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Abstract: Motivated by Bratteli diagrams of Approximately Finite Dimensional (AF) C*-
algebras, we consider diagrammatic representations of separable L;-predual spaces and show
that, in analogy to a result in AF C*-algebra theory, in such spaces, every M-ideal corre-
sponds to directed sub diagram. This allows one, given a representing matrix of a L;-predual
space, to recover a representing matrix of an M-ideal in X. We give examples where the
converse is true in the sense that given an M-ideal in a Li-predual space X, there exists a
diagrammatic representation of X such that the M-ideal is given by a directed sub diagram
and an algorithmic way to recover a representing matrix of M-ideals in these spaces. Given
representing matrices of two Li-predual spaces we construct a representing matrix of their
injective tensor product.
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1. INTRODUCTION

In 1971 Lazar and Lindenstrauss (see [3]) introduced notion of representing
matrices for separable Li-predual spaces. The idea to construct representing
matrix of a Li-predual space depends on following result in [3, Theorem 3.2],
which essentially says that any separable Lj-predual space is built up by
putting together increasing union of £2 , n=1,2,... c0’s.

THEOREM 1.1. Let X be a separable infinite dimensional Banach space
such that X* is isometric to Ly(p) for some positive measure . Let F be
a finite dimensional space whose unit ball is a polytope. Then there exists
a sequence {E, }5° , of finite dimensional subspaces of X such that E; D F,

Eni1 D E, and E,, = {7 for every n and X = U2 | E,,.

We now describe the notion of representing matrices. By Theorem 1.1
any separable Lq-predual space is US ,#% and different such spaces are con-
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structed depending on how one embeds £7 — ¢7F1,

Let {e;}; denote the standard unit vector basis of ¢ . By admissible
basis of £, we mean a basis of the form {;e.(;}j; where 6; = £1 and 7 is
a permutation of {1,...,n}.

It is easy to see that if {u;} is an admissible basis of £ then for any m > n
a linear operator 7' : (2 — (7} is an isometry if and only if there exists an
admissible basis {v;}/; of £} such that

Tu; = v; + Ej:nJrlajv]

with E?:1|a§-] <1lforeveryn+1<j<m.

Now for any separable Li-predual space with the representation X =
UnenEy where E, C E, 1) and each FE, is isometric to ¢, we may choose
admissible basis {e{}"_; of E, such that, after relabelling,

i i i _n+l
The, =€, 1+ A€,

with ¥, |a%| < 1.

A triangular matrix A = (afl)yléllgn associated with X in this manner is
called a representing matrix of X.

The construction of the representing matrix is best understood in the
context of C(K), K is totally disconnected. For use in the later part of
this paper, we illustrate this with an example by constructing of representing
matrix for such a space.

Let K be a totally disconnected compact metric space. Then there exists
a sequence {[[ }>°, of partitions of K into disjoint closed sets so that for

every n, {I],,} has n elements, {]], .} is a refinement of {]],} and

On = /{IEIE]%L d(A) —0
where d(A) denotes diameter of A.

Let E, be the linear span of the characteristic functions of the sets in [],,.
Then it follows trivially that each E, is isometric to ¢, E, C E,4+1 and
C(K) =2, En. Let us denote [], = {K}, K2,..., K"} for all n € N. We
may write 11 = 1p1 + 1gz. Now [[; = {K3, K3, K3}, 1g1 = 11 + 1 and
lgz = 1g2. We continue this procedure to get a representing matrix of C(K)
which is 0, 1-valued [3, Theorem 5.1].

A Li-predual space X has a rich collection of structural subspaces of
X, namely M-ideals. M-ideals in a Li-predual space are themselves Lq-
preduals and in some sense deterministic for the isometric properties of the
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space, meaning, any isometric property of a Li-predual space can be read
off from some isometric properties of its M-ideals. On the other hand, rep-
resenting matrices ‘encode’ every possible information of the structure of a
L1-predual space.

