Representing Matrices, M-ideals and Tensor Products of L_1 -predual Spaces

S. DUTTA, D. KHURANA, A. SENSARMA

Department of Mathematics and Statistics Indian Institute of Technology Kanpur, India sudipta@iitk.ac.in, divyakh@iitk.ac.in, aryasen@iitk.ac.in

Presented by Jesús M.F. Castillo

Received November 28, 2016

Abstract: Motivated by Bratteli diagrams of Approximately Finite Dimensional (AF) C^* -algebras, we consider diagrammatic representations of separable L_1 -predual spaces and show that, in analogy to a result in AF C^* -algebra theory, in such spaces, every M-ideal corresponds to directed sub diagram. This allows one, given a representing matrix of a L_1 -predual space, to recover a representing matrix of an M-ideal in X. We give examples where the converse is true in the sense that given an M-ideal in a L_1 -predual space X, there exists a diagrammatic representation of X such that the M-ideal is given by a directed sub diagram and an algorithmic way to recover a representing matrix of M-ideals in these spaces. Given representing matrices of two L_1 -predual spaces we construct a representing matrix of their injective tensor product.

 $Key\ words:$ representing matrix, generalized diagram, directed sub diagram, M-ideals, tensor products.

AMS Subject Class. (2010): 46B25, 46B20.

1. INTRODUCTION

In 1971 Lazar and Lindenstrauss (see [3]) introduced notion of representing matrices for separable L_1 -predual spaces. The idea to construct representing matrix of a L_1 -predual space depends on following result in [3, Theorem 3.2], which essentially says that any separable L_1 -predual space is built up by putting together increasing union of ℓ_{∞}^n , $n = 1, 2, \ldots \infty$'s.

THEOREM 1.1. Let X be a separable infinite dimensional Banach space such that X^* is isometric to $L_1(\mu)$ for some positive measure μ . Let F be a finite dimensional space whose unit ball is a polytope. Then there exists a sequence $\{E_n\}_{n=1}^{\infty}$ of finite dimensional subspaces of X such that $E_1 \supset F$, $E_{n+1} \supset E_n$ and $E_n = \ell_{\infty}^{m_n}$ for every n and $X = \overline{\bigcup_{n=1}^{\infty} E_n}$.

We now describe the notion of representing matrices. By Theorem 1.1 any separable L_1 -predual space is $\overline{\bigcup_{n=1}^{\infty} \ell_n^{\infty}}$ and different such spaces are con-

33

structed depending on how one embeds $\ell_{\infty}^n \to \ell_{\infty}^{n+1}$.

Let $\{e_i\}_{i=1}^n$ denote the standard unit vector basis of ℓ_{∞}^n . By admissible basis of ℓ_{∞}^n we mean a basis of the form $\{\theta_i e_{\pi(i)}\}_{i=1}^n$ where $\theta_i = \pm 1$ and π is a permutation of $\{1, \ldots, n\}$.

It is easy to see that if $\{u_i\}$ is an admissible basis of ℓ_{∞}^n then for any m > na linear operator $T : \ell_{\infty}^n \to \ell_{\infty}^m$ is an isometry if and only if there exists an admissible basis $\{v_i\}_{i=1}^m$ of ℓ_{∞}^m such that

$$Tu_i = v_i + \sum_{j=n+1}^m a_j^i v_j$$

with $\sum_{i=1}^{n} |a_{j}^{i}| \leq 1$ for every $n+1 \leq j \leq m$.

Now for any separable L_1 -predual space with the representation $X = \overline{\bigcup_{n \in \mathbb{N}} E_n}$ where $E_n \subseteq E_{n+1}$ and each E_n is isometric to ℓ_{∞}^n we may choose admissible basis $\{e_n^i\}_{i=1}^n$ of E_n such that, after relabelling,

$$T_n e_n^i = e_{n+1}^i + a_n^i e_{n+1}^{n+1}$$

with $\sum_{i=1}^{n} |a_n^i| \le 1$.

A triangular matrix $A = (a_n^i)_{n\geq 1}^{1\leq i\leq n}$ associated with X in this manner is called a representing matrix of X.

The construction of the representing matrix is best understood in the context of C(K), K is totally disconnected. For use in the later part of this paper, we illustrate this with an example by constructing of representing matrix for such a space.

Let K be a totally disconnected compact metric space. Then there exists a sequence $\{\prod_n\}_{n=1}^{\infty}$ of partitions of K into disjoint closed sets so that for every n, $\{\prod_n\}$ has n elements, $\{\prod_{n+1}\}$ is a refinement of $\{\prod_n\}$ and

$$\varrho_n = \max_{A \in \prod_n} \mathrm{d}(A) \to 0$$

where d(A) denotes diameter of A.

Let E_n be the linear span of the characteristic functions of the sets in \prod_n . Then it follows trivially that each E_n is isometric to ℓ_{∞}^n , $E_n \subseteq E_{n+1}$ and $C(K) = \overline{\bigcup_{n=1}^{\infty} E_n}$. Let us denote $\prod_n = \{K_n^1, K_n^2, \ldots, K_n^n\}$ for all $n \in \mathbb{N}$. We may write $1_{K_1^1} = 1_{K_2^1} + 1_{K_2^2}$. Now $\prod_3 = \{K_3^1, K_3^2, K_3^3\}, 1_{K_2^1} = 1_{K_3^1} + 1_{K_3^3}$ and $1_{K_2^2} = 1_{K_3^2}$. We continue this procedure to get a representing matrix of C(K) which is 0, 1-valued [3, Theorem 5.1].

A L_1 -predual space X has a rich collection of structural subspaces of X, namely M-ideals. M-ideals in a L_1 -predual space are themselves L_1 -preduals and in some sense deterministic for the isometric properties of the

space, meaning, any isometric property of a L_1 -predual space can be read off from some isometric properties of its *M*-ideals. On the other hand, representing matrices 'encode' every possible information of the structure of a L_1 -predual space.

A separable predual X of L_1 may be thought of as an isometric version (commutative, where *-isomorphism is replaced by linear isometry) of Approximately Finite Dimensional (AF) real C^* -algebras. Two sided norm closed ideals in an AF C^* -algebra are completely determined by hereditary directed sub diagrams of its Bratteli diagram (see [1]). The analogous notion of closed two sided ideals in a C^* -algebra in Banach space category is M-ideals. Here we present a representing diagram of a separable L_1 -predual space, the diagram itself arise out of representing matrix of such a space. We show that every directed sub diagram of a representing diagram represents an M-ideal in the corresponding space. Since by definition of representing diagram, it is always hereditary, this is an exact analogy to the corresponding result for AF C^* -algebras. We believe the converse is also true and we establish it in some cases.

