination brand has strong brand equity.

Effect of destination brand image on foreign tourists traveling behavior

Based on MANOVA analysis can be obtained Multivariate Tests and Test of Between-Subjects Effects as can be seen in Table 2, Appendix 6 and Appendix 7.

Tabel 2. Multivariate Tests and Test of
Between-Subjects Effects Destination Brand
Image

No	Destination Brand	Multi variate	Test of Between-Subjects Effects			
	Image Parameter	Sig. Roy's Largest Root	Sig. Y1 (Hypothesis 2a)	Sig. Y2 (Hypothesis 2b)	Sig. Y3 (Hypothes 2c)	
1	X8 Most suitable and competitive travel package price	.361	.726	.667	.648	
2	X14 Distinctive features for stunning natural beauty	.000 (signific antly affects)	.000 (significantly affects)	.333	.000 (significar affects)	
3	X13 Warm, Politely, and friendly local	.000 (signific antly affects)	.710	.001 (significantly affects)	.000 (significar affects)	

 Y_1 = the frequency of visiting Bali (times) Y_2 = length of stay during vacation in Bali

(days)

 Y_3 = the frequency recommending Bali to others (times).

Source: Appendix 6 and 7

a. Multivariate test

Between group, simultaneously parameter X13 and X14 (warm, politely, and friendly local people and distinctive features for stunning natural beauty) significantly affect all together tourists traveling behavior simultaneously (Y1, Y2, Y3: the frequency of visited Bali, length of stay during in Bali length of stay during in Bali, and the frequency recommending Bali to others) (sig. Roy's Largest Root <0.05).

Based on the analysis, parameters X13 and X14 are element of Bali image as tourism destinations in the eyes of foreign tourists. Both aspects are building impression that Bali as a tourism destination is full of hospitality. Bali is also perceived as a destination that has a natural beauty that strengthening of its main tourist attraction as a cultural tourism destination. These jointly build a destination brand image of Bali as a tourism destination. Destination image itself according to

Crompton (in Jenkins, 1999) as "the sum of beliefs, ideas, and impressions that a person has of a destination" or "image of the destination regarding beliefs, ideas, and impressions upon destination". The image of destination is very important in influencing the tourist decision-making to visit or not to visit to certain destination. This will have an impact on tourist decision to visit or not to Bali in the future. Destination image also affects the level of tourist satisfaction on his experience during vacation in destinations. This will affect the length of stay of tourists in Bali as well as the willingness to recommend destinations Bali as -a destination to others. Destination image influence on tourist traveling behavior and is corfirmed in this research findings. This is also supported by Hui and Wan (2003) statement that the destination image affects the individual's subjective perception, subsequent behavior, and the selection of destinations.

b. Test of Between-Subjects Effects

Individually, parameter X14 significantly effect on Y1 (sig. 0.000 < 0.05) and Y3 (sig. 0.000 < 0.05). While, parameter X13 significantly effect on Y2 (sig. 0.001 < 0.05) and Y3 (sig. 0.000 < 0.05). Based on the analysis, hypotheses 2a, 2b, and 2c can be proven in this regard that destination brand image significantly affect the frequency of tourist visit to Bali, affect the length of stay during the vacation in Bali, and also affect the frequency of recommending Bali tourism destinations to others

This means that tourists Bali as a tourism destination having a high image supported by the attractiveness of natural beauty and make tourists want to visit Bali in the future and recommended Bali to others to be visited. It is quite logic considering that the hospitality of the Balinese community makes tourists comfortable so in general they can enjoy their vacation in Bali as desired.

Destination brand image is an important factor in building tourist's trust on destination. Esch et al. (in the Ming et al., 2011) states that there is a direct and indirect impact of destination brand image to tourist's trust and affecting the willingness to purchase travel package in the future. Reflecting on these results, the tourists have a good image to Bali

http://ojs.unud.ac.id/index.php/eot

e-ISSN: 2407-392X. p-ISSN: 2541-0857

as a tourism destination and have a positive influence on their trus to Bali and increase the loyalty of tourists to Bali as a tourism destinations as reflected in the increase of tourist arrivals frequency to Bali, extend their length of stay in Bali, and recommend Bali as a tourism destination to others (Ming et al., 2011). This will be very helpful for Bali to have strong brand equity.

Effect of destination brand association on foreign tourists traveling behavior

Based on MANOVA analysis can be obtained Multivariate Tests and Test of Between-Subjects Effects as can be seen in Table 3, Appendix 8 and Appendix 9.

Tabel 3.

Multivariate Tests ans Test of Between-Subjects Effects Destination Brand Association

No	Desti	Multiva	Test of Between-Subjects			
	natio	riate		Effects	-	
	n	Tests				
	Bran	Sig.	Sig. Y1	Sig. Y2	Sig. Y3	
	d	Roy's	(Hypot	(Hypot	(Hypot	
	Asso	Largest	hesis	hesis	hesis	
	ciatio	Root	3a)	3b)	3c)	
	n					
	Para					
	meter					
	3710	410	0.50	077	640	
1	X18	.412	.858	.877	.648	
	Bali					
	nas					
	tourio					
	touris					
	111 attrac					
	tions					
2	X21	000	008	018	000	
-	Safe	(signifi	(signifi	(signifi	(signifi	
	and	cantly	cantly	cantly	cantly	
	peace	affects)	affects)	affects)	affects)	
	ful					
	desti					
	natio					
	n					
3	X17	.024	.110	.373	.065	
	Majo	(signifi				
	r	cantly				
	cultur	affects)				
	al					
	touris					
	m					
	desti					
	natio					
	n in					
	the					
	world					

 Y_1 = the frequency of visiting Bali (times) Y_2 = length of stay during vacation in Bali (days)

 Y_3 = the frequency recommending Bali to others (times).

