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Abstract : Motivated by Bratteli diagrams of Approximately Finite Dimensional (AF) C∗-
algebras, we consider diagrammatic representations of separable L1-predual spaces and show
that, in analogy to a result in AF C∗-algebra theory, in such spaces, every M -ideal corre-
sponds to directed sub diagram. This allows one, given a representing matrix of a L1-predual
space, to recover a representing matrix of an M -ideal in X. We give examples where the
converse is true in the sense that given an M -ideal in a L1-predual space X, there exists a
diagrammatic representation of X such that the M -ideal is given by a directed sub diagram
and an algorithmic way to recover a representing matrix of M -ideals in these spaces. Given
representing matrices of two L1-predual spaces we construct a representing matrix of their
injective tensor product.

Key words: representing matrix, generalized diagram, directed sub diagram, M -ideals, ten-
sor products.

AMS Subject Class. (2010): 46B25, 46B20.

1. Introduction

In 1971 Lazar and Lindenstrauss (see [3]) introduced notion of representing
matrices for separable L1-predual spaces. The idea to construct representing
matrix of a L1-predual space depends on following result in [3, Theorem 3.2],
which essentially says that any separable L1-predual space is built up by
putting together increasing union of `n∞, n = 1, 2, . . . ∞’s.

Theorem 1.1. Let X be a separable infinite dimensional Banach space
such that X∗ is isometric to L1(µ) for some positive measure µ. Let F be
a finite dimensional space whose unit ball is a polytope. Then there exists
a sequence {En}∞n=1 of finite dimensional subspaces of X such that E1 ⊃ F ,
En+1 ⊃ En and En = `mn

∞ for every n and X = ∪∞n=1En.

We now describe the notion of representing matrices. By Theorem 1.1
any separable L1-predual space is ∪∞n=1`

n
∞ and different such spaces are con-
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structed depending on how one embeds `n∞ → `n+1
∞ .

Let {ei}ni=1 denote the standard unit vector basis of `n∞. By admissible
basis of `n∞ we mean a basis of the form {θieπ(i)}ni=1 where θi = ±1 and π is
a permutation of {1, . . . , n}.

It is easy to see that if {ui} is an admissible basis of `n∞ then for any m > n
a linear operator T : `n∞ → `m∞ is an isometry if and only if there exists an
admissible basis {vi}mi=1 of `m∞ such that

Tui = vi + Σm
j=n+1a

i
jvj

with Σn
i=1|aij | ≤ 1 for every n+ 1 ≤ j ≤ m.

Now for any separable L1-predual space with the representation X =
∪n∈NEn where En ⊆ En+1 and each En is isometric to `n∞ we may choose
admissible basis {ein}ni=1 of En such that, after relabelling,

Tne
i
n = ein+1 + aine

n+1
n+1

with Σn
i=1|ain| ≤ 1.

A triangular matrix A =
(
ain
)1≤i≤n
n≥1 associated with X in this manner is

called a representing matrix of X.
The construction of the representing matrix is best understood in the

context of C(K), K is totally disconnected. For use in the later part of
this paper, we illustrate this with an example by constructing of representing
matrix for such a space.

Let K be a totally disconnected compact metric space. Then there exists
a sequence {

∏
n}∞n=1 of partitions of K into disjoint closed sets so that for

every n, {
∏
n} has n elements, {

∏
n+1} is a refinement of {

∏
n} and

%n = max
A∈

∏
n

d(A)→ 0

where d(A) denotes diameter of A.
Let En be the linear span of the characteristic functions of the sets in

∏
n.

Then it follows trivially that each En is isometric to `n∞, En ⊆ En+1 and
C(K) =

⋃∞
n=1En. Let us denote

∏
n = {K1

n,K
2
n, . . . ,K

n
n} for all n ∈ N. We

may write 1K1
1

= 1K1
2

+ 1K2
2
. Now

∏
3 = {K1

3 ,K
2
3 ,K

3
3}, 1K1

2
= 1K1

3
+ 1K3

3
and

1K2
2

= 1K2
3
. We continue this procedure to get a representing matrix of C(K)

which is 0, 1-valued [3, Theorem 5.1].
A L1-predual space X has a rich collection of structural subspaces of

X, namely M -ideals. M -ideals in a L1-predual space are themselves L1-
preduals and in some sense deterministic for the isometric properties of the



representing matrices, M-ideals, tensor products 35

space, meaning, any isometric property of a L1-predual space can be read
off from some isometric properties of its M -ideals. On the other hand, rep-
resenting matrices ‘encode’ every possible information of the structure of a
L1-predual space.

A separable predual X of L1 may be thought of as an isometric version
(commutative, where *-isomorphism is replaced by linear isometry) of Approx-
imately Finite Dimensional (AF) real C∗-algebras. Two sided norm closed
ideals in an AF C∗-algebra are completely determined by hereditary directed
sub diagrams of its Bratteli diagram (see [1]). The analogous notion of closed
two sided ideals in a C∗-algebra in Banach space category is M -ideals. Here
we present a representing diagram of a separable L1-predual space, the dia-
gram itself arise out of representing matrix of such a space. We show that
every directed sub diagram of a representing diagram represents an M -ideal
in the corresponding space. Since by definition of representing diagram, it
is always hereditary, this is an exact analogy to the corresponding result for
AF C∗-algebras. We believe the converse is also true and we establish it
in some cases.