We now briefly describe the plan of this paper. In section 2 we present our main idea of diagrammatic representation of a separable L_1 -predual space Xand directed sub diagram. We show any directed sub diagram corresponds to an M-ideal in X and the residual diagram corresponds to X/M. If Mis an M-summand then we show the diagram for X splits into two directed sub diagram. This recovers the result in [7]. We believe that the converse, that any M-ideal in a L_1 -predual space X is represented by a directed sub diagram of some diagram is true. However there is a problem here. There are M-ideals which have empty sub diagram. Nevertheless we present converse for C(K) spaces (with extra assumption for general K). We also observe that for A(K) -the space of affine continuous function on K, where K is a separable Poulsen simplex (note that A(K) is isometric to the Gurariy space in this case) given any M-ideal, there exists a diagrammatic representation of corresponding space such that the given M-ideal is represented by a directed sub diagram.

In Section 3 we describe a 'Fill in the Gaps' algorithm for construction of representing matrix from information that $X = \bigcup_{n=1}^{\infty} \ell_{\infty}^{m_n}$. This in one hand provides way to construct representing matrix for an *M*-ideal given by directed sub diagram and on the other, allows one to write down representing matrix of $X \otimes Y$, X, $Y L_1$ -preduals, knowing the representing matrix of X and Y. We also show that for C[0, 1], given an *M*-ideal, there exists a diagram-

matic representation of C[0, 1] such that the given *M*-ideal is represented by a directed sub diagram.

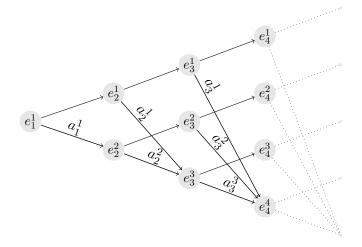
Through out this work we only consider separable L_1 -predual spaces. Recall that a subspace M of Banach space is called an M-ideal if there exists a projection (called L-projection) $P: X^* \to X^*$ such that ker $P = M^{\perp}$ and $X^* = \text{Range } P \oplus_1 \text{ ker } P$, where \oplus_1 denote the ℓ_1 -sum. In this case Range Pis isometric to M^* . M is said to be an M-summand in X if $X = M \oplus_{\infty} N$. Trivially any M-summand is an M-ideal.

ACKNOWLEDGEMENTS. A Sensarma wishes to acknowledge the support received from CSIR, India, Senior Research Fellowship (Award letter no. 09/092(0872)/2013-EMR-I)

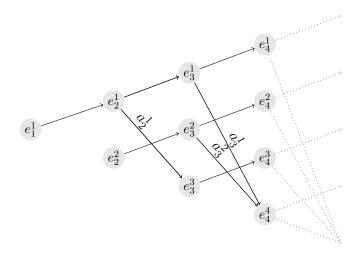
2. Directed diagrams and M-ideals

For a L_1 -predual space X with a representing matrix $A = (a_n^i)_{n\geq 1}^{1\leq i\leq n}$ we will consider the following diagrammatic representation of X.

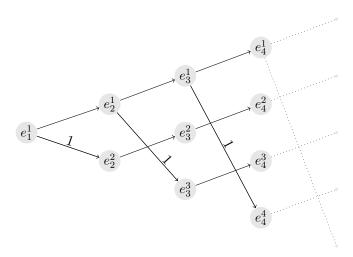
A diagram \mathcal{D} of a L_1 -predual space $X = \overline{\bigcup_{n=1}^{\infty} \ell_{\infty}^n}$, and representing matrix $A = (a_n^i)_{n\geq 1}^{1\leq i\leq n}$ consists of nodes and weighted arrows. The nodes at the *n*-th level of the diagram are $\{e_n^i : 1 \leq i \leq n\}$ where $\operatorname{span}\{e_n^i : 1 \leq i \leq n\}$ is isometric to ℓ_{∞}^n , $n \in \mathbb{N}$. For a node e_n^i , there can be at most two arrows from e_n^i one reaching to e_{n+1}^i and another to e_{n+1}^{n+1} . Any arrow from e_n^i to e_{n+1}^i has weight 1 and there is an arrow from e_n^i to e_{n+1}^{n+1} , then it has a weight a_n^i . For example if all $a_n^i \neq 0$ then we have the following diagram:



In case some a_n^i 's are zero we do not put arrows from e_n^i to e_{n+1}^{n+1} . For example diagram for a space with $a_1^1, a_2^2, a_3^3 = 0$, will look like the following:



In the following we describe the diagram for the space c with representing matrix A such that $a_n^1 = 1$, $n \ge 1$ and $a_n^j = 0, j \ne 1$ (see [3]):



Note that every representing matrix of a L_1 -predual space corresponds to a unique diagram \mathcal{D} and vice-versa. For a given diagram \mathcal{D} we will denote the corresponding space by $X_{\mathcal{D}}$.

Now we will introduce the notion of generalized diagram for a L_1 -predual space X, where $X = \overline{\bigcup X_n}$ and X_n is isometric to $\ell_{\infty}^{m_n}$ for an increasing

sequence (m_n) . Let $\{e_{m_n}^1, \ldots, e_{m_n}^{m_n}\}$ be the admissible basis of X_n . Any isometry $T_{m_n} : \ell_{\infty}^{m_n} \to \ell_{\infty}^{m_{n+1}}$ is uniquely specified by scalars $(a_{m_n+j}^i), 1 \leq j \leq m_{n+1} - m_n, 1 \leq i \leq m_n$ such that

$$T_{m_n}e_{m_n}^i = e_{m_{n+1}}^i + a_{m_n+1}^i e_{m_{n+1}}^{m_n+1} + \dots + a_{m_{n+1}}^i e_{m_{n+1}}^{m_{n+1}}, \qquad i = 1, 2, \dots, m_n.$$

For a node $e_{m_n}^i$, there will be one arrow from $e_{m_n}^i$ to $e_{m_{n+1}}^i$. If $a_{m_n+j}^i \neq 0$, then there will be a weighted arrow from $e_{m_n}^i$ to $e_{m_{n+1}}^{m_n+j}$, $1 \leq j \leq m_{n+1} - m_n$ with weight $a_{m_n+j}^i$.

DEFINITION 2.1. A sub diagram \mathcal{S} of \mathcal{D} will be called a directed sub diagram if whenever $e_n^i \in \mathcal{S}$ for some $n, i \in \mathbb{N}, i \leq n$ then

- (a) $e_{n+1}^i \in \mathcal{S}$,
- (b) if $a_n^i \neq 0$, $e_{n+1}^{n+1} \in \mathcal{S}$.

A sub diagram $S \subseteq D$ is directed if whenever $e_n^i \in S$ for some $n, i \in \mathbb{N}$, $i \leq n$ and there is an arrow from e_n^i to e_{n+1}^j then $e_{n+1}^j \in S$.

We define directed sub diagram of a generalized diagram similarly.

If we take $S \subseteq D$, and, S is directed then the original isometric embedding of X_n into X_{n+1} is preserved (see introduction). Hence X_S will be an isometric subspace of X_D . Moreover there exists a norm one projection $P: X^* \to X^*$ with ker $P = X_S^{\perp}$. To see this observe that $X_S = \overline{\bigcup_{n=1}^{\infty} \ell_{\infty}^{m_n}}$, hence X_S is itself a L_1 -predual space which is an isometric subspace of X_D . We prove that for any directed sub diagram S the space X_S is an M-ideal in X_D and the diagram $D \setminus S$ represents the space X_D/X_S .