Source: Appendix 8 and 9.

a. Multivariate test

Between group, simultaneously parameter X21 and X17 (safe and peaceful destination and major cultural tourism destination in the world) significantly affect all together tourists traveling behavior simultaneously (Y1, Y2, Y3: the frequency of visited Bali, length of stay during in Bali length of stay during in Bali, and the frequency recommending Bali to others) (sig. Roy's Largest Root <0.05).

The dominant aspects of the destination brand association Bali as a tourism destination that influence tourists traveling behavior are a sense of security and status of Bali as a major cultural tourism destination in the world. Sense of security felt by tourists during vacation in Bali is the starting point to build loyalty to the destination. This will be reinforced by many aspects of the local culture (Hindu-based culture) that different from other tourism destinations. Both of these become a starting point to build brand equity of Bali.

b. Test of Between-Subjects Effects

Individually, only parameter X21 significantly affects on Y1 (sig. 0.008 < 0.05), Y2 (sig. 0.018 < 0.05), and Y3 (sig. 0.000 <0.05). Based on the analysis, hypotheses 3a, 3b, and 3c can be proven in this regard that destination brand association significantly affect the frequency of tourist visit to Bali, affect the length of stay during the vacation in Bali, and also affect the frequency of recommending Bali tourism destinations to others. Interestingly, the data show that Bali is fully recovered from safety issue related to the terrorist attacks in 2002 and 2005. This means that tourists consider that those two terrorist attacks do not affect the traveling decision to Bali. A sense of security is of primary issue to traveler before traveling to any tourism destination.

Destination brand association is any tourist mental relationships associated with a tourism destination that may involve attributes of products or services in a destination that relate either directly or indirectly with tourists (Tuominen, 1999). The destination association does not only exist but have a level of power that affects travelers in choosing Bali as a tourism destination. In this study, the most powerful association is the status of Bali as a world cultural destination and a sense of security for tourists during their vacation in Consequently. Bali. destination brand association significantly affects tourists to be repeater guests in Bali, extend the length of stay, and recommend to others.

Effect of destination brand perceived quality on foreign tourists traveling behavior

Based on MANOVA analysis can be obtained Multivariate Tests and Test of Between-Subjects Effects as can be seen in Table 4, Appendix 10 and Appendix 11.

Tabel 4. Multivariate Tests and Test of Between-Subjects Effects Destination Brand Perceived Quality

No		Multiva	Test of Between-Subjects				
	Desti	riate		Effects	j.		
	natio	Tests					
	n	Sig.	Sig. Y1	Sig. Y2	Sig. Y3		
	Bran	Roy's	(Hypot	(Hypoth	(Hypot		
	d	Largest	hesis	esis	hesis		
	Perce	Root	4a)	4b)	4c)		
	ived						
	Quali						
	ty						
	Para						
	meter						
1	X32	.061	.066	.543	.699		
	Very						
	helpf						
	ul						
	touris						
	m						
	work						
	ers						
2	X27	.013	.825	.042	.910		
	Excel	(signific		(signific			
	lent	antly		antly			
	touris	affects)		affects)			
	m						
	physi						
	cal						
	facılıt						
	ies	0.20	222	010	0.2.1		
3	X37	.038	.333	.812	.934		
	Provi	(signific					

ding	antly
perso	affects)
care	
for	
touris	
ts	

 Y_1 = the frequency of visiting Bali (times) Y_2 = length of stay during vacation in Bali (days)

 Y_3 = the frequency recommending Bali to others (times).

Source: Appendix 10 and 11

a. Multivariate test

Between group, simultaneously parameter X27 and X37 (very helpful tourism workers and providing personal care for tourists) significantly affect all together tourists traveling behavior simultaneously (Y1, Y2, Y3: the frequency of visited Bali, length of stay during in Bali length of stay during in Bali, and the frequency recommending Bali to others) (sig. Roy's Largest Root <0.05).

The quality of Bali as a tourism destination depends on the perception of tourists on overall superiority of Bali as a tourism destination compared to other destinations. This perception arises when foreign tourists are already consumed, experienced, and enjoyed many aspects of Bali as tourism destination. Quality in this context is the general assessment made by tourists related to the ability of Bali as a destination to meet tourist desired, to provide good facilities, to provide reliable attractions, to provide standardized services, and free from defects that cause tourists feel dissatisfied (Duffy and Ketchand, 1998; Türkyılmaz and Özkan, 2007). This is the basis for the formation of brand equity Bali as a tourism destination.

b. Test of Between-Subjects Effects

Individually, only parameter X27 (excellent tourism physical facilities) significantly effects on Y2 (sig. 0.042 < 0.05). Based on the analysis, only hypothesis 4b can be proven in this regard that destination brand perceived quality only significantly affect the length of stay during the vacation in Bali. The perception of well physical facilities quality will form the perception of overall quality on

Bali tourism destinations and ultimately affect tourist traveling behavior in destination.

According to Ming et al. (2011) in the context of tourism, destination quality perceived by tourists generates connative response to the destinations. This determines tourists behavior. In the context of this study the behavior related to their length of stay during vacation in Bali. Studies Gil et al. (in Suh and Pedersen, 2010) showed that the higher the quality of the destination perceived by tourists the stronger possibility travelers behave positively towards that destination.

To conclude the whole picture on how brand equity of Bali as tourism destination affects tourist traveling behavior can be summarized in Table 5.