We now briefly describe the plan of this paper. In section 2 we present our
main idea of diagrammatic representation of a separable L1-predual space X
and directed sub diagram. We show any directed sub diagram corresponds
to an M -ideal in X and the residual diagram corresponds to X/M . If M
is an M -summand then we show the diagram for X splits into two directed
sub diagram. This recovers the result in [7]. We believe that the converse,
that any M -ideal in a L1-predual space X is represented by a directed sub
diagram of some diagram is true. However there is a problem here. There are
M -ideals which have empty sub diagram. Nevertheless we present converse
for C(K) spaces (with extra assumption for general K). We also observe
that for A(K) -the space of affine continuous function on K, where K is a
separable Poulsen simplex (note that A(K) is isometric to the Gurariy space
in this case) given any M -ideal, there exists a diagrammatic representation of
corresponding space such that the given M -ideal is represented by a directed
sub diagram.

In Section 3 we describe a ‘Fill in the Gaps’ algorithm for construction of
representing matrix from information that X = ∪∞n=1`

mn∞ . This in one hand
provides way to construct representing matrix for an M -ideal given by di-
rected sub diagram and on the other, allows one to write down representing
matrix of X⊗̌Y , X, Y L1-preduals, knowing the representing matrix of X and
Y . We also show that for C[0, 1], given an M -ideal, there exists a diagram-
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matic representation of C[0, 1] such that the given M -ideal is represented by
a directed sub diagram.

Through out this work we only consider separable L1-predual spaces. Re-
call that a subspace M of Banach space is called an M -ideal if there exists
a projection (called L-projection) P : X∗ → X∗ such that kerP = M⊥ and
X∗ = RangeP ⊕1 kerP , where ⊕1 denote the `1-sum. In this case RangeP
is isometric to M∗. M is said to be an M -summand in X if X = M ⊕∞ N .
Trivially any M -summand is an M -ideal.

Acknowledgements. A Sensarma wishes to acknowledge the support
received from CSIR, India, Senior Research Fellowship (Award letter no.
09/092(0872)/2013-EMR-I)

2. Directed diagrams and M-ideals

For a L1-predual space X with a representing matrix A =
(
ain
)1≤i≤n
n≥1 we

will consider the following diagrammatic representation of X.
A diagram D of a L1-predual space X = ∪∞n=1`

n
∞, and representing matrix

A =
(
ain
)1≤i≤n
n≥1 consists of nodes and weighted arrows. The nodes at the n-th

level of the diagram are {ein : 1 ≤ i ≤ n} where span{ein : 1 ≤ i ≤ n} is
isometric to `n∞, n ∈ N. For a node ein, there can be at most two arrows from
ein one reaching to ein+1 and another to en+1

n+1. Any arrow from ein to ein+1 has

weight 1 and there is an arrow from ein to en+1
n+1, then it has a weight ain. For

example if all ain 6= 0 then we have the following diagram:

e11

e12

e22

e13

e23

e33

e14

e24

e34

e44

a 1
1

a 1
2

a 2
2

a 13
a 2
3

a 3
3
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In case some ain’s are zero we do not put arrows from ein to en+1
n+1. For

example diagram for a space with a11, a
2
2, a

3
3 = 0, will look like the following:

e11

e12

e22

e13

e23

e33

e14

e24

e34

e44

a 1
2

a 2
3

a 13

In the following we describe the diagram for the space c with representing
matrix A such that a1n = 1, n ≥ 1 and ajn = 0, j 6= 1 (see [3]):

e11

e12

e22

e13

e23

e33

e14

e24

e34

e44

1

1

1

Note that every representing matrix of a L1-predual space corresponds to
a unique diagram D and vice-versa. For a given diagram D we will denote the
corresponding space by XD.

Now we will introduce the notion of generalized diagram for a L1-predual
space X, where X = ∪Xn and Xn is isometric to `mn

∞ for an increasing
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sequence (mn). Let {e1mn
, . . . , emn

mn
} be the admissible basis of Xn. Any isom-

etry Tmn : `mn
∞ → `

mn+1
∞ is uniquely specified by scalars (aimn+j

), 1 ≤ j ≤
mn+1 −mn, 1 ≤ i ≤ mn such that

Tmne
i
mn

= eimn+1
+ aimn+1e

mn+1
mn+1

+ · · ·+ aimn+1
emn+1
mn+1

, i = 1, 2, . . . ,mn.

For a node eimn
, there will be one arrow from eimn

to eimn+1
. If aimn+j

6= 0,

then there will be a weighted arrow from eimn
to emn+j

mn+1 , 1 ≤ j ≤ mn+1 −mn

with weight aimn+j
.

Definition 2.1. A sub diagram S of D will be called a directed sub dia-
gram if whenever ein ∈ S for some n, i ∈ N, i ≤ n then

(a) ein+1 ∈ S,

(b) if ain 6= 0, en+1
n+1 ∈ S.