THEOREM 2.2. Let X be a L_1 -predual space with a given diagram \mathcal{D} . Then for any directed sub diagram \mathcal{S} of \mathcal{D} the subspace $X_{\mathcal{S}}$ is an M-ideal in X.

Proof. Let $X = \overline{\bigcup X_n}$, where $X_n \subset X_{n+1}$, X_n is isometric to ℓ_{∞}^n for each n. Let $P: X^* \to X^*$ be a norm one projection with ker $P = X_S^{\perp}$, that is, $X^* = X_S^{\perp} \oplus F$ where F = Range P. We need to prove that $X^* = X_S^{\perp} \oplus_1 F$. Let $M_n = \text{span}\{e_n^i : e_n^i \in S, 1 \leq i \leq n\}$ and $F_n = \text{span}\{e_n^i : e_n^i \notin S, 1 \leq i \leq n\}$ for each $n \in \mathbb{N}$.

Then $X_n = M_n \oplus_{\infty} F_n$ and $X_n^* = M_n^{\perp} \oplus_1 F_n^{\perp}$. For any $x^* \in X^*$ we can write $x^* = x_1^* + x_2^*$ where $x_1^* \in X_S^{\perp}$ and $x_2^* \in F$. Then $x^*|_{X_n} = x_1^*|_{X_n} + x_2^*|_{X_n}$ and $||x^*|_{X_n}|| = ||x_1^*|_{X_n}|| + ||x_2^*|_{X_n}||$. For given $\epsilon > 0$, we can choose some $m \in \mathbb{N}$

such that $||x^*|_{X_n}|| \ge ||x^*|| - \epsilon$, $||x_1^*|_{X_n}|| \ge ||x_1^*|| - \epsilon$ and $||x_2^*|_{X_n}|| \ge ||x_2^*|| - \epsilon$ for all $n \ge m$. Now

$$||x_1^*|| + ||x_2^*|| \ge ||x^*|| \ge ||x^*|_{X_n}|| = ||x_1^*|_{X_n}|| + ||x_2^*|_{X_n}|| \ge ||x_1^*|| + ||x_2^*|| - 2\epsilon.$$

Thus it follows that $||x^*|| = ||x_1^*|| + ||x_2^*||$ for all $x^* \in X^*$. From this we can conclude that $X^* = X_S^{\perp} \oplus_1 F$.

Remark 2.3. Let X be a L_1 -predual space with a given generalized diagram \mathcal{D} . Same proof as in Theorem 2.2 shows that directed sub diagram \mathcal{S} of \mathcal{D} represents the subspace $X_{\mathcal{S}}$ which is an *M*-ideal in X.

Next Theorem is analogous to [1, Theorem III.4.4]) in the case of L_1 -predual spaces.

THEOREM 2.4. Let X be a L_1 -predual space with a given diagram \mathcal{D} and \mathcal{S} a directed sub diagram of \mathcal{D} . Then the diagram $\mathcal{D} \setminus \mathcal{S}$ represents the space $X/X_{\mathcal{S}}$.

Proof. Let $X = \overline{\bigcup X_n}$ where X_n is isometric to ℓ_{∞}^n . As before, let $M_n = \operatorname{span}\{e_n^i : e_n^i \in \mathcal{S}, 1 \leq i \leq n\}$ and $F_n = \operatorname{span}\{e_n^i : e_n^i \notin \mathcal{S}, 1 \leq i \leq n\}$ for each $n \in \mathbb{N}$. Then $X_{\mathcal{S}} = \overline{\bigcup M_n}, M_n = \ell_{\infty}^m$ for some $m \leq n$, is the *M*-ideal corresponding to the directed diagram \mathcal{S} and $X_n = M_n \oplus_{\infty} F_n$. Consider the norm one projection $P_n : X_n \to F_n$ where

$$P_n\left(\sum_{i=1}^n a_i e_n^i\right) = \sum_{e_n^i \notin \mathcal{S}} a_i e_n^i.$$

Let $i_n : F_n \to F_{n+1}$ be the isometry determined by arrows of the diagram $\mathcal{D} \setminus \mathcal{S}$, that is, for $e_n^i \in \mathcal{D} \setminus \mathcal{S}$,

$$\begin{split} i_{n}(e_{n}^{i}) &= e_{n+1}^{i} + a_{n}^{i} e_{n+1}^{n+1} & \text{if } e_{n+1}^{i}, \ e_{n+1}^{n+1} \in \mathcal{D} \setminus \mathcal{S}, \\ i_{n}(e_{n}^{i}) &= e_{n+1}^{i} & \text{if } e_{n+1}^{i} \in \mathcal{D} \setminus \mathcal{S}, \ e_{n+1}^{n+1} \notin \mathcal{D} \setminus \mathcal{S}, \\ i_{n}(e_{n}^{i}) &= a_{n}^{i} e_{n+1}^{n+1} & \text{if } e_{n+1}^{n+1} \in \mathcal{D} \setminus \mathcal{S}, \ e_{n+1}^{i} \notin \mathcal{D} \setminus \mathcal{S}, \\ i_{n}(e_{n}^{i}) &= 0 & \text{if } e_{n+1}^{i}, \ e_{n+1}^{n+1} \notin \mathcal{D} \setminus \mathcal{S}. \end{split}$$

It is straightforward to verify that $P_{n+1}|_{X_n} = i_n \circ P_n$.

We now define $P : \bigcup X_n \to \bigcup F_n$ by $Px = P_n x$ if $x \in X_n$. It follows that P is well defined and extends as a quotient map from X to the space determined by $\overline{\bigcup F_n}$ which is the space determined by the diagram $\mathcal{D} \setminus \mathcal{S}$. This completes the proof.

We now investigate the converse of Theorem 2.2. Explicitly stated the problem is the following.

PROBLEM 2.5. Let X be a L_1 -predual space and M an M-ideal in X. Then there exists a diagram \mathcal{D} representing X and a directed sub diagram \mathcal{S} of \mathcal{D} such that $M = X_{\mathcal{S}}$.

We believe the answer to Problem 2.5 is affirmative. We will present evidences towards this for M-summands in general and M-ideals in some class of L_1 -predual spaces.

The following proposition shows that any M-summand in a L_1 -predual space is represented by a directed sub diagram.

PROPOSITION 2.6. Let X be a L_1 -predual space and M be an M-summand in X. Then there exists a diagram \mathcal{D} representing X such that M corresponds to some directed sub diagram \mathcal{S} of \mathcal{D} .