Tabel 5.The Influence of Bali Brand Equityto Tourists Traveling Behavior

No.	Brand	Affe	Individ	ual affect	to behavior
	equity	ct	Y1	Y2	Y3
	variable	to	(the	(lengt	(the
	S	the	freque	h of	frequency
		whol	ncy of	stay	recommen
		e	visitin	durin	ding Bali
		beha	g Bali)	g	to others)
		vior		vacati	
		(Y1,		on in	
		Y2,Y		Bali)	
		3)			
1	Destination	X3	-	X3,	-
	brand	and		X5	
	awareness	X5			
2	Destination	X14	X14	X13	X14, X13
	brand	and			
	image	X13			
3	Destination	X21	X21	X21	X21
	brand	and			
	association	X17			
4	Destination	X27	-	X27	
	brand	and			
	perceived	X37			
	quality				

Tabel 5 shows that brand equity of Bali affects to whole tourism traveling behavior through destination brand awareness (X3 and X5), destination brand image (X14 and X13), destination brand association (X21 and X17), and destinastion perceived quality (X27 and X37). Individually, the tourist traveling behavior can be seen as follow:

- 1. Y_1 (the frequency of visiting Bali) is affected by X14 (distinctive features for stunning natural beauty) and X21 (safe and peaceful destination).
- Y2 (length of stay during vacation in Bali) is affected by X3 (Bali as one of the world's main destination), X5 (Strong brand Bali recall), X13 (warm, politely, and friendly local people), X21(safe and peaceful destination), and X27 (excellent tourism physical facilities).
- 3. Y3 (the frequency recommending Bali to others) is affected by X14 (distinctive features for stunning natural beauty), X13 (warm, politely, and friendly local people), and X21(safe and peaceful destination).

Conclusion

The influence of Bali brand equity to tourists traveling behavior as a whole through destination brand awareness, destination brand image, destination brand association, and destinastion perceived quality. While, individually, tourists traveling behavior in Bali as a tourism destination as follow: (a) the frequency of visiting Bali is affected by distinctive features for stunning natural beauty of Bali and safe and peaceful Bali turism destination, (b) the length of stay during vacation in Bali is affected Bali as one of the world's main destination, strong brand Bali recall, warm-politely-friendly local people, safe and peaceful destination, and excellent tourism physical facilities, and (c) the frequency recommending Bali to others is affected by distinctive features for stunning natural beauty of Bali, warm-politely-friendly local people, and safe and peaceful destination.

This research shows that Bali brand equity strongly affects the behavior of foreign tourists during their vacation in Bali. Keep maintaining a high level of brand equity of Bali can be used to develop as a basis of competitive advantage compare to competitors, keep the loyalty of visitor, expand expand market segment, choose the right target market and anchoring destination position in world market competition. Give

e-ISSN: 2407-392X. p-ISSN: 2541-0857

stressing on the attributes of destination that develop tourist's positive behavior to Bali as a tourism destination will determine the success of Bali in world tourism market competition.

References

- Chang, C.-F. (2008) Effect of destination branding on tourists' attitudes toward Tamshui, Taiwan.
- Chen, C.-F. and Tseng, W.-S. (2010) 'Exploring customer-based airline brand equity: Evidence from Taiwan', *Transportation Journal*. JSTOR, pp. 24–34.
- Duffy, J. A. M. and Ketchand, A. A. (1998) 'Examining the role of service quality in overall service satisfaction', *Journal of Managerial Issues*. JSTOR, pp. 240–255.
- Hoffman, K. D. and Bateson, J. E. G. (2010) Services marketing: concepts, strategies, & cases. Cengage learning.
- Hui, T. K. and Wan, T. W. D. (2003) 'Singapore's image as a tourist destination', *International journal of tourism research*. Wiley Online Library, 5(4), pp. 305–313.
- Jalilvand, M. R., Esfahani, S. S. and Samiei, N. (2010) 'Destination branding and tourists' attitudes (the case of Isfahan as a tourism destination in Iran)', *International Journal of Marketing Studies*, 2(2), p. 235.
- Jamal, A. and Naser, K. (2002) 'Customer satisfaction and retail banking: an assessment of some of the key antecedents of customer satisfaction in retail banking', *international journal* of bank marketing. MCB UP Ltd, 20(4), pp. 146–160.
- Jenkins, O. H. (1999) 'Understanding and measuring tourist destination images', *The International Journal of Tourism Research.* Wiley Periodicals Inc., 1(1), p. 1.

- Keller, K. L. (1993) 'Conceptualizing, measuring, and managing customerbased brand equity', *the Journal of Marketing*. JSTOR, pp. 1–22.
- Konečnik, M. (2005) Customer-based brand equity for tourism destination: Conceptual model and its empirical verification. University of Ljubljana.
- Konecnik, M. and Gartner, W. C. (2007) 'Customer-based brand equity for a destination', *Annals of tourism research*. Elsevier, 34(2), pp. 400– 421.
- Konecnik Ruzzier, M. (2013) 'Clarifying the concept of customer-based brand equity for a tourism destination'.
- Lee, G. C. and Leh, F. C. Y. (2011) 'Dimensions of customer-based brand equity: A study on Malaysian brands', *Journal of Marketing Research and Case Studies*, 2011, pp. 1–10.
- Ming, T. T., Ismail, H. Bin and Rasiah, D. (2011) 'Hierarchical chain of consumer-based brand equity: Review from the fast food industry', *The International Business & Economics Research Journal*. The Clute Institute, 10(9), p. 67.
- Percy, L. and Rossiter, J. R. (1992) 'A model of brand awareness and brand attitude advertising strategies', *Psychology & Marketing*. Wiley Online Library, 9(4), pp. 263–274.
- Santoso, S. (2014) 'Statistik Multivariat Edisi Revisi Konsep dan Aplikasi dengan SPSS'. Jakarta: PT. Elex Media Komputindo.
- Suh, Y. I. and Pedersen, P. M. (2010) 'Participants' service quality perceptions of fantasy sports websites: The relationship between service quality, customer satisfaction, attitude, and actual usage', Sport Marketing Quarterly. Fitness Information Technology, A Division of ICPE West Virginia University, 19(2), p. 78.