A separable predual X of L; may be thought of as an isometric version
(commutative, where *-isomorphism is replaced by linear isometry) of Approx-
imately Finite Dimensional (AF) real C*-algebras. Two sided norm closed
ideals in an AF C*-algebra are completely determined by hereditary directed
sub diagrams of its Bratteli diagram (see [1]). The analogous notion of closed
two sided ideals in a C*-algebra in Banach space category is M-ideals. Here
we present a representing diagram of a separable Li-predual space, the dia-
gram itself arise out of representing matrix of such a space. We show that
every directed sub diagram of a representing diagram represents an M-ideal
in the corresponding space. Since by definition of representing diagram, it
is always hereditary, this is an exact analogy to the corresponding result for
AF C*-algebras. We believe the converse is also true and we establish it
in some cases.

We now briefly describe the plan of this paper. In section 2 we present our
main idea of diagrammatic representation of a separable Li-predual space X
and directed sub diagram. We show any directed sub diagram corresponds
to an M-ideal in X and the residual diagram corresponds to X/M. If M
is an M-summand then we show the diagram for X splits into two directed
sub diagram. This recovers the result in [7]. We believe that the converse,
that any M-ideal in a Lj-predual space X is represented by a directed sub
diagram of some diagram is true. However there is a problem here. There are
M-ideals which have empty sub diagram. Nevertheless we present converse
for C'(K) spaces (with extra assumption for general K). We also observe
that for A(K) -the space of affine continuous function on K, where K is a
separable Poulsen simplex (note that A(K) is isometric to the Gurariy space
in this case) given any M-ideal, there exists a diagrammatic representation of
corresponding space such that the given M-ideal is represented by a directed
sub diagram.

In Section 3 we describe a ‘Fill in the Gaps’ algorithm for construction of
representing matrix from information that X = U2 /%", This in one hand
provides way to construct representing matrix for an M-ideal given by di-
rected sub diagram and on the other, allows one to write down representing
matrix of X®Y, X, Y Li-preduals, knowing the representing matrix of X and
Y. We also show that for C[0,1], given an M-ideal, there exists a diagram-
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matic representation of C[0, 1] such that the given M-ideal is represented by
a directed sub diagram.

Through out this work we only consider separable Li-predual spaces. Re-
call that a subspace M of Banach space is called an M-ideal if there exists
a projection (called L-projection) P : X* — X* such that ker P = M~ and

* = Range P @1 ker P, where @7 denote the f1-sum. In this case Range P
is isometric to M*. M is said to be an M-summand in X if X = M ®,, N.
Trivially any M-summand is an M-ideal.

ACKNOWLEDGEMENTS. A Sensarma wishes to acknowledge the support
received from CSIR, India, Senior Research Fellowship (Award letter no.
09/092(0872)/2013-EMR-I)

2. DIRECTED DIAGRAMS AND M-IDEALS

For a Li-predual space X with a representing matrix A = (an):éllgn we
will consider the following diagrammatic representation of X. a
A diagram D of a Li-predual space X = US /7, and representing matrix

A= (a )1;11—71 consists of nodes and weighted arrows. The nodes at the n-th

level of the diagram are {e!, : 1 < i < n} where span{e! : 1 < i < n} is
isometric to £2,, n € N. For a node e}, there can be at most two arrows from

i : i n+1 i i
e, one reaching to e;,; and another to e; 7. Any arrow from ej, to e;, | has

weight 1 and there is an arrow from ef, to eZﬂ, then it has a weight a’. For

example if all a!, # 0 then we have the following diagram:

/
L

/

&,
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In case some a®’s are zero we do not put arrows from e’ to ¢"TL. For
n n n+1

example diagram for a space with al, a3, a3 = 0, will look like the following:

/ 64
e !

In the following we describe the diagram for the space ¢ with representing
matrix A such that al =1, n > 1 and a, = 0,5 # 1 (see [3]):

e}l ]
/ :
e
/
€3 ef
/
et \ e _
e3 NG e3’
e
€4

Note that every representing matrix of a Li-predual space corresponds to
a unique diagram D and vice-versa. For a given diagram D we will denote the
corresponding space by Xp.