A sub diagram S ⊆ D is directed if whenever ein ∈ S for some n, i ∈ N,
i ≤ n and there is an arrow from ein to ejn+1 then ejn+1 ∈ S.

We define directed sub diagram of a generalized diagram similarly.

If we take S ⊆ D, and, S is directed then the original isometric embedding
of Xn into Xn+1 is preserved (see introduction). Hence XS will be an isometric
subspace of XD. Moreover there exists a norm one projection P : X∗ → X∗

with kerP = X⊥S . To see this observe that XS = ∪∞n=1`
mn∞ , hence XS is itself a

L1-predual space which is an isometric subspace of XD. We prove that for any
directed sub diagram S the space XS is an M -ideal in XD and the diagram
D \ S represents the space XD/XS .

Theorem 2.2. Let X be a L1-predual space with a given diagram D.
Then for any directed sub diagram S of D the subspace XS is an
M -ideal in X.

Proof. Let X = ∪Xn, where Xn ⊂ Xn+1, Xn is isometric to `n∞ for each
n. Let P : X∗ → X∗ be a norm one projection with kerP = XS

⊥, that is,
X∗ = XS

⊥⊕F where F = RangeP . We need to prove that X∗ = XS
⊥⊕1 F .

Let Mn = span{ein : ein ∈ S, 1 ≤ i ≤ n} and Fn = span{ein : ein 6∈ S, 1 ≤
i ≤ n} for each n ∈ N.

Then Xn = Mn⊕∞Fn and X∗n = M⊥n ⊕1F
⊥
n . For any x∗ ∈ X∗ we can write

x∗ = x∗1 + x∗2 where x∗1 ∈ XS⊥ and x∗2 ∈ F . Then x∗|Xn = x∗1|Xn + x∗2|Xn and
||x∗|Xn || = ||x∗1|Xn || + ||x∗2|Xn ||. For given ε > 0, we can choose some m ∈ N
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such that ||x∗|Xn || ≥ ||x∗|| − ε, ||x∗1|Xn || ≥ ||x∗1|| − ε and ||x∗2|Xn || ≥ ||x∗2|| − ε
for all n ≥ m. Now

||x∗1||+ ||x∗2|| ≥ ||x∗|| ≥ ||x∗|Xn || = ||x∗1|Xn ||+ ||x∗2|Xn || ≥ ||x∗1||+ ||x∗2|| − 2ε.

Thus it follows that ||x∗|| = ||x∗1|| + ||x∗2|| for all x∗ ∈ X∗. From this we can
conclude that X∗ = XS

⊥ ⊕1 F .

Remark 2.3. Let X be a L1-predual space with a given generalized dia-
gram D. Same proof as in Theorem 2.2 shows that directed sub diagram S of
D represents the subspace XS which is an M -ideal in X.

Next Theorem is analogous to [1, Theorem III.4.4]) in the case of L1-
predual spaces.

Theorem 2.4. Let X be a L1-predual space with a given diagram D
and S a directed sub diagram of D. Then the diagram D \ S represents the
space X/XS .

Proof. Let X = ∪Xn where Xn is isometric to `n∞. As before, let Mn =
span{ein : ein ∈ S, 1 ≤ i ≤ n} and Fn = span{ein : ein 6∈ S, 1 ≤ i ≤ n} for
each n ∈ N. Then XS = ∪Mn, Mn = `m∞ for some m ≤ n, is the M -ideal
corresponding to the directed diagram S and Xn = Mn ⊕∞ Fn. Consider the
norm one projection Pn : Xn → Fn where

Pn

( n∑
i=1

aie
i
n

)
=
∑
ein /∈S

aie
i
n.

Let in : Fn → Fn+1 be the isometry determined by arrows of the diagram
D \ S, that is, for ein ∈ D \ S,

in(ein) = ein+1 + aine
n+1
n+1 if ein+1, e

n+1
n+1 ∈ D \ S,

in(ein) = ein+1 if ein+1 ∈ D \ S, en+1
n+1 6∈ D \ S,

in(ein) = aine
n+1
n+1 if en+1

n+1 ∈ D \ S, e
i
n+1 6∈ D \ S,

in(ein) = 0 if ein+1, e
n+1
n+1 6∈ D \ S.

It is straightforward to verify that Pn+1|Xn = in ◦ Pn.
We now define P : ∪Xn → ∪Fn by Px = Pnx if x ∈ Xn. It follows that P

is well defined and extends as a quotient map from X to the space determined
by ∪Fn which is the space determined by the diagram D \ S. This completes
the proof.
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We now investigate the converse of Theorem 2.2. Explicitly stated the
problem is the following.

Problem 2.5. Let X be a L1-predual space and M an M -ideal in X.
Then there exists a diagram D representing X and a directed sub diagram S
of D such that M = XS .

We believe the answer to Problem 2.5 is affirmative. We will present
evidences towards this for M -summands in general and M -ideals in some
class of L1-predual spaces.

The following proposition shows that any M -summand in a L1-predual
space is represented by a directed sub diagram.

Proposition 2.6. LetX be a L1-predual space andM be anM -summand
in X. Then there exists a diagram D representing X such that M corresponds
to some directed sub diagram S of D.