- Swarbrooke, J. and Susan, H. (2007) *Consumer Behavior in Tourism (Second Edition).* Oxford: Elsevier Ltd.
- Türkyılmaz, A. and Özkan, C. (2007) 'Development of a customer satisfaction index model: An application to the Turkish mobile phone sector', *Industrial Management* & *Data Systems*. Emerald Group Publishing Limited, 107(5), pp. 672– 687.
- World Tourism Organization (2005) 'Tourism Highlight UNWTO, Tourism Barometer Volume 12'.

APPENDIXES

Appendix 1.	Sample Distribution in Each
Tourism Obje	cts

Ν	То	Amount		Α	Sample proportion				n
0	uri	of fo	reign	m	basen on origins				
	sm	tou	rist	ou	(person)				
	obj	vi	si	nt		1		,	
	ect	Per	Pro	of	Е	А	А	А	М
		SO	por	sa	ro	si	m	fr	id
		n	tio	m	p	a	eri	ic	le
			n	pl	a	Pa	ca	а	Е
				e		sif			- a
				(p	(5	ic-	(1	(5	st
				er	2	0	5	%	(
				so	%	se	%))	5
				n))	an	,.,	,	%
				/		ia)
						(2			,
						3			
						%			
)			
1	Та	1.2	0,	1	5	2	1	5	5
	na	40.	45	0	6	5	6		
	h	94		7					
	Lot	5							
2	Ul	50	0,	4	2	1	7	2	2
	un	7.6	18	4	3	0			
	Da	22							
	nu								
	Be								
	rat								
	an								
3	Ul	49	0,	4	2	1	6	2	2
	uw	8.0	18	3	2	0			
	atu	70							
4	Pe	31	0,	2	1	6	4	2	2
	nel	8.5	11	8	4				
	ok	64							
	an								
	Bat								
	ur				<u> </u>				
5	Та	20	0,	1	9	4	3	1	1
	ma	5.5	07	8					
	n	25							
	Ay								
	un								
	Tot	2.7	1,0	2	1	5	3	1	1
	al	70.	0	4	2	5	6	2	2
		72		0	5				
		6							

Appendix 2. Reliabilitity test of questioner

Case Processing Summary

		Ν	%
Cases	Valid	240	100.0
	Excluded ^a	0	.0
	Total	240	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.917	41

109

Appendix 3. Validity test of questioner

Item-Total Statistics						
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Correcte d Item- Total Correlati on	Cronbach's Alpha if Item Deleted		
X1	171.40	170.333	.369	.916		
X2	171.40	170.767	.323	.917		
Х3	171.32	170.170	.367	.916		
X4	171.44	168.264	.412	.916		
X5	171.33	169.119	.453	.915		
X6	171.43	168.949	.432	.916		
X7	171.56	164.942	.450	.916		
X8	171.40	167.438	.517	.915		
X9	171.67	165.001	.477	.915		
X10	171.58	167.701	.466	.915		
X11	171.69	166.909	.397	.916		
X12	171.55	169.973	.308	.917		
X13	171.50	168.686	.416	.916		
X14	171.40	169.044	.388	.916		
X15	171.54	165.120	.589	.914		
X16	171.60	165.035	.602	.914		
X17	171.57	166.019	.510	.915		
X18	171.50	168.033	.470	.915		
X19	171.69	164.115	.522	.914		
X20	171.57	165.141	.564	.914		
X21	171.55	167.638	.448	.915		
X22	171.58	166.328	.519	.914		
X23	171.72	165.785	.524	.914		
X24	171.75	164.542	.572	.914		
X25	171.65	165.652	.570	.914		
X26	171.67	165.971	.581	.914		
X27	171.46	167.890	.445	.915		
X28	171.62	169.384	.414	.916		
X29	171.71	168.348	.416	.916		
X30	171.54	169.898	.344	.916		
X31	171.60	171.236	.260	.917		
X32	171.40	168.602	.436	.915		
X33	171.46	168.258	.448	.915		
X34	171.72	168.629	.370	.916		
X35	171.58	170.069	.347	.916		
X36	171.67	168.909	.337	.917		
X37	171.52	168.393	.430	.916		
X38	171.69	168.492	.337	.917		
X39	171.53	168.769	.434	.915		
X40	171.58	168.336	.429	.916		
X41	171.69	166.241	.467	.915		

Appendix 4. Multivariate Test of Destination Brand Awareness Multivariate Tests^c