Now we will introduce the notion of generalized diagram for a L;-predual
space X, where X = UX,, and X, is isometric to £ for an increasing
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sequence (m,). Let {e}, ,... e} be the admissible basis of X,,. Any isom-

etry Ty, @ €70 — foo"™' is uniquely specified by scalars (ainn ﬂ-), 1<j5<
Mpt1 — My, 1 < ¢ < my, such that

7 1 7 mn+1 L. 7 Mp41 .
Tonnm, = €mnis T Cmpt1€meyy T + it 1=1,2,...,my.

For a node e;, , there will be one arrow from e, toej, . Ifa, .. #0,

then there will be a weighted arrow from einn to e%ﬁﬂ , 1< <mpy1 —my

with weight ag,, ..
DEFINITION 2.1. A sub diagram S of D will be called a directed sub dia-
gram if whenever ¢! € S for some n,i € N, i <n then

(a) ele €S,

(b) if af, #0, e'T] € S.

A sub diagram & C D is directed if whenever eﬁl € S for some n,i € N,
i < n and there is an arrow from e/, to e, ; then e/, € S.

We define directed sub diagram of a generalized diagram similarly.

If we take S C D, and, S is directed then the original isometric embedding
of X, into X1 is preserved (see introduction). Hence Xs will be an isometric
subspace of Xp. Moreover there exists a norm one projection P : X* — X*
with ker P = X‘é. To see this observe that Xg = U2 /32", hence X is itself a
Lq-predual space which is an isometric subspace of Xp. We prove that for any
directed sub diagram S the space Xg is an M-ideal in Xp and the diagram
D\ S represents the space Xp/Xs.

THEOREM 2.2. Let X be a Li-predual space with a given diagram D.
Then for any directed sub diagram S of D the subspace Xs is an
M-ideal in X.

Proof. Let X = UX,,, where X,, C X,,11, X,, is isometric to 0%, for each
n. Let P : X* — X* be a norm one projection with ker P = Xg*, that is,
X* = Xg & F where F = Range P. We need to prove that X* = Xg* @, F.

Let M, =span{e!, : ¢, €S, 1 <i<n} and F,, =span{el, : €/, €S, 1<
i <n} for each n € N.

Then X,, = M,,® Fy, and X = M,}eaanL. For any 2* € X* we can write
x* = x% + 2% where v} € Xg' and 2} € F. Then z*|x, = 2}|x, + 73| x, and
ll2*|x, || = [|=5]|x.|] + [|#5]x,||- For given € > 0, we can choose some m € N
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such that [[z*[x,[| > |[z*|] — €, [|z]]x,[| = |[27]] — € and [|z5]x, || > [[z3]] — €
for all n > m. Now

il + lfal] = [la™[| = [l2* x| = il xa T+ llzlx, | = [l21]] + 2] - 2e.

Thus it follows that ||z*|| = ||z}|| + ||z5]| for all z* € X*. From this we can
conclude that X* = Xs* @ F. I

Remark 2.3. Let X be a Lj-predual space with a given generalized dia-
gram D. Same proof as in Theorem 2.2 shows that directed sub diagram S of
D represents the subspace Xs which is an M-ideal in X.

Next Theorem is analogous to [1, Theorem III.4.4]) in the case of Li-
predual spaces.

THEOREM 2.4. Let X be a Li-predual space with a given diagram D
and S a directed sub diagram of D. Then the diagram D \ S represents the
space X/ Xs.

Proof. Let X = UX,, where X,, is isometric to 0% . As before, let M, =
span{el, : el € S, 1 <i<n}and F, =span{e}, : e/, ¢S, 1 <i < n} for
each n € N. Then X5 = UM,,, M,, = 07 for some m < n, is the M-ideal
corresponding to the directed diagram S and X,, = M,, @, F},. Consider the
norm one projection P, : X,, — F,, where

n
P"<Z aieﬁl> = Z ae,,
i=1 e, ¢S

Let iy : F, — Fj,41 be the isometry determined by arrows of the diagram
D\ S, that is, for €, ED\S

. 7 i n+1 : i n+1
Zn( n) n+1 + ane n+1 if en+17 n+1 € D\S

in(ep) = epyr if €y €D\S, el €D\ S,
in(en) % Zﬁ if ept] €D\S, ¢4 €D\S,
in(en) if €41, ei1 €D\ S.
It is straightforward to verify that P,11|x, = i, o Pp.
We now define P : UX,, —» UF,, by Px = P,z if x € X,,. It follows that P
is well defined and extends as a quotient map from X to the space determined

by UF,, which is the space determined by the diagram D\ S. This completes
the proof. 1
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We now investigate the converse of Theorem 2.2. Explicitly stated the
problem is the following.