Proof. Let N be the complement of M in X, that is, $X = M \oplus_{\infty} N$. Then by [7, Proposition 2.4] it follows that X has a representing matrix of the form

	0	a_{2}^{1}	0	a_4^1	0	a_{6}^{1}]
		0	a_{3}^{2}	0	a_{5}^{2}	0	····]
			0	a_{4}^{3}	0	a_{6}^{3}	
A =				0	a_{5}^{4}	0	
					0		
						0	
	[]

where $B_A = (b_n^i)$ with $b_n^i = a_{2n}^{2i-1}$, $C_A = (c_n^i)$ with $c_n^i = a_{2n}^{2i}$, $n \in \mathbb{N}$, $1 \le i \le n$, are the matrices for M and N respectively. Let S_1 and S_2 be the diagrams corresponding to matrices B_A and C_A respectively. Now it follows that S_1 and S_2 are directed sub diagrams of the diagram of X corresponding to the representing matrix A.

Remark 2.7. Directed sub diagrams S_1 and S_2 considered in Proposition 2.6 are disjoint in the sense that no arrows of S_1 enters into S_2 and vice-versa.

We now consider *M*-ideals in C(K)-spaces. We need to recall few notation and a result from [7].

Let X be a L_1 -predual space with $X = \overline{\bigcup_{n=1}^{\infty} \ell_{\infty}^n}$ and $\{e_n^i : 1 \le i \le n\}$ are admissible bases of ℓ_{∞}^n , $n \in \mathbb{N}$. Define $\phi_j \in X^*$, $j \in \mathbb{N}$, by

$$\phi_j(e_n^i) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j; \ i = 1, \dots, n; \ j \le n; \ n \in \mathbb{N}. \end{cases}$$

By ext B_{X^*} we will denote the extreme point of B_{X^*} .

LEMMA 2.8. [7, Lemma 1.2] Let X and $\{\phi_i\}$ be as above. Then

- (a) $\phi_j \in \text{ext} B_{X^*}$ for all $j \in \mathbb{N}$, and
- (b) $\overline{\{\pm\phi_i : i \in \mathbb{N}\}} = \overline{\operatorname{ext} B_{X^*}}$, where closure is taken in weak*-topology of B_{X^*} .

Remark 2.9. For each *i*, ker ϕ_i represents the space X_{S_i} for some directed sub diagram S_i of a given diagram \mathcal{D} of X where the line passing through e_i^i is a part of the diagram $\mathcal{D} \setminus S_i$.

The idea of the proof for the following result is to use the flexibility provided by Lemma 2.8 for the choice of ϕ_i in a totally disconnected compact metric space K. Recall that for any C(K) space where K is a compact metric space, an M-ideal is given by $J_D = \{f \in C(K) : f|_D = 0\}$, where D is some closed subset of K.

PROPOSITION 2.10. Let K be a totally disconnected compact metric space and D a closed subset of K. Then there exists a diagram \mathcal{D} representing C(K)and a directed sub diagram $\mathcal{D} \subseteq S$ such that $J_D = X_S$.

Proof. Since K be a totally disconnected we can get a sequence $\{\prod_n\}_{n=1}^{\infty}$, $\prod_n = \{K_n^1, K_n^2, \dots, K_n^n\}$ of partitions of K into disjoint closed sets, \prod_{n+1} is a refinement of \prod_n and $\varrho_n = \max_{A \in \prod_n} \text{diam}(A) \to 0$ (see introduction). Let $D_0 = \{d_n : n \in \mathbb{N}\}$ be a countable dense set in D. Choose $\phi_1 = \delta_{d_1}$.

Let $D_0 = \{d_n : n \in \mathbb{N}\}$ be a countable dense set in D. Choose $\phi_1 = \delta_{d_1}$. For $n \ge 2$ by renaming the elements in \prod_n we assume that $d_1 \in K_n^1$. For n = 2 if

- (a) $D_0 \cap K_2^2 \neq \emptyset$, we find the least n_0 such that $d_{n_0} \in D_0 \cap K_2^2$ and choose $\phi_2 = \delta_{d_{n_0}}$. We will assume for all $n \geq 3$, $d_{n_0} \in K_n^2$, again by possibly renaming the members of \prod_n ,
- (b) otherwise choose and fix any $k \in K_2^2$ and take $\phi_2 = \delta_k$. We will assume for all $n \ge 3$, $k \in K_n^2$.

We will follow the same procedure for $n \geq 3$.

We need to ensure that each d_n will be chosen. Let N be the least number among all k's such that $d_k \in K_n^i$ for some i, n. Let $m \neq N$ and $d_m \in K_n^i$ as well. Since diam $(K_n^i) \to 0$ we can choose some suitable large $M \in \mathbb{N}$ such that $d_m \in K_M^M$ and m is the least among all k's such that $d_k \in K_M^M$.

So following the algorithm above we define $\phi_M = \delta_{d_m}$.

Let \mathcal{D} be the diagram representing C(K) given by the partition $\{\prod_n\}$ after renaming the elements of $\{\prod_n\}$ as considered above. Since D_0 is dense in D, we have

$$J_D = \bigcap_{d \in D} \ker \delta_d = \bigcap_{d \in D_0} \ker \delta_d.$$

Thus $J_D = X_S$, where S is the intersection of directed diagrams corresponding to kernel of $\phi_i = \delta_{d_i}, d_i \in D_0$.

Next result shows affirmative answer to Problem 2.5 for general C(K) space with additional assumption on an *M*-ideal. By int *D* we mean interior of a set *D*.

PROPOSITION 2.11. Let K be any compact metric space and D a closed subset of K such that $D = \overline{\operatorname{int} D}$. Then the M-ideal J_D corresponds to the space X_S for some directed sub diagram S of given diagram D of C(K), provided, S is not an empty diagram.

Proof. Let $\phi_j = \delta_{k_j}$, $k_j \in K$. Since $\{\phi_j\}$ are weak*-dense in extreme points of the dual unit ball of C(K) and $D = \overline{\operatorname{int} D}$, we have a sub collection $\phi_{j_i} \subseteq \operatorname{int} D$ such that $\phi_{j_i} = \delta_{k_{j_i}}$ and k_{j_i} is dense in D. It follows $J_D = \bigcap \ker \phi_{j_i}$ and hence J_D is represented by the directed sub diagram S of D which is generated by intersection of directed sub diagram representing $\ker \phi_{j_i}$, where $\phi_{j_i} = \delta_{k_{j_i}}$.

- Remarks 2.12. (1) If we assume K to be a 'nice' compact metric space, then given D a closed subset in K, we can construct a diagrammatic representation of C(K) such that J_D corresponds to a directed sub diagram. We will do it in next section as we need algorithm to construct representing matrix of a L_1 -predual space X when it is given in the form $X = \overline{\bigcup_{n\geq 1} \ell_{\infty}^{m_n}}$.
- (2) Let K be (the) separable Poulsen simplex. Then the space A(K) the space of real valued affine continuous functions on K is the separable

Gurariy space. It was proved in ([8]) that any infinite dimensional Mideal in separable Gurariy space is isometric to itself. Thus any representing diagram of the Gurariy space represents M-ideals in it and Problem 2.5 has affirmative solution for the Gurariy space.