Proof. Let N be the complement of M in X, that is, X = M ⊕∞N . Then
by [7, Proposition 2.4] it follows that X has a representing matrix of the form

A =



0 a12 0 a14 0 a16 . . .

0 a23 0 a25 0 . . .

0 a34 0 a36 . . .

0 a45 0 . . .

0 a56 . . .

0 . . .

. . . . . . . . . . . . . . . . . . . . .


where BA = (bin) with bin = a2i−12n , CA = (cin) with cin = a2i2n, n ∈ N, 1 ≤ i ≤ n,
are the matrices for M and N respectively. Let S1 and S2 be the diagrams
corresponding to matrices BA and CA respectively. Now it follows that S1
and S2 are directed sub diagrams of the diagram of X corresponding to the
representing matrix A.

Remark 2.7. Directed sub diagrams S1 and S2 considered in Proposi-
tion 2.6 are disjoint in the sense that no arrows of S1 enters into S2 and
vice-versa.

We now consider M -ideals in C(K)-spaces. We need to recall few notation
and a result from [7].
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Let X be a L1-predual space with X = ∪∞n=1`
n
∞ and {ein : 1 ≤ i ≤ n} are

admissible bases of `n∞, n ∈ N. Define φj ∈ X∗, j ∈ N, by

φj(e
i
n) =

{
0 if i 6= j,

1 if i = j; i = 1, . . . , n; j ≤ n; n ∈ N.

By extBX∗ we will denote the extreme point of BX∗ .

Lemma 2.8. [7, Lemma 1.2] Let X and {φj} be as above. Then

(a) φj ∈ extBX∗ for all j ∈ N, and

(b) {±φi : i ∈ N} = extBX∗ , where closure is taken in weak∗-topology
of BX∗ .

Remark 2.9. For each i, kerφi represents the space XS i for some directed
sub diagram Si of a given diagram D of X where the line passing through eii
is a part of the diagram D \ Si.

The idea of the proof for the following result is to use the flexibility pro-
vided by Lemma 2.8 for the choice of φi in a totally disconnected compact
metric space K. Recall that for any C(K) space where K is a compact metric
space, an M -ideal is given by JD = {f ∈ C(K) : f |D = 0}, where D is some
closed subset of K.

Proposition 2.10. LetK be a totally disconnected compact metric space
and D a closed subset of K. Then there exists a diagram D representing C(K)
and a directed sub diagram D ⊆ S such that JD = XS .

Proof. Since K be a totally disconnected we can get a sequence {
∏
n}∞n=1,∏

n = {K1
n,K

2
n, . . . ,K

n
n} of partitions of K into disjoint closed sets,

∏
n+1 is

a refinement of
∏
n and %n = maxA∈

∏
n

diam (A)→ 0 (see introduction).
Let D0 = {dn : n ∈ N} be a countable dense set in D. Choose φ1 = δd1 .

For n ≥ 2 by renaming the elements in
∏
n we assume that d1 ∈ K1

n.
For n = 2 if

(a) D0 ∩K2
2 6= ∅, we find the least n0 such that dn0 ∈ D0 ∩K2

2 and choose
φ2 = δdn0

. We will assume for all n ≥ 3, dn0 ∈ K2
n, again by possibly

renaming the members of
∏
n,

(b) otherwise choose and fix any k ∈ K2
2 and take φ2 = δk. We will assume

for all n ≥ 3, k ∈ K2
n.
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We will follow the same procedure for n ≥ 3.

We need to ensure that each dn will be chosen. Let N be the least number
among all k’s such that dk ∈ Ki

n for some i, n. Let m 6= N and dm ∈ Ki
n as

well. Since diam (Ki
n) → 0 we can choose some suitable large M ∈ N such

that dm ∈ KM
M and m is the least among all k’s such that dk ∈ KM

M .

So following the algorithm above we define φM = δdm .

Let D be the diagram representing C(K) given by the partition {
∏
n} after

renaming the elements of {
∏
n} as considered above. Since D0 is dense in D,

we have

JD =
⋂
d∈D

ker δd =
⋂
d∈D0

ker δd.

Thus JD = XS , where S is the intersection of directed diagrams corresponding
to kernel of φi = δdi , di ∈ D0.

Next result shows affirmative answer to Problem 2.5 for general C(K)
space with additional assumption on an M -ideal. By intD we mean interior
of a set D.

Proposition 2.11. Let K be any compact metric space and D a closed
subset of K such that D = intD. Then the M -ideal JD corresponds to the
space XS for some directed sub diagram S of given diagram D of C(K),
provided, S is not an empty diagram.

Proof. Let φj = δkj , kj ∈ K. Since {φj} are weak*-dense in extreme

points of the dual unit ball of C(K) and D = intD, we have a sub collection
φji ⊆ intD such that φji = δkji and kji is dense in D. It follows JD =

⋂
kerφji

and hence JD is represented by the directed sub diagram S of D which is
generated by intersection of directed sub diagram representing kerφji , where
φji = δkji .