PrOBLEM 2.5. Let X be a Lj-predual space and M an M-ideal in X.
Then there exists a diagram D representing X and a directed sub diagram &
of D such that M = Xg.

We believe the answer to Problem 2.5 is affirmative. We will present
evidences towards this for M-summands in general and M-ideals in some
class of Li-predual spaces.

The following proposition shows that any M-summand in a Li-predual
space is represented by a directed sub diagram.

ProprosITION 2.6. Let X be a Li-predual space and M be an M -summand
in X. Then there exists a diagram D representing X such that M corresponds
to some directed sub diagram S of D.

Proof. Let N be the complement of M in X, that is, X = M @y, N. Then
by [7, Proposition 2.4] it follows that X has a representing matrix of the form

1 -

0 a 0 da

A — 0 a5 0
0 ag

0

where By = (b%) with b, = a3, Cy = (cf) with ¢}, =a3l, n €N, 1 <i < n,
are the matrices for M and N respectively. Let S; and Sy be the diagrams
corresponding to matrices B4 and Cy4 respectively. Now it follows that S;
and Sy are directed sub diagrams of the diagram of X corresponding to the
representing matrix A. 1

Remark 2.7. Directed sub diagrams S; and S considered in Proposi-
tion 2.6 are disjoint in the sense that no arrows of &7 enters into Sy and
vice-versa.

We now consider M-ideals in C'(K)-spaces. We need to recall few notation
and a result from [7].



REPRESENTING MATRICES, M-IDEALS, TENSOR PRODUCTS 41

Let X be a Lj-predual space with X = U 7 and {e!, : 1 <i < n} are
admissible bases of /7, n € N. Define ¢; € X*, j € N, by

. 0 ifi#j,
¢j(en) = U ,
1 ifi=j4;,i=1,...,n; j<n; neN.
By ext Bx» we will denote the extreme point of Bxx.
LeEMMA 2.8. [7, Lemma 1.2] Let X and {¢;} be as above. Then

(a) ¢ € ext Bx« for all j € N, and

(b) {£¢i : i € N} = ext Bx-, where closure is taken in weak*-topology
of BX*.

Remark 2.9. For each i, ker ¢; represents the space Xg; for some directed
sub diagram S; of a given diagram D of X where the line passing through e}
is a part of the diagram D\ S;.

The idea of the proof for the following result is to use the flexibility pro-
vided by Lemma 2.8 for the choice of ¢; in a totally disconnected compact
metric space K. Recall that for any C'(K') space where K is a compact metric
space, an M-ideal is given by Jp = {f € C(K) : f|p = 0}, where D is some
closed subset of K.

ProrosiTiON 2.10. Let K be a totally disconnected compact metric space
and D a closed subset of K. Then there exists a diagram D representing C'(K)
and a directed sub diagram D C § such that Jp = Xs.

o0
n=1>

Proof. Since K be a totally disconnected we can get a sequence {[],}
[T, = {K}, K2, ..., K} of partitions of K into disjoint closed sets, [T, is
a refinement of [[,, and g, = max,cyy, diam (A) — 0 (see introduction).

Let Dy = {d, : n € N} be a countable dense set in D. Choose ¢; = dq,.
For n > 2 by renaming the elements in [], we assume that d; € K.

For n = 2 if

(a) DyN K22 # (0, we find the least ng such that d,,, € Dy N K22 and choose
¢2 = 4,,,- We will assume for all n > 3, dy, € K2, again by possibly
renaming the members of [[,,

(b) otherwise choose and fix any k € K7 and take ¢ = ;. We will assume
for all n >3, k € K2.
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We will follow the same procedure for n > 3.