We note that an empty diagram is always a directed sub diagram of any given diagram \mathcal{D} . It may be the case that an *M*-ideal in a L_1 -predual space corresponds to an empty diagram. We give an easy example towards this.

EXAMPLE 2.13. Consider the matrix A such that $a_n^1 = 1$ for all n and $a_n^i = 0$ for all i > 1. It is proved in [3] that A represents c. Consider the M-ideal $J = \{(x_n) \in c : x_n = 0, n \ge 2\}$. Then $J = \cap \ker \phi_n, \phi_n = \delta_n, n \ge 2$. In second figure on page 5, except the line segment starting from the node e_n^n and the line segment that starts from the node e_1^1 and ends at e_{n-1}^1 , all the diagram represents the space ker ϕ_n . It is straightforward to verify that $\bigcap_{n\ge 2} \ker \phi_n$ is empty.

Another difficulty in solving Problem 2.5 affirmatively in general is empty diagram may represent a space which is not an M-ideal. We give an example of this in a typical non G-space. Note that an empty diagram is always directed.

EXAMPLE 2.14. Let $X = \left\{ f \in C[1, \omega_0] : f(\omega_0) = \frac{f(1)+f(2)}{2} \right\}$. Then X is a L_1 -predual space which is not a G-space (see [5]). We will consider the following admissible basis for X (see [2]):

$$e_1^1 = (1, 1, 1, 1, \dots), \qquad e_2^1 = (1, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots),$$

$$e_2^2 = (0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots), \qquad e_3^1 = (1, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots),$$

$$e_3^2 = (0, 1, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots), \qquad e_3^3 = (0, 0, 0, 1, 0, \dots), \qquad \dots$$

For $n \in [1, \omega_0]$, we denote by J_n the *M*-ideal $\{f \in C[1, \omega_0] : f(n) = 0\}$. Each J_n is of codimension 1 in $C[1, \omega_0]$. We consider the *M*-ideal in $C[1, \omega_0]$, $J_{[3,\omega_0]} = \{f \in C[1, \omega_0] : f(n) = 0, n \geq 3\}.$

Now consider the subspace $J_{[3,\omega_0]} \cap X = \bigcap_{n\geq 3} J_n \cap X$ of X. As in Example 2.13 it is easy to check that the intersection of corresponding directed sub diagrams of $J_n \cap X$ for $n \geq 3$ is empty diagram.

However, $J_{[3,\omega_0]} \cap X$ is not an *M*-ideal in *X*. To see this we observe that $J_{[3,\omega_0]} \cap X$ is the range of norm one projection $P: X \to X$ given by P(f) = (f(1), -f(1), 0, 0, ...). Thus if $J_{[3,\omega_0]} \cap X$ is an *M*-ideal then it is an *M*-summand as well. So for any $f \in X$, $||f|| = \max\{||Pf||, ||(I-P)f||\}$.

However if we consider the element $f \in X$ where f(1) = 1, f(2) = 0 and f(n) = 1/2 for all $n \ge 3$, i.e., f = (1, 0, 1/2, 1/2, 1/2, ...) then

$$\left(1, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots\right) = \left(\frac{1}{2}, -\frac{1}{2}, 0, 0, 0, \dots\right) + \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots\right)$$

and the norm of both side will not match. Thus $J_{[3,\omega_0]} \cap X$ is not an M-summand in X.

3. FILL IN THE GAPS

In this section we provide an algorithm to construct representing matrix of a L_1 -predual space X where X is given by $X = \overline{\bigcup X_n}$ and X_n is isometric to $\ell_{\infty}^{m_n}$ for an increasing sequence (m_n) . This construction is implicit in the description of representing matrix given in [3]. However we fix an algorithm (there may be several as seen below) and use it for finding representing matrix of $X \otimes Y$ - the injective tensor product of two separable L_1 -predual spaces, knowing the representing matrices of X and Y.

First we need to provide following justification to our construction.

FACT: Let X be a L_1 -predual space such that $X = \overline{\bigcup X_n}$, where $X_n \subseteq X_{n+1}$ and X_n is isometric to $\ell_{\infty}^{m_n}$ for some increasing sequence (m_n) . If Z is a L_1 -predual space with $Z = \overline{\bigcup Z_n}$, where $Z_n \subseteq Z_{n+1}$, Z_n is isometric to ℓ_{∞}^n , $Z_{m_n} = X_n$ and the isometry $T_n : X_n \to X_{n+1}$ is same as composition of isometries of Z_{m_n} to Z_{m_n+1} , Z_{m_n+1} to $Z_{m_n+2}, \ldots, Z_{m_{n+1}-1}$ to $Z_{m_{n+1}}$ given by the representing matrix of Z, then Z is isometric to X.

We now describe the proposed algorithm.

Let $X = \overline{\bigcup X_n}$ where for each $n, X_n = \ell_{\infty}^{m_n}$ with admissible basis $\{e_{m_n}^i\}_{i=1}^{m_n}$. Any isometry T_{m_n} from $\ell_{\infty}^{m_n}$ to $\ell_{\infty}^{m_{n+1}}$ in terms of admissible basis is given by

$$T_{m_n}e_{m_n}^i = e_{m_{n+1}}^i + a_{m_n+1}^i e_{m_{n+1}}^{m_n+1} + \ldots + a_{m_{n+1}}^i e_{m_{n+1}}^{m_{n+1}}, \quad i = 1, 2, \ldots, m_n.$$
(1)

Hence given X as above and isometric embeddings $\ell_{\infty}^{m_n} \to \ell_{\infty}^{m_{n+1}}$ we know exactly $(m_{n+1} - m_n)m_n$ numbers of

$$(a_j^i), \quad i = 1, \dots, m_n, \quad j = m_n + 1, \dots, m_{n+1} - m_n.$$

Let us assume $C = (c_n^i)_{n\geq 1}^{1\leq i\leq n}$ is a representing matrix for X. We will write

 $\{e_{m_n}^i\}$ in terms of $\{e_{m_{n+1}}^i\}$ according to isometries given by C:

$$e_{m_n}^i = e_{m_n+1}^i + c_{m_n}^i e_{m_n+1}^{m_n+1}$$

= $e_{m_n+2}^i + c_{m_n+1}^i e_{m_n+2}^{m_n+2} + c_{m_n}^i (e_{m_n+1}^{m_n+1} + c_{m_n+1}^{m_n+1} e_{m_n+2}^{m_n+2})$
= $e_{m_n+2}^i + c_{m_n}^i e_{m_n+2}^{m_n+1} + (c_{m_n+1}^i + c_{m_n}^i c_{m_n+1}^{m_n+1}) e_{m_n+2}^{m_n+2} = \dots$

This way we will have $\frac{(m_{n+1}-m_n)}{2}(m_{n+1}+m_n-1)$ numbers of (c_n^j) unknowns. We will put

$$c_{m_n+j}^{m_n+i} = 0$$
, $i = 1, \dots, m_{n+1} - m_n$, $1 \le j \le i$.