Remarks 2.12. (1) If we assume K to be a ‘nice’ compact metric space,
then given D a closed subset in K, we can construct a diagrammatic
representation of C(K) such that JD corresponds to a directed sub di-
agram. We will do it in next section as we need algorithm to construct
representing matrix of a L1-predual space X when it is given in the form
X = ∪n≥1`mn∞ .

(2) Let K be (the) separable Poulsen simplex. Then the space A(K) - the
space of real valued affine continuous functions on K is the separable
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Gurariy space. It was proved in ([8]) that any infinite dimensional M -
ideal in separable Gurariy space is isometric to itself. Thus any rep-
resenting diagram of the Gurariy space represents M -ideals in it and
Problem 2.5 has affirmative solution for the Gurariy space.

We note that an empty diagram is always a directed sub diagram of any
given diagram D. It may be the case that an M -ideal in a L1-predual space
corresponds to an empty diagram. We give an easy example towards this.

Example 2.13. Consider the matrix A such that a1n = 1 for all n and
ain = 0 for all i > 1. It is proved in [3] that A represents c. Consider the
M -ideal J = {(xn) ∈ c : xn = 0, n ≥ 2}. Then J = ∩ kerφn, φn = δn, n ≥ 2.
In second figure on page 5, except the line segment starting from the node
enn and the line segment that starts from the node e11 and ends at e1n−1, all
the diagram represents the space kerφn. It is straightforward to verify that
∩n≥2 kerφn is empty.

Another difficulty in solving Problem 2.5 affirmatively in general is empty
diagram may represent a space which is not an M -ideal. We give an example of
this in a typical non G-space. Note that an empty diagram is always directed.

Example 2.14. Let X =
{
f ∈ C[1, ω0] : f(ω0) = f(1)+f(2)

2

}
. Then X

is a L1 -predual space which is not a G-space (see [5]). We will consider the
following admissible basis for X (see [2]):

e11 =
(
1, 1, 1, 1, . . .

)
, e12 =

(
1, 0, 12 ,

1
2 ,

1
2 , . . .

)
,

e22 =
(
0, 1, 12 ,

1
2 ,

1
2 , . . .

)
, e13 =

(
1, 0, 0, 12 ,

1
2 ,

1
2 , . . .

)
,

e23 =
(
0, 1, 0, 12 ,

1
2 ,

1
2 , . . .

)
, e33 =

(
0, 0, 0, 1, 0, . . .

)
, . . . .

For n ∈ [1, ω0], we denote by Jn the M -ideal {f ∈ C[1, ω0] : f(n) = 0}.
Each Jn is of codimension 1 in C[1, ω0]. We consider the M -ideal in C[1, ω0],
J[3,ω0] = {f ∈ C[1, ω0] : f(n) = 0, n ≥ 3}.

Now consider the subspace J[3,ω0]∩X = ∩n≥3Jn∩X of X. As in Example
2.13 it is easy to check that the intersection of corresponding directed sub
diagrams of Jn ∩X for n ≥ 3 is empty diagram.

However, J[3,ω0] ∩ X is not an M -ideal in X. To see this we observe
that J[3,ω0] ∩ X is the range of norm one projection P : X → X given by
P (f) = (f(1),−f(1), 0, 0, . . . ). Thus if J[3,ω0] ∩ X is an M -ideal then it is
an M -summand as well. So for any f ∈ X, ‖f‖ = max{‖Pf‖, ‖(I − P )f‖}.
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However if we consider the element f ∈ X where f(1) = 1, f(2) = 0 and
f(n) = 1/2 for all n ≥ 3, i.e, f = (1, 0, 1/2, 1/2, 1/2, . . . ) then(

1, 0, 12 ,
1
2 ,

1
2 , . . .

)
=
(
1
2 ,−

1
2 , 0, 0, 0, . . .

)
+
(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , . . .

)
and the norm of both side will not match. Thus J[3,ω0] ∩ X is not an
M -summand in X.

3. Fill in the Gaps

In this section we provide an algorithm to construct representing matrix
of a L1-predual space X where X is given by X = ∪Xn and Xn is isometric
to `mn

∞ for an increasing sequence (mn). This construction is implicit in the
description of representing matrix given in [3]. However we fix an algorithm
(there may be several as seen below) and use it for finding representing matrix
of X⊗̌Y - the injective tensor product of two separable L1-predual spaces,
knowing the representing matrices of X and Y .

First we need to provide following justification to our construction.

FACT: Let X be a L1-predual space such that X = ∪Xn, where Xn ⊆
Xn+1 and Xn is isometric to `mn

∞ for some increasing sequence (mn). If Z
is a L1-predual space with Z = ∪Zn, where Zn ⊆ Zn+1, Zn is isometric to
`n∞, Zmn = Xn and the isometry Tn : Xn → Xn+1 is same as composition of
isometries of Zmn to Zmn+1, Zmn+1 to Zmn+2, . . . , Zmn+1−1 to Zmn+1 given
by the representing matrix of Z, then Z is isometric to X.

We now describe the proposed algorithm.

Let X = ∪Xn where for each n, Xn = `mn
∞ with admissible basis {eimn

}mn
i=1.