We need to ensure that each d,, will be chosen. Let N be the least number
among all k’s such that d, € K! for some i,n. Let m # N and d,, € K} as
well. Since diam (K’) — 0 we can choose some suitable large M € N such
that d,,, € K]\]‘/f and m is the least among all k’s such that d € K%

So following the algorithm above we define ¢p; = dg4,,, -

Let D be the diagram representing C'(K) given by the partition {[[, } after
renaming the elements of {[],,} as considered above. Since Dy is dense in D,
we have

Jp = () kerdg= [ kerdq.
deD deDy

Thus Jp = X, where § is the intersection of directed diagrams corresponding
to kernel of ¢; = dg4,, di € Do. 1

Next result shows affirmative answer to Problem 2.5 for general C(K)
space with additional assumption on an M-ideal. By int D we mean interior
of a set D.

PropPoOsSITION 2.11. Let K be any compact metric space and D a closed
subset of K such that D = int D. Then the M-ideal Jp corresponds to the
space Xg for some directed sub diagram S of given diagram D of C(K),
provided, S is not an empty diagram.

Proof. Let ¢; = &,, kj € K. Since {¢;} are weak*™-dense in extreme
points of the dual unit ball of C(K) and D = int D, we have a sub collection
¢j, € int D such that ¢;, = dx; and kj, is dense in D. It follows Jp = [ ker ¢;,
and hence Jp is represented by the directed sub diagram S of D which is
generated by intersection of directed sub diagram representing ker ¢;,, where

Remarks 2.12. (1) If we assume K to be a ‘nice’ compact metric space,
then given D a closed subset in K, we can construct a diagrammatic
representation of C'(K) such that Jp corresponds to a directed sub di-
agram. We will do it in next section as we need algorithm to construct
representing matrix of a Li-predual space X when it is given in the form
X = Unzlégé".

(2) Let K be (the) separable Poulsen simplex. Then the space A(K) -the
space of real valued affine continuous functions on K is the separable
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Gurariy space. It was proved in ([8]) that any infinite dimensional M-
ideal in separable Gurariy space is isometric to itself. Thus any rep-
resenting diagram of the Gurariy space represents M-ideals in it and
Problem 2.5 has affirmative solution for the Gurariy space.

We note that an empty diagram is always a directed sub diagram of any
given diagram D. It may be the case that an M-ideal in a Li-predual space
corresponds to an empty diagram. We give an easy example towards this.

EXAMPLE 2.13. Consider the matrix A such that a} = 1 for all n and
al, = 0 for all i > 1. It is proved in [3] that A represents c. Consider the
M-ideal J = {(x,) € ¢ : , =0, n > 2}. Then J = Nker ¢y, ¢y, = Op, n > 2.
In second figure on page 5, except the line segment starting from the node
e and the line segment that starts from the node e and ends at el _;, all
the diagram represents the space ker ¢,,. It is straightforward to verify that
Nn>2 ker ¢, is empty.

Another difficulty in solving Problem 2.5 affirmatively in general is empty
diagram may represent a space which is not an M-ideal. We give an example of
this in a typical non G-space. Note that an empty diagram is always directed.

EXAMPLE 2.14. Let X = {f € C[1,wo] : flwo) = W} Then X

is a L; -predual space which is not a G-space (see [5]). We will consider the
following admissible basis for X (see [2]):

eb=(1,1,1,1,...), eb=(1,0,,1 1 ),
6%:(0717%7%7%7 )7 6%2(1’0’0’%7%7%"")’
6?’,:(0,1’07%7%7%7"‘)7 6%2(0,0,0,1,0,...),

For n € [1,wp], we denote by .J,, the M-ideal {f € C[1,wo] : f(n) = 0}.
Each J, is of codimension 1 in C[1,wp]. We consider the M-ideal in C[1, wy],
Ji3w0) = 1f € ClL,wo] = f(n) =0, n >3}

Now consider the subspace J3 ;) N X = Np>3J, N X of X. As in Example
2.13 it is easy to check that the intersection of corresponding directed sub
diagrams of J, N X for n > 3 is empty diagram.