Effect	t	Value	F	Hypot hesis df	Error df	Siq.
Inter	Pillai's Trace	.136	11.657 ^a	3.000	222.000	.000
cept	Wilks' Lambda	.864	11.657 ^a	3.000	222.000	.000
	Hotelling's Trace	.158	11.657ª	3.000	222.000	.000
	Roy's Largest Root	.158	11.657ª	3.000	222.000	.000
X3	Pillai's Trace	.062	2.375	6.000	446.000	.029
	Wilks' Lambda	.939	2.378 ^a	6.000	444.000	.028
	Hotelling's Trace	.065	2.382	6.000	442.000	.028
	Roy's Largest Root	.052	3.875 ^b	3.000	223.000	.010
X5	Pillai's Trace	.052	1.323	9.000	672.000	.221
	Wilks' Lambda	.948	1.328	9.000	540.440	.219
	Hotelling's Trace	.054	1.330	9.000	662.000	.218
	Roy's Largest Root	.045	3.351 [♭]	3.000	224.000	.020
X2	Pillai's Trace	.011	.413	6.000	446.000	.871
	Wilks' Lambda	.989	.411 ^ª	6.000	444.000	.872
	Hotelling's Trace	.011	.409	6.000	442.000	.873
	Roy's Largest Root	.007	.492 ^b	3.000	223.000	.688
X3 *	Pillai's Trace	.071	1.819	9.000	672.000	.062
X5	Wilks' Lambda	.929	1.834	9.000	540.440	.060
	Hotelling's Trace	.075	1.843	9.000	662.000	.058
	Roy's Largest Root	.063	4.712 ^b	3.000	224.000	.003
X3 *	Pillai's Trace	.024	.914	6.000	446.000	.485
X2	Wilks' Lambda	.976	.912ª	6.000	444.000	.486
	Hotelling's Trace	.025	.911	6.000	442.000	.487
	Roy's Largest Root	.021	1.570 ^b	3.000	223.000	.197
X5 *	Pillai's Trace	.006	.238	6.000	446.000	.964
X2	Wilks' Lambda	.994	.237 ^a	6.000	444.000	.964
	Hotelling's Trace	.006	.236	6.000	442.000	.964
	Roy's Largest Root	.005	.395 ^b	3.000	223.000	.757
X3 *	Pillai's Trace	.005	.352ª	3.000	222.000	.788
X5 * X2	Wilks' Lambda	.995	.352ª	3.000	222.000	.788
	Hotelling's Trace	.005	.352 ^ª	3.000	222.000	.788
	Roy's Largest Root	.005	.352ª	3.000	222.000	.788

a. Exact statistic

b. The statistic is an upper bound on ${\sf F}$ that yields a lower bound on the significance level.

c. Design: Intercept + X3 + X5 + X2 + X3 * X5 + X3 * X2 + X5 * X2 + X3 * X5 * X2

Appendix 5. Test of Between-Subjects Effects **Destination Brand** Awareness

Appendix 6. Multivariate Test of Destination Brand Image

Tests of Between-Subjects Effects						Multivariate Tests ^c							
Sourc	Dependent	Type III Sum		Mean	_	0.	Effect	-	Value	F	Hypothesis df	Error df	Sig.
e		of Squares	df	Square	F	Sig.	Intercept	Pillai's Trace	.255	24.679 ^a	3.000	216.000	.000
Corre cted	Y1_FR_KUNJ	754.081°	15	50.272	.584	.885		Wilks' Lambda	.745	24.679 ^a	3.000	216.000	.000
Model	Y2_TINGGAL	9041.080°	15	602.739	1.906	.024		Hotelling's					
	Y3_REKOMEND	1174.858 ^c	15	78.324	1.070	.386		Trace	.343	24.679 ^a	3.000	216.000	.000
Interc	Y1_FR_KUNJ	896.648	1	896.648	10.423	.001		Roy's	.343	24.679 ^a	3.000	216.000	.000
epi	Y2_TINGGAL	8069.821	1	8069.821	25.513	.000	X8	Largest Root	019	470	9.000	654 000	895
	Y3_REKOMEND	1511.340	1	1511.340	20.647	.000	70	Wilks'	.013	.470	3.000	004.000	.000
X3	Y1_FR_KUNJ	140.024	2	70.012	.814	.444		Lambda	.981	.467	9.000	525.838	.897
	Y2_TINGGAL	2174.808	2	1087.404	3.438	.034		Hotelling's	.019	.465	9.000	644.000	.898
	Y3_REKOMEND	326.415	2	163.207	2.230	.110		Rov's					
X5	Y1_FR_KUNJ	47.171	3	15.724	.183	.908		Largest Root	.015	1.073	3.000	218.000	.361
	Y2_TINGGAL	2646.721	3	882.240	2.789	.041	X14	Pillai's Trace	.136	3.439	9.000	654.000	.000
	Y3_REKOMEND	85.956	3	28.652	.391	.759		Wilks' Lambda	.866	3.549	9.000	525.838	.000
X2	Y1_FR_KUNJ	95.951	2	47.975	.558	.573		Hotelling's	450	0.000	0.000	044.000	000
	Y2_TINGGAL	225.656	2	112.828	.357	.700		Trace	.152	3.629	9.000	644.000	.000
	Y3_REKOMEND	22.166	2	11.083	.151	.860		Roy's Largest Root	.136	9.897 ^b	3.000	218.000	.000
X3 *	Y1_FR_KUNJ	116.983	3	38.994	.453	.715	X13	Pillai's Trace	.208	5.427	9.000	654.000	.000
X5	Y2_TINGGAL	4363.559	3	1454.520	4.599	.004		Wilks'	704	5 914	9,000	525 939	000
	Y3_REKOMEND	83.154	3	27.718	.379	.768		Lambda	.794	5.014	9.000	525.656	.000
X3 *	Y1_FR_KUNJ	119.265	2	59.633	.693	.501		Hotelling's Trace	.257	6.124	9.000	644.000	.000
X2	Y2_TINGGAL	448.505	2	224.253	.709	.493		Roy's	245	17 796 ^b	3 000	218 000	000
	Y3_REKOMEND	215.386	2	107.693	1.471	.232		Largest Root	.240	17.750	3.000	210.000	.000
X5 *	Y1_FR_KUNJ	42.628	2	21.314	.248	.781	X8 * X14	Pillai's Trace	.018	.438	9.000	654.000	.914
X2	Y2_TINGGAL	111.004	2	55.502	.175	.839		Lambda	.982	.436	9.000	525.838	.916
	Y3_REKOMEND	6.116	2	3.058	.042	.959		Hotelling's	.018	.435	9.000	644.000	.917
X3 *	Y1_FR_KUNJ	39.431	1	39.431	.458	.499		I race					-
X5 * X2	Y2_TINGGAL	56.025	1	56.025	.177	.674		Largest Root	.015	1.114 ^b	3.000	218.000	.344
7.L	Y3_REKOMEND	77.158	1	77.158	1.054	.306	X8 * X13	Pillai's Trace	.006	.146	9.000	654.000	.998
Error	Y1_FR_KUNJ	19269.852	224	86.026				Wilks' Lambda	.994	.145	9.000	525.838	.998
	Y2_TINGGAL	70851.253	224	316.300				Hotelling's					
	Y3_REKOMEND	16396.475	224	73.199				Trace	.006	.144	9.000	644.000	.998
Total	Y1_FR_KUNJ	27240.000	240					Roy's	.005	.390 ^b	3.000	218.000	.760
	Y2_TINGGAL	158374.000	240				X14 * X13	Pillai's Trace	.025	.926	6.000	434.000	.476
	Y3_REKOMEND	30478.000	240					Wilks'	075	0078	c 000	422.000	475
Corre	Y1_FR_KUNJ	20023.933	239					Lambda	.975	.927	6.000	432.000	.475
cted Total	Y2_TINGGAL	79892.333	239					Hotelling's Trace	.026	.928	6.000	430.000	.475
Total	Y3_REKOMEND	17571.333	239					Roy's	0.05	4 704 ^b	2 000	217 000	150
a. R S	quared = .038 (Adju	sted R Squared	= -			<u> </u>		Largest Root	.025	1.791	3.000	217.000	.150
.027)							X8 * X14 * X13	Pillai's Trace	.012	.850ª	3.000	216.000	.468
b. R S 054)	quared = .113 (Adju	sted R Squared	=					Lambda	.988	.850 ^a	3.000	216.000	.468