Any isometry Tmn from `mn
∞ to `

mn+1
∞ in terms of admissible basis is given by

Tmne
i
mn

= eimn+1
+ aimn+1e

mn+1
mn+1

+ . . .+ aimn+1
emn+1
mn+1

, i = 1, 2, . . . ,mn . (1)

Hence given X as above and isometric embeddings `mn
∞ → `

mn+1
∞ we know

exactly (mn+1 −mn)mn numbers of(
aij
)
, i = 1, . . . ,mn , j = mn + 1, . . . ,mn+1 −mn .

Let us assume C =
(
cin
)1≤i≤n
n≥1 is a representing matrix for X. We will write
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{eimn
} in terms of {eimn+1

} according to isometries given by C:

eimn
= eimn+1 + cimn

emn+1
mn+1

= eimn+2 + cimn+1e
mn+2
mn+2 + cimn

(emn+1
mn+2 + cmn+1

mn+1e
mn+2
mn+2)

= eimn+2 + cimn
emn+1
mn+2 + (cimn+1 + cimn

cmn+1
mn+1)e

mn+2
mn+2 = . . . .

This way we will have (mn+1−mn)
2 (mn+1 +mn− 1) numbers of (cjn) unknowns.

We will put

cmn+i
mn+j

= 0 , i = 1, . . . ,mn+1 −mn , 1 ≤ j ≤ i .

It is a straight forward verification that this way we will have (mn+1−mn)
2 (mn+1

−mn) of cin’s zero. Thus remaining (mn+1−mn)mn of cin’s equal the number
of known variables ain’s and can be expressed in terms of linear equations.

We emphasize that the above way of choosing (cin) is not unique and
different ways will give us different representing matrices. Note that here we
can not recover first m1 − 1 columns of the representing matrix by the above
algorithm so it can be chosen arbitrarily (see [6, Theorem 4.7]).

Remark 3.1. Let the admissible basis of Xn is {eimn
: 1 ≤ i ≤ mn}. If we

follow the above algorithm of ‘Fill in the Gaps’ from Xn to Xn+1 where Xn

is isometric to `mn
∞ and Xn+1 is isometric to `

mn+1
∞ then the basis elements

emn+i
mn+1, e

mn+i
mn+2, . . . , e

mn+i
mn+1−1 are same as emn+i

mn+1
for all i ≥ 1.

We illustrate this procedure by considering two special cases. First one
is simple trial case with mn = 2n and our second example provides us with
representing matrix of C[0, 1] with entries 0 and 1

2 .

Example 3.2. Let C =
(
cin
)1≤i≤n
n≥1 be a representing matrix of X and

Xn = span
{
e12n, . . . , e

2n
2n

}
and Tn : Xn → Xn+1 is an isometric embedding

with

ei2n = ei2(n+1) + ai2n+1e
2n+1
2(n+1) + ai2(n+1)e

2(n+1)
2(n+1) , 1 ≤ i ≤ 2n , n ≥ 1 .

If we write the expression for ei2n according to the matrix C then we get

ei2n = ei2(n+1) + ci2ne
2n+1
2(n+1) +

(
ci2n+1 + ci2nc

2n+1
2n+1

)
e
2(n+1)
2(n+1) .

From above two expressions for ei2n we have ai2n+1 = ci2n and ai2(n+1) = ci2n+1

+ ci2nc
2n+1
2n+1.



46 s. dutta, d. khurana, a. sensarma

Now if we proceed by above algorithm and put c2n+1
2n+1 = 0, n ∈ N we get

ai2n+1 = ci2n, ai2(n+1) = ci2n+1, 1 ≤ i ≤ 2n, n ≥ 1, and, we have the following
representing matrix for X,

C =



− a13 a14 a15 a16 . . .

... a23 a24 a25 a26 . . .

...
... 0 a35 a36 . . .

...
...

... a45 a46 . . .

...
...

...
... 0 . . .

...
...

...
...

...
...


.

The Fact stated above indeed justifies that the resulting matrix is a repre-
senting matrix of X.

Example 3.3. Consider the function φ : R → R, φ(t) = 1 + t for t ∈
[−1, 0], φ(t) = 1 − t for t ∈ [0, 1], and φ(t) = 0 for t /∈ [−1, 1]. Define
gk,2n = φ(2nt− k), t ∈ [0, 1]. We can write C[0, 1] = ∪Xn, Xn = span{gk,2n :
k = 0, 1, . . . , 2n} where {gk,2n : k = 0, 1, . . . , 2n} is an admissible basis of Xn.
Then for all n = 0, 1, . . . and k = 1, 2, . . . , 2n − 1 we have (see [4])

gk,2n =
1

2
g2k−1,2n+1 + g2k,2n+1 +

1

2
g2k+1,2n+1 ,

g0,2n = g0,2n+1 +
1

2
g1,2n+1 ,

g2n,2n =
1

2
g2n+1−1,2n+1 + g2n+1,2n+1 .

Let C =
(
cin
)1≤i≤n
n≥1 be a representing matrix of C[0, 1]. First we have to write

the expression for gk,2n according to C. Now comparing the equations with

the above and put c2
n+j

2n+i = 0, 1 ≤ i ≤ 2n+1 − 2n − 1, 1 ≤ j ≤ i, we will get a
representing matrix of C[0, 1] with entries 0 and 1

2 only.