It is a straight forward verification that this way we will have $\frac{(m_{n+1}-m_n)}{2}(m_{n+1}-m_n)$ of c_n^i 's zero. Thus remaining $(m_{n+1}-m_n)m_n$ of c_n^i 's equal the number of known variables a_n^i 's and can be expressed in terms of linear equations.

We emphasize that the above way of choosing (c_n^i) is not unique and different ways will give us different representing matrices. Note that here we can not recover first $m_1 - 1$ columns of the representing matrix by the above algorithm so it can be chosen arbitrarily (see [6, Theorem 4.7]).

Remark 3.1. Let the admissible basis of X_n is $\{e_{m_n}^i : 1 \le i \le m_n\}$. If we follow the above algorithm of 'Fill in the Gaps' from X_n to X_{n+1} where X_n is isometric to $\ell_{\infty}^{m_n}$ and X_{n+1} is isometric to $\ell_{\infty}^{m_{n+1}}$ then the basis elements $e_{m_n+1}^{m_n+i}, e_{m_n+2}^{m_n+i}, \ldots, e_{m_{n+1}-1}^{m_n+i}$ are same as $e_{m_{n+1}}^{m_n+i}$ for all $i \ge 1$.

We illustrate this procedure by considering two special cases. First one is simple trial case with $m_n = 2n$ and our second example provides us with representing matrix of C[0, 1] with entries 0 and $\frac{1}{2}$.

EXAMPLE 3.2. Let $C = (c_n^i)_{n\geq 1}^{1\leq i\leq n}$ be a representing matrix of X and $X_n = \text{span} \{e_{2n}^1, \ldots, e_{2n}^{2n}\}$ and $T_n : X_n \to X_{n+1}$ is an isometric embedding with

$$e_{2n}^{i} = e_{2(n+1)}^{i} + a_{2n+1}^{i} e_{2(n+1)}^{2n+1} + a_{2(n+1)}^{i} e_{2(n+1)}^{2(n+1)}, \qquad 1 \le i \le 2n, \ n \ge 1.$$

If we write the expression for e_{2n}^i according to the matrix C then we get

$$e_{2n}^{i} = e_{2(n+1)}^{i} + c_{2n}^{i} e_{2(n+1)}^{2n+1} + \left(c_{2n+1}^{i} + c_{2n}^{i} c_{2n+1}^{2n+1}\right) e_{2(n+1)}^{2(n+1)}$$

From above two expressions for e_{2n}^i we have $a_{2n+1}^i = c_{2n}^i$ and $a_{2(n+1)}^i = c_{2n+1}^i + c_{2n}^i c_{2n+1}^{2n+1}$.

Now if we proceed by above algorithm and put $c_{2n+1}^{2n+1} = 0$, $n \in \mathbb{N}$ we get $a_{2n+1}^i = c_{2n}^i$, $a_{2(n+1)}^i = c_{2n+1}^i$, $1 \leq i \leq 2n$, $n \geq 1$, and, we have the following representing matrix for X,

	[-	a_3^1	a_4^1	a_5^1	a_6^1]	
	:	a_{3}^{2}	a_4^2	a_{5}^{2}	a_{6}^{2}		
C	:	:	0	a_{5}^{3}	a_{6}^{3}		
C =	:	:	÷	a_5^4	a_6^4		
	:	÷	÷	÷	0		
	[:	:	:	:	÷	:]	

The Fact stated above indeed justifies that the resulting matrix is a representing matrix of X.

EXAMPLE 3.3. Consider the function $\phi : \mathbb{R} \to \mathbb{R}$, $\phi(t) = 1 + t$ for $t \in [-1,0]$, $\phi(t) = 1 - t$ for $t \in [0,1]$, and $\phi(t) = 0$ for $t \notin [-1,1]$. Define $g_{k,2^n} = \phi(2^n t - k), t \in [0,1]$. We can write $C[0,1] = \overline{\bigcup X_n}, X_n = \operatorname{span}\{g_{k,2^n} : k = 0, 1, \ldots, 2^n\}$ where $\{g_{k,2^n} : k = 0, 1, \ldots, 2^n\}$ is an admissible basis of X_n . Then for all $n = 0, 1, \ldots$ and $k = 1, 2, \ldots, 2^n - 1$ we have (see [4])

$$g_{k,2^n} = \frac{1}{2}g_{2k-1,2^{n+1}} + g_{2k,2^{n+1}} + \frac{1}{2}g_{2k+1,2^{n+1}},$$

$$g_{0,2^n} = g_{0,2^{n+1}} + \frac{1}{2}g_{1,2^{n+1}},$$

$$g_{2^n,2^n} = \frac{1}{2}g_{2^{n+1}-1,2^{n+1}} + g_{2^{n+1},2^{n+1}}.$$

Let $C = (c_n^i)_{n\geq 1}^{1\leq i\leq n}$ be a representing matrix of C[0,1]. First we have to write the expression for $g_{k,2^n}$ according to C. Now comparing the equations with the above and put $c_{2^n+i}^{2^n+j} = 0$, $1 \leq i \leq 2^{n+1} - 2^n - 1$, $1 \leq j \leq i$, we will get a representing matrix of C[0,1] with entries 0 and $\frac{1}{2}$ only.

We now answer Problem 2.5 in affirmative for C[0, 1].

THEOREM 3.4. Let D be a closed subset of [0, 1]. Then there exists a diagram \mathcal{D} representing C[0, 1] such that the M-ideal J_D corresponds to the space X_S for some directed sub diagram S of \mathcal{D} , provided S is not an empty diagram.

Proof. Let $D_0 = \{d_n : n \in \mathbb{N}\}$ be a countable dense set in D. We can extend D_0 to a set $M = \{k_i : i \in \mathbb{N}\}$ such that $\overline{M} = [0, 1]$. Consider $e_2^1 = 1-t$, $t \in [0, 1]$ and $e_2^2 = t$, $t \in [0, 1]$. Without loss of generality choose an element $k_1 \in [0, 1]$ and consider

$$\begin{array}{ll} e_3^1 = 1 - \frac{1}{k_1}t & \text{if } t \in [0, k_1] \,, \\ e_3^2 = 0 & \text{if } t \in [0, k_1] \,, \\ e_3^3 = \frac{1}{k_1}t & \text{if } t \in [0, k_1] \,, \\ \end{array} \begin{array}{ll} e_3^1 = 0 & \text{if } t \in [k_1, 1] \,; \\ e_3^2 = \frac{t - k_1}{1 - k_1} & \text{if } t \in [k_1, 1] \, \\ e_3^3 = \frac{1}{k_1}t & \text{if } t \in [0, k_1] \,, \\ \end{array} \begin{array}{ll} e_3^2 = \frac{1 - t}{1 - k_1} & \text{if } t \in [k_1, 1] \,. \\ \end{array} \right.$$