However, Ji3., N X is not an M-ideal in X. To see this we observe
that Ji3,, N X is the range of norm one projection P : X — X given by
P(f) = (f(1),-£(1),0,0,...). Thus if Jg,,) N X is an M-ideal then it is
an M-summand as well. So for any f € X, || f| = max{||Pf],||({ — P)f|}.
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However if we consider the element f € X where f(1) = 1, f(2) = 0 and
fn)=1/2for alln > 3, i.e, f=(1,0,1/2,1/2,1/2,...) then

(L0324 ) = (2 -20.0.0.) + (3.5 14 40)

and the norm of both side will not match. Thus Jjz3,, N X is not an
M-summand in X.

3. FiLL IN THE GAPS

In this section we provide an algorithm to construct representing matrix
of a Li-predual space X where X is given by X = UX,, and X, is isometric
to ¢+ for an increasing sequence (m,,). This construction is implicit in the
description of representing matrix given in [3]. However we fix an algorithm
(there may be several as seen below) and use it for finding representing matrix
of X®Y - the injective tensor product of two separable Li-predual spaces,
knowing the representing matrices of X and Y.

First we need to provide following justification to our construction.

FACT: Let X be a Li-predual space such that X = UX,,, where X,, C
Xnt1 and X, is isometric to ¢ for some increasing sequence (m,,). If Z
is a Lq-predual space with Z = UZ,,, where Z,, C Zn+1, Zn is isometric to
02, Zm, = X, and the isometry T;, : X;, — X,,41 is same as composition of
isometries of Z,,, to Zm, 11, Zm,+1 10 Zmyp42,- -+ Ly —1 Y0 Zpy, ., given
by the representing matrix of Z, then Z is isometric to X.

We now describe the proposed algorithm.

Let X = UX,, where for each n, X,, = £2» with admissible basis {e, }™"".

Any isometry T}, from 7 to foe"™ in terms of admissible basis is given by

7 1 7 mn+1 7 Mpt1 .
Ty, = €mpor T mpp1€mryy tooe Ty, et i=12,...,my,. (1)

. . . . m.
Hence given X as above and isometric embeddings ¢7» — (55"*! we know

exactly (mp+1 — my)m, numbers of

(aj), 1=1,....mpn, j=mp+1l,....Mmptr1 —Myp.

; ) 1<i<n

Let us assume C = (cn .1 IS a representing matrix for X. We will write
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{ef, } in terms of {e!, } according to isometries given by C:

Mmn41

7 _ mn+1

i ) mp+2 i em +1 mn+1 em +2
emn+2 + Cmn+lemn+2 + Cmn( mz+2 +c m:—l-l mn+2)

emntl cmntlyomnt2

This way we will have M(mn‘ﬂ +m,, — 1) numbers of (C%) unknowns.
We will put
cgzi;l:o, t=1,....mpp1 —my, 1<j5<0.

It is a straight forward verification that this way we will have (”1’“’12777"") (Mmp41

—my,) of ¢’s zero. Thus remaining (my,11 — my,)my, of ¢'’s equal the number
of known variables a’,’s and can be expressed in terms of linear equations.
We emphasize that the above way of choosing (c!) is not unique and
different ways will give us different representing matrices. Note that here we
can not recover first m; — 1 columns of the representing matrix by the above

algorithm so it can be chosen arbitrarily (see [6, Theorem 4.7]).

Remark 3.1. Let the admissible basis of X, is {efnn 1 <i<my}. If we
follow the above algorithm of ‘Fill in the Gaps’ from X,, to X, 11 where X,
is isometric to ¢32» and .X"+1 is isometric to /o™ then the basis elements

Mn+1 mn+1 mn+1 mn+1 .
€mnt1s Cmat2s -+ €mn, —1 A€ same as e’ for all i > 1.

We illustrate this procedure by considering two special cases. First one
is simple trial case with m,, = 2n and our second example provides us with
representing matrix of C[0, 1] with entries 0 and 3.

EXAMPLE 3.2. Let C' = ( ;)E’f”

X, = span {e%n, . ,e%ﬁ} and T, : X,, — Xn41 is an isometric embedding
with

be a representing matrix of X and

’ 2n 2(n+1) .
€9, 62(n+1) + aQnHe (n+1) + a2(n+1)e (ZH) 1<i<2n,n>1.