We now answer Problem 2.5 in affirmative for C[0, 1].

Theorem 3.4. Let D be a closed subset of [0, 1]. Then there exists a
diagram D representing C[0, 1] such that the M -ideal JD corresponds to the
space XS for some directed sub diagram S of D, provided S is not an empty
diagram.
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Proof. Let D0 = {dn : n ∈ N} be a countable dense set in D. We can
extend D0 to a set M = {ki : i ∈ N} such that M = [0, 1]. Consider e12 = 1−t,
t ∈ [0, 1] and e22 = t, t ∈ [0, 1]. Without loss of generality choose an element
k1 ∈ [0, 1] and consider

e13 = 1− 1

k1
t if t ∈ [0, k1] , e13 = 0 if t ∈ [k1, 1] ;

e23 = 0 if t ∈ [0, k1] , e23 =
t− k1
1− k1

if t ∈ [k1, 1] and

e33 =
1

k1
t if t ∈ [0, k1] , e33 =

1− t
1− k1

if t ∈ [k1, 1] .

Here e12, e
2
2, e

1
3, e

2
3, e

3
3 satisfy the following equations; e12 = e13 + (1 − k1)e33,

e22 = e23 + k1e
3
3. Now with out loss of generality choose k2 ∈ [0, k1] and

k3 ∈ [k1, 1]. Consider

e15 = 1− 1

k2
t if t ∈ [0, k2] , e15 = 0 if t ∈ [k2, 1] ;

e25 = 0 if t ∈ [0, k3] , e25 =
t− k3
1− k3

if t ∈ [k3, 1] ;

e35 = 0 if t ∈ [0, k2] , e35 =
t− k2
k1 − k2

if t ∈ [k2, k1] ,

e35 =
k3 − t
k3 − k1

if t ∈ [k1, k3] , e35 = 0 if t ∈ [k3, 1] ;

e45 =
1

k2
t if t ∈ [0, k2] , e45 =

k1 − t
k1 − k2

if t ∈ [k2, k1] ,

e45 = 0 if t ∈ [k1, 1] and e55 = 0 if t ∈ [0, k1] ,

e55 =
t− k1
k3 − k1

if t ∈ [k1, k3] , e55 =
1− t

1− k3
if t ∈ [k3, 1] .

By the construction e13, e
2
3, e

3
3, e

1
5, e

2
5, e

3
5, e

4
5, e

5
5 satisfy the following equations:

e13 = e15 +
k1 − k2
k2

e45 , e23 = e25 +
k3 − k1
1− k1

e55 and e33 = e35 +
k2
k1
e45 +

1− k3
1− k1

e55 .

Similarly we can construct ei2n+1, 1 ≤ i ≤ 2n+1. Take an element f ∈ C[0, 1].
Define a sequence (pn)∞n=0 in the following way. Let p0 = f(0)e12,

p1 = p0 + (f(1)− p0(1))e22 , p2 = p1 + (f(k1)− p1(k1))e33 ,
p3 = p2 + (f(k2)− p2(k2))e45 , p4 = p3 + (f(k3)− p3(k3))e55 ,

and so on. Here p0 and f takes the same value at 0 while p1 and f takes the
same value at 0 and 1 and interpolates linearly in between, p2 and f takes
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same value at 0, 1 and k1 and interpolates linearly in between, and so on. It
is straightforward to check that limn ||pn − f ||∞ = 0. Therefore we can write
C[0, 1] = ∪En, where

En = span
{
ei2n+1 : 1 ≤ i ≤ 2n + 1

}
and En is isometric to `2

n+1
∞ . We know that the support of ei2n+1 is going to

zero as n approaches to infinity and it consists a single element of {ki : i ∈ N}.
Each i ∈ N, ki will be in some Tji = ∩∞n=1 supp{ej2n+1} and any two Tji ’s are
disjoint. Here we consider the generalized diagram of C[0, 1] with respect to
above basis and from n-th to (n+ 1)-th step we choose 2n−1 of ki’s and these
ki’s lie in the support of exactly one of the basis elements of e2

n+1
2n+1 , . . . , e2

n+1

2n+1 .
Now if we follow the algorithm for ‘Fill in the Gaps’ from n-th to (n + 1)-th
step and consider ki ∈ supp(e2

n+j
2n+1 ) chosen above, then ki ∈ supp(e2

n+j
m ) and

ki /∈ supp(elm), l 6= 2n + j for 2n + 1 ≤ m ≤ 2n+1 − 1, j ≥ 1 (see Remark
3.1). So by following the same procedure of choosing φi as in Proposition
2.10 we will get for any ki there exists a φm such that φm = δki and the set
{ki}∞i=1 is dense in [0, 1] (see [2, Lemma 2]). Given that D0 is dense in D so
JD = ∩d∈D ker δd = ∩d∈D0 ker δd. Thus JD = XS , where S is the intersection
of directed diagrams corresponding to kernel of φi = δdi , di ∈ D0. This
completes the proof.