Here e_2^1 , e_2^2 , e_3^1 , e_3^2 , e_3^3 satisfy the following equations; $e_2^1 = e_3^1 + (1 - k_1)e_3^3$, $e_2^2 = e_3^2 + k_1e_3^3$. Now with out loss of generality choose $k_2 \in [0, k_1]$ and $k_3 \in [k_1, 1]$. Consider

$$\begin{split} e_5^1 &= 1 - \frac{1}{k_2}t & \text{if } t \in [0, k_2] \,, & e_5^1 = 0 & \text{if } t \in [k_2, 1] \,; \\ e_5^2 &= 0 & \text{if } t \in [0, k_3] \,, & e_5^2 = \frac{t - k_3}{1 - k_3} & \text{if } t \in [k_3, 1] \,; \\ e_5^3 &= 0 & \text{if } t \in [0, k_2] \,, & e_5^3 = \frac{t - k_2}{k_1 - k_2} & \text{if } t \in [k_2, k_1] \,, \\ e_5^3 &= \frac{k_3 - t}{k_3 - k_1} & \text{if } t \in [k_1, k_3] \,, & e_5^3 = 0 & \text{if } t \in [k_3, 1] \,; \\ e_5^4 &= \frac{1}{k_2}t & \text{if } t \in [0, k_2] \,, & e_5^4 = \frac{k_1 - t}{k_1 - k_2} & \text{if } t \in [k_2, k_1] \,, \\ e_5^4 &= 0 & \text{if } t \in [k_1, 1] & \text{and} & e_5^5 = 0 & \text{if } t \in [0, k_1] \,, \\ e_5^5 &= \frac{t - k_1}{k_3 - k_1} & \text{if } t \in [k_1, k_3] \,, & e_5^5 = \frac{1 - t}{1 - k_3} & \text{if } t \in [k_3, 1] \,. \end{split}$$

By the construction e_3^1 , e_3^2 , e_3^3 , e_5^1 , e_5^2 , e_5^3 , e_5^4 , e_5^5 satisfy the following equations:

$$e_3^1 = e_5^1 + \frac{k_1 - k_2}{k_2} e_5^4$$
, $e_3^2 = e_5^2 + \frac{k_3 - k_1}{1 - k_1} e_5^5$ and $e_3^3 = e_5^3 + \frac{k_2}{k_1} e_5^4 + \frac{1 - k_3}{1 - k_1} e_5^5$.

Similarly we can construct $e_{2^n+1}^i$, $1 \le i \le 2^n + 1$. Take an element $f \in C[0, 1]$. Define a sequence $(p_n)_{n=0}^{\infty}$ in the following way. Let $p_0 = f(0)e_2^1$,

$$p_1 = p_0 + (f(1) - p_0(1))e_2^2, \qquad p_2 = p_1 + (f(k_1) - p_1(k_1))e_3^3, p_3 = p_2 + (f(k_2) - p_2(k_2))e_5^4, \qquad p_4 = p_3 + (f(k_3) - p_3(k_3))e_5^5,$$

and so on. Here p_0 and f takes the same value at 0 while p_1 and f takes the same value at 0 and 1 and interpolates linearly in between, p_2 and f takes

same value at 0, 1 and k_1 and interpolates linearly in between, and so on. It is straightforward to check that $\lim_n ||p_n - f||_{\infty} = 0$. Therefore we can write $C[0,1] = \overline{\bigcup E_n}$, where

$$E_n = \operatorname{span}\left\{e_{2^n+1}^i : 1 \le i \le 2^n + 1\right\}$$

and E_n is isometric to $\ell_{\infty}^{2^n+1}$. We know that the support of $e_{2^n+1}^i$ is going to zero as *n* approaches to infinity and it consists a single element of $\{k_i : i \in \mathbb{N}\}$. Each $i \in \mathbb{N}$, k_i will be in some $T_{j_i} = \bigcap_{n=1}^{\infty} \sup\{e_{2^n+1}^j\}$ and any two T_{j_i} 's are disjoint. Here we consider the generalized diagram of C[0,1] with respect to above basis and from *n*-th to (n+1)-th step we choose 2^{n-1} of k_i 's and these k_i 's lie in the support of exactly one of the basis elements of $e_{2^{n+1}}^{2^n+1}, \ldots, e_{2^{n+1}}^{2^{n+1}}$. Now if we follow the algorithm for 'Fill in the Gaps' from *n*-th to (n+1)-th step and consider $k_i \in \sup(e_{2^{n+j}}^{2^n+j})$ chosen above, then $k_i \in \sup(e_m^{2^n+j})$ and $k_i \notin \sup(e_m^l), l \neq 2^n + j$ for $2^n + 1 \leq m \leq 2^{n+1} - 1, j \geq 1$ (see Remark 3.1). So by following the same procedure of choosing ϕ_i as in Proposition 2.10 we will get for any k_i there exists a ϕ_m such that $\phi_m = \delta_{k_i}$ and the set $\{k_i\}_{i=1}^{\infty}$ is dense in [0,1] (see [2, Lemma 2]). Given that D_0 is dense in D so $J_D = \bigcap_{d \in D} \ker \delta_d = \bigcap_{d \in D_0} \ker \delta_d$. Thus $J_D = X_S$, where S is the intersection of directed diagrams corresponding to kernel of $\phi_i = \delta_{d_i}, d_i \in D_0$. This completes the proof.

REPRESENTING MATRIX FOR $X \otimes Y$: If X and Y are separable L_1 -predual spaces, then it is known that $X \otimes Y$ is also a separable L_1 -predual space. We adopt the above algorithm to find a representing matrix for $X \otimes Y$. Let X and Y has representing matrices $(a_n^i)_{n\geq 1}^{1\leq i\leq n}$ and $(b_n^i)_{n\geq 1}^{1\leq i\leq n}$ respectively corresponding to the admissible basis $\{e_n^i : 1 \leq i \leq n\}$ and $\{f_n^i : 1 \leq i \leq n\}$. Then $X \otimes Y = \bigcup_{n=1}^{\infty} E_{n^2}$, where E_{n^2} is isometric to $\ell_{\infty}^{n^2}$ with admissible bases $\{e_n^i \otimes f_n^j, i = 1, \ldots, n; j = 1, \ldots, n\}$. We will denote this collection as $\{E_{n^2}^i : 1 \leq i \leq n^2\}$ with the following convention:

- (a) First n^2 terms of the admissible basis of $E_{(n+1)^2}$ is same as the admissible basis of E_{n^2} . For example if $E_{n^2}^i = e_{(n-1)^2}^k \otimes e_{(n-1)^2}^l$ then $E_{(n+1)^2}^i = e_{n^2}^k \otimes e_{n^2}^l$.
- (b) We will choose $\left\{E_{(n+1)^2}^{n^2+i}: 1 \le i \le (n+1)^2 n^2\right\}$ by the following way. Take $E_{(n+1)^2}^{n^2+1} = e_{n+1}^1 \otimes f_{n+1}^{n+1}, E_{(n+1)^2}^{n^2+2} = e_{n+1}^{n+1} \otimes f_{n+1}^1$. For i = 2k + 1, $k \in \mathbb{N}, E_{(n+1)^2}^{n^2+2k+1} = e_{n+1}^k \otimes f_{n+1}^{n+1}$ and for $i = 2k + 2, k \in \mathbb{N}, E_{(n+1)^2}^{n^2+2k+2} = e_{n+1}^{n+1} \otimes f_{n+1}^k$.