If we write the expression for e}, according to the matrix C' then we get

i 2n+1 2n+1\ 2(n+1)
62 )

i i i
n = €nr1) T ConCopmiyy T (Conyr + ConCon i1 €2(n+1) "

: i i i i —
From above two expressions for ej,, we have aj, ,; = ¢, and A (n41) = Cony1

Im+1
+ ChConi1-
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Now if we proceed by above algorithm and put c%ﬁﬂ =0,n € N we get

aénﬂ =d,, ag(nﬂ) = cénH, 1 <4< 2n,n>1, and, we have the following
representing matrix for X,

r 11
— a3 ay a5 Qag

2 2 2 2
asz ay ay ag

3 3

0 ay ag

C= 4 4
as ag

0

The Fact stated above indeed justifies that the resulting matrix is a repre-
senting matrix of X.

ExAaMPLE 3.3. Consider the function ¢ : R — R, ¢(t) = 1+t for t €
[—1,0], ¢(t) = 1 —t for t € [0,1], and ¢(t) = 0 for t ¢ [—1,1]. Define
Gron = ¢(2"t — k), t € [0,1]. We can write C[0,1] = UX,,, X,, = span{gg on :
kE=0,1,...,2"} where {ggon : k=0,1,...,2"} is an admissible basis of X,.
Then for all n =0,1,... and k =1,2,...,2" — 1 we have (see [4])

1 1
gham = 5G2k—1,2n+1 + o on+1 + 592k+12m40

1
go,2n = goon+t + SdL2mits

1

gon on = §g2n+1_1’2n+1 + 92n+1’2n+1 .

Let C = (cﬁl)jéilgn be a representing matrix of C[0, 1]. First we have to write
the expression for g on according to C. Now comparing the equations with

the above and put ng—g =0,1<i<2vtl_on 1. 1< j <i, we will get a
representing matrix of C|0, 1] with entries 0 and % only.

We now answer Problem 2.5 in affirmative for C0, 1].

THEOREM 3.4. Let D be a closed subset of [0,1]. Then there exists a
diagram D representing C[0, 1] such that the M-ideal Jp corresponds to the
space Xg for some directed sub diagram S of D, provided § is not an empty
diagram.
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Proof. Let Dy = {d,, : n € N} be a countable dense set in D. We can
extend Dy to aset M = {k; : i € N} such that M = [0, 1]. Consider e = 1—t,
t €[0,1] and e = ¢, t € [0,1]. Without loss of generality choose an element
k1 € [0,1] and consider

1
e%zl—k—lt if tel0,k], es =0 if t €[k, 1];
t—k
2=0 if tel0,ki], =1 kl if t €[k,1] and
— Rl
1 , 1—t
egzk—lt if t € 0,k1], e%zl_kl if ¢t € [k1,1].

Here el, €3, €3, €3, e3 satisfy the following equations; €3 = el + (1 — ky)e3,

e% = eg + k‘leg. Now with out loss of generality choose ko € [0,k;] and

ks € [ki1,1]. Consider

1
e%zl—k—zt if t€0,ko], et =0 if t € [ko,1];
e2=0 if tel0,ks], egzi_lzg if t € [ks,1];
— 3
3 _ . 3 t_kQ .
65—0 1fte[0,k2], 65—k 2 lftE[kQ,k)l],
1 — R2
kg —t
eg:k?’ - if ¢e ki, ks, =0 if telks1];
3 — Rl
1 ki —t
f= ¢t iftelok 4= if ¢t € [ko,k
%= 1 if t €10,k S R, if ¢ € [k, k],
er=0  if t €[k, 1] and e2=0 if te€[0,ki],
t—ky 1—t
5 __ : 5 __ :
65—14:37]{1 if ¢t € [k, k3], 65—1714:3 if ¢ € [ks,1].

By the construction e}, €3, €3, el, €2, €3, e, 2 satisfy the following equations:

k1 —ko 4

ks — k1 s 3 3, k2 g 1—k3 5
€5,
k2

s es and 63:e5+k—165+1_k165.