b. R Squared = .113 (Adjusted R Squared = .054)

c. R Squared = .067 (Adjusted R Squared = .004)

a. Exact statistic

111

Hotelling's Trace

Roy's Largest Roo

b. The statistic is an upper bound on F that yields a lower bound on the significance level. c. Design: Intercept + X8 + X14 + X13 + X8 * X14 + X8 * X13 + X14 * X13 + X8 * X14 * X13

.850

.850

3.000

3.000

216.000

216.000

.468

.468

.012

.012

Appendix 7. Test of Between-Subjects Effects Destination Brand Image

Appendix 8. Multivariate Test of Destination Brand Association

Tests of Between-Subjects Effects										
Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected	Y1_FR_KUNJ	2633.292 ^a	21	125.395	1.572	.058				
Model	Y2_TINGGAL	9506.476 ^b	21	452.689	1.402	.119				
	Y3_REKOMEND	4361.673 [°]	21	207.699	3.428	.000				
Intercept	Y1_FR_KUNJ	1566.853	1	1566.853	19.641	.000				
	Y2_TINGGAL	12287.334	1	12287.334	38.056	.000				
	Y3_REKOMEND	3460.674	1	3460.674	57.112	.000				
X8	Y1_FR_KUNJ	104.798	3	34.933	.438	.726				
	Y2_TINGGAL	477.895	3	159.298	.493	.687				
	Y3_REKOMEND	100.033	3	33.344	.550	.648				
X14	Y1_FR_KUNJ	1752.711	3	584.237	7.324	.000				
	Y2_TINGGAL	1106.090	3	368.697	1.142	.333				
	Y3_REKOMEND	1506.116	3	502.039	8.285	.000				
X13	Y1_FR_KUNJ	110.420	3	36.807	.461	.710				
	Y2_TINGGAL	5610.256	3	1870.085	5.792	.001				
	Y3_REKOMEND	1753.694	3	584.565	9.647	.000				
X8 * X14	Y1_FR_KUNJ	47.105	3	15.702	.197	.898				
	Y2_TINGGAL	656.759	3	218.920	.678	.566				
	Y3_REKOMEND	44.347	3	14.782	.244	.866				
X8 * X13	Y1_FR_KUNJ	56.062	3	18.687	.234	.872				
	Y2_TINGGAL	174.431	3	58.144	.180	.910				
	Y3_REKOMEND	53.154	3	17.718	.292	.831				
X14 *	Y1_FR_KUNJ	24.486	2	12.243	.153	.858				
X13	Y2_TINGGAL	20.341	2	10.170	.032	.969				
	Y3_REKOMEND	250.056	2	125.028	2.063	.130				
X8 * X14	Y1_FR_KUNJ	.146	1	.146	.002	.966				
* X13	Y2_TINGGAL	47.824	1	47.824	.148	.701				
	Y3_REKOMEND	76.345	1	76.345	1.260	.263				
Error	Y1_FR_KUNJ	17390.642	218	79.774						
	Y2_TINGGAL	70385.858	218	322.871						
	Y3_REKOMEND	13209.661	218	60.595						
Total	Y1_FR_KUNJ	27240.000	240							
	Y2_TINGGAL	158374.000	240							
	Y3_REKOMEND	30478.000	240			L				
Corrected	Y1_FR_KUNJ	20023.933	239							
Total	Y2_TINGGAL	79892.333	239							
	Y3_REKOMEND	17571.333	239							

a R Squared - 132 (Adjuste	- harvared -
1. IN Oqualou = . 102 (Majush	Ju il Oquaica –

.048)

b. R Squared = .119 (Adjusted R Squared = .034)

c. R Squared = .248 (Adjusted R Squared = .176)