We will now follow algorithm for 'Fill in the Gaps' described above. Let us illustrate this with first few steps.

Let $C = (c_n^i)_{n\geq 1}^{1\leq i\leq n}$ be the representing matrix of $X \check{\otimes} Y$. According to the above convention $E_1^1 = e_1^1 \otimes f_1^1$ and $E_4^1 = e_2^1 \otimes f_2^1$, $E_4^2 = e_2^1 \otimes f_2^2$, $E_4^3 = e_2^2 \otimes f_2^1$, $E_4^4 = e_2^2 \otimes f_2^2$. By expanding E_1^1 in terms of $\{E_4^i\}_{i=1}^4$ according to the given representing matrix of X and Y we get

$$E_1^1 = E_4^1 + b_1^1 E_4^2 + a_1^1 E_4^3 + a_1^1 b_1^1 E_4^4.$$

Similarly expansion of E_1^1 in terms of $\{E_4^i\}_{i=1}^4$ according to the representing matrix C of $X \check{\otimes} Y$,

$$E_1^1 = E_4^1 + c_1^1 E_4^2 + (c_2^1 + c_1^1 c_2^2) E_4^3 + (c_2^1 c_3^3 + c_1^1 c_3^2 + c_3^1 + c_1^1 c_2^2 c_3^3) E_4^4.$$

By following the algorithm we will get $c_1^1 = b_1^1$, $c_2^1 = a_1^1$, $c_2^2 = 0$, $c_3^1 = a_1^1 b_1^1$, $c_3^2 = 0$, $c_3^3 = 0$. By expanding $\{E_4^i\}_{i=1}^4$ in terms of $\{E_9^i\}_{i=1}^9$ according to given representing matrices for X, Y and matrix C we will get

$$\begin{array}{ll} c_4^1 = b_2^1 \,, \quad c_4^2 = b_2^2 \,, \quad c_4^3 = 0 \,, \quad c_4^4 = 0 \,, \\ c_5^1 = a_2^1 \,, \quad c_5^2 = 0 \,, \quad c_5^3 = a_2^2 \,, \quad c_5^4 = 0 \,, \quad c_5^5 = 0 \,, \\ c_6^1 = 0 \,, \quad c_6^2 = 0 \,, \quad c_6^3 = b_2^1 \,, \quad c_6^4 = b_2^2 \,, \quad c_5^5 = 0 \,, \quad c_6^6 = 0 \,, \\ c_7^1 = 0 \,, \quad c_7^2 = a_2^1 \,, \quad c_7^3 = 0 \,, \quad c_7^4 = a_2^2 \,, \quad c_7^5 = 0 \,, \quad c_6^6 = 0 \,, \\ c_8^1 = a_2^1 b_2^1 \,, \quad c_8^2 = a_2^1 b_2^2 \,, \quad c_8^3 = a_2^2 b_2^1 \,, \quad c_8^4 = a_2^2 b_2^2 \,, \quad c_8^5 = 0 \,, \\ c_8^6 = 0 \,, \quad c_8^7 = 0 \,, \quad c_8^8 = 0 \,. \end{array}$$

Proceeding as above we will get representing matrix of $X \otimes Y$ as

$$C = \begin{bmatrix} b_1^1 & a_1^1 & a_1^1 b_1^1 & b_2^1 & a_2^1 & 0 & 0 & a_2^1 b_2^1 & \dots \\ \vdots & 0 & 0 & b_2^2 & 0 & 0 & a_2^1 & a_2^1 b_2^2 & \dots \\ \vdots & \vdots & 0 & 0 & a_2^2 & b_2^1 & 0 & a_2^2 b_2^1 & \dots \\ \vdots & \vdots & \ddots & 0 & 0 & b_2^2 & a_2^2 & a_2^2 b_2^2 & \dots \\ \vdots & \vdots & \ddots & \ddots & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 & \dots \\ \vdots & 0 & \dots \\ \vdots & \dots \end{bmatrix}.$$

Remark 3.5. From above description of representing matrix for $X \otimes Y$ we can actually read off representing matrices $(a_n^i)_{n\geq 1}^{1\leq i\leq n}$ and $(b_n^i)_{n\geq 1}^{1\leq i\leq n}$ for X and Y respectively. For example representing matrix of Y is given by

	$\left[c_1^1\right]$		c_9^1	$c_{4^2}^1$				$c_{n^{2}}^{1}$	···]
<i>B</i> =	:	c_4^2		$c_{4^2}^2$				$c_{n^{2}}^{2}$	
	:	÷	c_{9}^{5}	$c_{4^2}^5$		·		$c_{n^2}^{n^2+1}$	
	:	÷	·	$c_{4^2}^{10}$	·		·	$c_{n^2}^{n^2}$	
	:	÷	·	·	·	·	·	·	
	:	÷	·.	·	·	·	·	·	·
	:	÷	÷	÷	·	·	·.	·	
	1:	÷	÷	÷	÷	·	·	·	
	:	÷	÷	÷	÷	÷		$c_{n^2}^{(n-1)^2+1}$	
	L	÷	÷	•	•	:	•	÷]

Thus if a L_1 -predual space has a representing matrix like C, it is actually tensor product of two L_1 -predual spaces with representing matrices A and B.

References

- K.R. DAVIDSON, "C*-Algebras by Example", Fields Institute Monographs, 6, American Mathematical Society, Providence, RI, 1996.
- [2] A.B. HANSEN, Y. STERNFELD, On the characterization of the dimension of a compact metric space K by the representing matrices of C(K), Israel J. Math. 22 (2) (1975), 148–167.
- [3] A.J. LAZAR, J. LINDENSTRAUS, Banach Spaces whose duals are L₁ spaces and their representing matrices, Acta Math. 126 (1971), 165–193.
- [4] A. LIMA, V. LIMA, E. OJA, Absolutely summing operators on C[0,1] as a tree space and the bounded approximation property, J. Funct. Anal. 259 (11) (2010), 2886-2901.
- [5] J. LINDENSTRAUS, "Extension of Compact Operators", Mem. Amer. Math. Soc. no. 48, American Mathematical Society, Providence, RI, 1964.
- [6] J. LINDENSTRAUSS, G. OLSEN, Y. STERNFELD, The Poulsen simplex, Ann. Inst. Fourier (Grenoble) 28 (1) (1978), vi, 91–114.
- [7] W. LUSKY, On Separable Lindenstrauss Spaces, J. Functional Analysis 26 (2) (1977), 103-120.
- [8] T.S.S.R.K. RAO, On almost isometric ideals in Banach spaces, Monatsh. Math. 181 (1) (2016), 169–176.