Representing matrix for X⊗̌Y : If X and Y are separable L1-predual
spaces, then it is known that X⊗̌Y is also a separable L1-predual space. We
adopt the above algorithm to find a representing matrix for X⊗̌Y . Let X

and Y has representing matrices
(
ain
)1≤i≤n
n≥1 and

(
bin
)1≤i≤n
n≥1 respectively corre-

sponding to the admissible basis {ein : 1 ≤ i ≤ n} and {f in : 1 ≤ i ≤ n}.
Then X⊗̌Y = ∪∞n=1En2 , where En2 is isometric to `n

2

∞ with admissible bases

{ein ⊗ f jn, i = 1, . . . , n; j = 1, . . . , n}. We will denote this collection as{
Ein2 : 1 ≤ i ≤ n2

}
with the following convention:

(a) First n2 terms of the admissible basis of E(n+1)2 is same as the admissible

basis of En2 . For example if Ein2 = ek(n−1)2 ⊗ e
l
(n−1)2 then Ei(n+1)2 =

ekn2 ⊗ eln2 .

(b) We will choose
{
En

2+i
(n+1)2

: 1 ≤ i ≤ (n+ 1)2 − n2
}

by the following way.

Take En
2+1

(n+1)2
= e1n+1 ⊗ f

n+1
n+1 , En

2+2
(n+1)2

= en+1
n+1 ⊗ f1n+1. For i = 2k + 1,

k ∈ N, En
2+2k+1

(n+1)2
= ekn+1 ⊗ f

n+1
n+1 and for i = 2k + 2, k ∈ N, En

2+2k+2
(n+1)2

=

en+1
n+1 ⊗ fkn+1.
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We will now follow algorithm for ‘Fill in the Gaps’ described above. Let
us illustrate this with first few steps.

Let C =
(
cin
)1≤i≤n
n≥1 be the representing matrix of X⊗̌Y . According to the

above convention E1
1 = e11⊗f11 and E1

4 = e12⊗f12 , E2
4 = e12⊗f22 , E3

4 = e22⊗f12 ,
E4

4 = e22 ⊗ f22 . By expanding E1
1 in terms of {Ei4}4i=1 according to the given

representing matrix of X and Y we get

E1
1 = E1

4 + b11E
2
4 + a11E

3
4 + a11b

1
1E

4
4 .

Similarly expansion of E1
1 in terms of {Ei4}4i=1 according to the representing

matrix C of X⊗̌Y ,

E1
1 = E1

4 + c11E
2
4 + (c12 + c11c

2
2)E

3
4 + (c12c

3
3 + c11c

2
3 + c13 + c11c

2
2c

3
3)E

4
4 .

By following the algorithm we will get c11 = b11, c
1
2 = a11, c

2
2 = 0, c13 = a11b

1
1,

c23 = 0, c33 = 0. By expanding {Ei4}4i=1 in terms of {Ei9}9i=1 according to given
representing matrices for X, Y and matrix C we will get

c14 = b12 , c24 = b22 , c34 = 0 , c44 = 0 ,

c15 = a12 , c25 = 0 , c35 = a22 , c45 = 0 , c55 = 0 ,

c16 = 0 , c26 = 0 , c36 = b12 , c46 = b22 , c56 = 0 , c66 = 0 ,

c17 = 0 , c27 = a12 , c37 = 0 , c47 = a22 , c57 = 0 , c67 = 0 , c77 = 0 ,

c18 = a12b
1
2 , c28 = a12b

2
2 , c38 = a22b

1
2 , c48 = a22b

2
2 , c58 = 0 ,

c68 = 0 , c78 = 0 , c88 = 0 .

Proceeding as above we will get representing matrix of X⊗̌Y as

C =



b11 a11 a11b
1
1 b12 a12 0 0 a12b

1
2 . . .

... 0 0 b22 0 0 a12 a12b
2
2 . . .

...
... 0 0 a22 b12 0 a22b

1
2 . . .

...
...

. . . 0 0 b22 a22 a22b
2
2 . . .

...
...

. . .
. . . 0 0 0 0 . . .

...
...

. . .
. . .

. . . 0 0 0 . . .
...

...
...

...
. . . 0 0 . . .

...
...

...
...

...
...

... 0 . . .
...

...
...

...
...

...
...

... . . .



.
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Remark 3.5. From above description of representing matrix for X⊗̌Y we

can actually read off representing matrices
(
ain
)1≤i≤n
n≥1 and

(
bin
)1≤i≤n
n≥1 for X

and Y respectively. For example representing matrix of Y is given by

B =



c11 c14 c19 c142 . . . c1n2 . . .
... c24 c29 c242 . . . c2n2 . . .
...

... c59 c542 . . .
. . . c2

2+1
n2 . . .

...
...

. . . c1042
. . .

. . . c3
2+1
n2 . . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . . . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . . . .

...
...

...
...

. . .
. . .

. . .
. . . . . .

...
...

...
...

...
. . .

. . .
. . . . . .

...
...

...
...

...
... c

(n−1)2+1
n2 . . .

...
...

...
...

...
...

... . . .



.

Thus if a L1-predual space has a representing matrix like C, it is actually
tensor product of two L1-predual spaces with representing matrices A and B.
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