Multivariate Tests ^c										
Effect	-	Value	F	Hypothesis df	Error df	Sig.				
Intercept	Pillai's Trace	.279	27.237 ^a	3.000	211.000	.000				
	Wilks' Lambda	.721	27.237 ^a	3.000	211.000	.000				
	Hotelling's Trace	.387	27.237 ^a	3.000	211.000	.000				
	Roy's Largest Root	.387	27.237 ^a	3.000	211.000	.000				
X18	Pillai's Trace	.018	.425	9.000	639.000	.922				
	Wilks' Lambda	.982	.422	9.000	513.669	.923				
	Hotelling's Trace	.018	.420	9.000	629.000	.925				
	Roy's Largest Root	.014	.962 ^b	3.000	213.000	.412				
X21	Pillai's Trace	.189	3.581	12.000	639.000	.000				
	Wilks' Lambda	.819	3.656	12.000	558.545	.000				
	Hotelling's Trace	.212	3.705	12.000	629.000	.000				
	Roy's Largest Root	.149	7.921 ^b	4.000	213.000	.000				
X17	Pillai's Trace	.069	1.250	12.000	639.000	.245				
	Wilks' Lambda	.932	1.253	12.000	558.545	.243				
	Hotelling's Trace	.072	1.254	12.000	629.000	.242				
	Roy's Largest Root	.054	2.865 ^b	4.000	213.000	.024				
X18 * X21	Pillai's Trace	.016	.377	9.000	639.000	.946				
	Wilks' Lambda	.984	.374	9.000	513.669	.947				
	Hotelling's Trace	.016	.372	9.000	629.000	.949				
	Roy's Largest Root	.009	.656 ^b	3.000	213.000	.580				
X18 * X17	Pillai's Trace	.032	.466	15.000	639.000	.957				
	Wilks' Lambda	.968	.462	15.000	582.879	.958				
	Hotelling's Trace	.033	.459	15.000	629.000	.960				
	Roy's Largest Root	.015	.643 ^b	5.000	213.000	.667				
X21 * X17	Pillai's Trace	.179	3.388	12.000	639.000	.000				
	Wilks' Lambda	.825	3.514	12.000	558.545	.000				
	Hotelling's Trace	.207	3.620	12.000	629.000	.000				
	Roy's Largest Root	.178	9.475 ^b	4.000	213.000	.000				
X18 * X21	Pillai's Trace	.005	.164	6.000	424.000	.986				
X17	Wilks' Lambda	.995	.163 ^a	6.000	422.000	.986				
	Hotelling's Trace	.005	.163	6.000	420.000	.986				
	Roy's Largest Root	.004	.296 ^b	3.000	212.000	.828				

a. Exact statistic

112

b. The statistic is an upper bound on ${\sf F}$ that yields a lower bound on the significance level.

significance rever. c. Design: Intercept + X18 + X21 + X17 + X18 * X21 + X18 * X17 + X21 * X17 + X18 * X21 * X17 + X18 * X21 * X17

Appendix 9. Test of Between-Subjects Effects Destination Brand Association

Tests of Between-Subjects Effects									
Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.			
Corrected	Y1_FR_KUNJ	2704.135 ^a	26	104.005	1.279	.174			
Model	Y2_TINGGAL	13897.851 ^b	26	534.533	1.725	.020			
	Y3_REKOMENR	4412.722 ^c	26	169.720	2.747	.000			
Intercept	Y1_FR_KUNJ	1643.027	1	1643.027	20.206	.000			
	Y2_TINGGAL	12567.296	1	12567.296	40.561	.000			
	Y3_REKOMENR	3587.697	1	3587.697	58.074	.000			
X18	Y1_FR_KUNJ	62.090	3	20.697	.255	.858			
	Y2_TINGGAL	211.949	3	70.650	.228	.877			
	Y3_REKOMENR	102.065	3	34.022	.551	.648			
X21	Y1_FR_KUNJ	1163.482	4	290.870	3.577	.008			
	Y2_TINGGAL	3774.815	4	943.704	3.046	.018			
	Y3_REKOMENR	1491.269	4	372.817	6.035	.000			
X17	Y1_FR_KUNJ	621.718	4	155.430	1.911	.110			
	Y2_TINGGAL	1325.330	4	331.332	1.069	.373			
	Y3_REKOMENR	556.066	4	139.017	2.250	.065			
X18 * X21	Y1_FR_KUNJ	71.499	3	23.833	.293	.830			
	Y2_TINGGAL	461.676	3	153.892	.497	.685			
	Y3_REKOMENR	112.970	3	37.657	.610	.609			
X18 * X17	Y1_FR_KUNJ	163.337	5	32.667	.402	.847			
	Y2_TINGGAL	544.073	5	108.815	.351	.881			
	Y3_REKOMENR	173.746	5	34.749	.562	.729			
X21 * X17	Y1_FR_KUNJ	1906.204	4	476.551	5.861	.000			
	Y2_TINGGAL	3577.669	4	894.417	2.887	.023			
	Y3_REKOMENR	1854.996	4	463.749	7.507	.000			
X18 * X21 *	Y1_FR_KUNJ	.522	2	.261	.003	.997			
X17	Y2_TINGGAL	260.794	2	130.397	.421	.657			
	Y3_REKOMENR	11.640	2	5.820	.094	.910			
Error	Y1_FR_KUNJ	17319.798	213	81.314					
	Y2_TINGGAL	65994.482	213	309.833					
	Y3_REKOMENR	13158.611	213	61.778					
Total	Y1_FR_KUNJ	27240.000	240						
	Y2_TINGGAL	158374.000	240						
	Y3_REKOMENR	30478.000	240						
Corrected	Y1_FR_KUNJ	20023.933	239						
TULAI	Y2_TINGGAL	79892.333	239						
	Y3_REKOMENR	17571.333	239						

a. R Squared = .135 (Adjusted R Squared = .029)

b. R Squared = .174 (Adjusted R Squared = .073)

c. R Squared = .251 (Adjusted R Squared = .160)

Appendix 10. Multivariate Test of Destination Brand Perceived Quality

Multivariate Tests ^c									
Effect		Value	F	Hypothesis df	Error df	Sig.			
Intercept	Pillai's Trace	.185	16.264 ^a	3.000	215.000	.000			
	Wilks' Lambda	.815	16.264 ^a	3.000	215.000	.000			
	Hotelling's Trace	.227	16.264 ^a	3.000	215.000	.000			
	Roy's Largest Root	.227	16.264 ^a	3.000	215.000	.000			
X32	Pillai's Trace	.046	1.701	6.000	432.000	.119			
	Wilks' Lambda	.954	1.698 ^a	6.000	430.000	.120			
	Hotelling's Trace	.047	1.694	6.000	428.000	.121			
	Roy's Largest Root	.035	2.499 ^b	3.000	216.000	.061			
X27	Pillai's Trace	.052	1.273	9.000	651.000	.248			
	Wilks' Lambda	.948	1.283	9.000	523.404	.243			
	Hotelling's Trace	.054	1.290	9.000	641.000	.239			
	Roy's Largest Root	.051	3.670 ^b	3.000	217.000	.013			
X37	Pillai's Trace	.042	1.039	9.000	651.000	.407			
	Wilks' Lambda	.958	1.043	9.000	523.404	.404			
	Hotelling's Trace	.044	1.045	9.000	641.000	.402			
	Roy's Largest Root	.040	2.865 ^b	3.000	217.000	.038			
X32 * X27	Pillai's Trace	.033	.810	9.000	651.000	.608			
	Wilks' Lambda	.967	.808	9.000	523.404	.609			
	Hotelling's Trace	.034	.806	9.000	641.000	.611			
	Roy's Largest Root	.027	1.954 ^b	3.000	217.000	.122			
X32 * X37	Pillai's Trace	.075	1.115	15.000	651.000	.339			
	Wilks' Lambda	.926	1.122	15.000	593.922	.333			
	Hotelling's Trace	.079	1.128	15.000	641.000	.327			
	Roy's Largest Root	.064	2.799 ^b	5.000	217.000	.018			
X27 * X37	Pillai's Trace	.027	.484	12.000	651.000	.925			
	Wilks' Lambda	.974	.482	12.000	569.128	.926			
	Hotelling's Trace	.027	.480	12.000	641.000	.927			
	Roy's Largest Root	.020	1.091 ^b	4.000	217.000	.362			
X32 * X27 *	Pillai's Trace	.037	1.361	6.000	432.000	.229			
х37	Wilks' Lambda	.963	1.363 ^a	6.000	430.000	.228			
	Hotelling's Trace	.038	1.365	6.000	428.000	.227			
	Roy's Largest Root	.035	2.487 ^b	3.000	216.000	.062			

a. Exact statistic

113

b. The statistic is an upper bound on ${\sf F}$ that yields a lower bound on the significance level.

c. Design: Intercept + X32 + X27 + X37 + X32 * X27 + X32 * X37 + X27 * X37 + X32 * X27 * X37

Appendix 11. Test of Between-Subjects Effects Destination Brand Perceived Quality

			Je e t e e e			
Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected	Y1_FR_KUNJ	1554.833 ^a	22	70.674	.830	.686
Model	Y2_TINGGAL	7558.422 ^b	22	343.565	1.031	.428
	Y3_REKOMEND	787.043 ^c	22	35.775	.463	.982
Intercept	Y1_FR_KUNJ	1239.027	1	1239.027	14.558	.000
	Y2_TINGGAL	13604.184	1	13604.184	40.812	.000
	Y3_REKOMEND	1086.133	1	1086.133	14.042	.000
X32	Y1_FR_KUNJ	468.600	2	234.300	2.753	.066
	Y2_TINGGAL	408.124	2	204.062	.612	.543
	Y3_REKOMEND	55.383	2	27.691	.358	.699
X27	Y1_FR_KUNJ	76.669	3	25.556	.300	.825
	Y2_TINGGAL	2776.085	3	925.362	2.776	.042
	Y3_REKOMEND	41.837	3	13.946	.180	.910
X37	Y1_FR_KUNJ	291.468	3	97.156	1.142	.333
	Y2_TINGGAL	318.101	3	106.034	.318	.812
	Y3_REKOMEND	33.141	3	11.047	.143	.934
X32 * X27	Y1_FR_KUNJ	87.230	3	29.077	.342	.795
	Y2_TINGGAL	1023.180	3	341.060	1.023	.383
	Y3_REKOMEND	184.348	3	61.449	.794	.498
X32 * X37	Y1_FR_KUNJ	945.977	5	189.195	2.223	.053
	Y2_TINGGAL	674.675	5	134.935	.405	.845
	Y3_REKOMEND	145.785	5	29.157	.377	.864
X27 * X37	Y1_FR_KUNJ	33.446	4	8.362	.098	.983
	Y2_TINGGAL	389.822	4	97.456	.292	.883
	Y3_REKOMEND	152.510	4	38.128	.493	.741
X32 * X27 *	Y1_FR_KUNJ	124.753	2	62.377	.733	.482
X37	Y2_TINGGAL	2295.608	2	1147.804	3.443	.034
	Y3_REKOMEND	174.783	2	87.391	1.130	.325
Error	Y1_FR_KUNJ	18469.100	217	85.111		
	Y2_TINGGAL	72333.911	217	333.336		
	Y3_REKOMEND	16784.291	217	77.347		
Total	Y1_FR_KUNJ	27240.000	240			
	Y2_TINGGAL	158374.000	240			
	Y3_REKOMEND	30478.000	240			
Corrected	Y1_FR_KUNJ	20023.933	239			
Total	Y2_TINGGAL	79892.333	239			
	Y3_REKOMEND	17571.333	239			

Tests of Between-Subjects Effects

a. R Squared = .078 (Adjusted R Squared = -.016) b. R Squared = .095 (Adjusted R Squared = .003)

c. R Squared = .045 (Adjusted R Squared = .055)