1 1 2 2
63:e5+ 63:€5+

Similarly we can construct €4, 1, 1 < i < 2"+ 1. Take an element f € C[0, 1].
Define a sequence (p,,)22, in the following way. Let po = f(0)e3,

p1=po+ (f(1) —po(1))e3, p2 =p1+ (f(k1) — pr(k1))e3,
p3 = p2 + (f(k2) — pa(ka))et, pa = p3 + (f(ks) — p3(ks))el,

and so on. Here pg and f takes the same value at 0 while p; and f takes the
same value at 0 and 1 and interpolates linearly in between, ps and f takes
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same value at 0, 1 and k; and interpolates linearly in between, and so on. It
is straightforward to check that lim,, |[p, — f||cc = 0. Therefore we can write
C[0,1) = UE,,, where

Enzspan{eénﬂ P 1<i<2" 4+ 1}

and E, is isometric to ¢% ™!. We know that the support of e}, is going to
zero as n approaches to infinity and it consists a single element of {k; : i € N}.
Each i € N, k; will be in some T}, = M52 supp{e}n .} and any two T},’s are
disjoint. Here we consider the generalized diagram of C[0, 1] with respect to
above basis and from n-th to (n + 1)-th step we choose 2"~! of k;’s and these
k;’s lie in the support of exactly one of the basis elements of eg:jﬁl, .. 3211
Now if we follow the algorithm for ‘Fill in the Gaps’ from n-th to (n —|— 1)-th
step and consider k; € supp(e an-_l) chosen above, then k; € supp(er, /) and
ki ¢ supp(el,), I # 2"+ j for 2" +1 < m < 21 — 1, j > 1 (see Remark
3.1). So by following the same procedure of choosing ¢; as in Proposition
2.10 we will get for any k; there exists a ¢y, such that ¢,, = 0, and the set
{ki}22, is dense in [0, 1] (see [2, Lemma 2]). Given that Dy is dense in D so
Jp = Ngep ker 6q = Ngep, ker 4. Thus Jp = Xs, where S is the intersection
of directed diagrams corresponding to kernel of ¢; = dq4,, di € Dy. This
completes the proof. H

REPRESENTING MATRIX FOR X®Y: If X and Y are separable Li-predual
spaces, then it is known that X®Y is also a separable L;-predual space. We
adopt the above algorithm to find a representing matrix for XQY. Let X
and Y has representing matrices (a;‘;):élfn nd (bz) <Z ="
sponding to the admissible basis {e!, : 1 < i < n} and {fi + 1 <i<n}
Then X®Y = U, E,2, where E,2 is isometric to 6202 with admissible bases
{e} ® f%, i=1,...,n; j = 1,...,n}. We will denote this collection as
{E;b2 1< < n2} with the following convention:

respectively corre-

(a) First n? terms of the admissible basis of E(n +1)2 is same as the admissible
ba81s of E,>. For example if E° to = e(n 12 ® e(n 12 then E?

n2 ® en
(b) We will choose {E?:f : 1 <i< (n+1)*—n?} by the following way.

(nt1)2

2
Take Ef, H) = epi1 ® faiis Enn++12) = ep1 ® fagr Fori =2k +1,
2k+1 : 242k+2
keN, E?nil) l=ek, @ fit and for i =2k +2, k €N, E(”njr'l);“ =
n+1
®

n+1 n+1
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We will now follow algorithm for ‘Fill in the Gaps’ described above. Let
us illustrate this with first few steps.

Let C = ( )1<Z<n be the representing matrix of X®Y. According to the
above convention E} = el ® fl and E} = el @ f}, B2 = el ® f2, E} = 2 ® f3,
E} = €3 ® f2. By expanding E} in terms of {E:}} | according to the given
representing matrix of X and Y we get

El = E} + b1E? + alE3 + albiE] .

Similarly expansion of E} in terms of {E%}%_; according to the representing
matrix C' of XQY,

Ei = Ej + c{Ej + (c3 + 1 63) E} + (¢hc + c1c3 + ¢ + cic3c3) By

By followmg the algorithm we will get c¢f = bi, ¢} = al, 3 = 0, ¢} = albi,
c2 =0, 3 = 0. By expanding {E:}} , in terms of {E}}Y_, according to given
representing matrices for X, Y and matrix C we will get

1_ g1 2 _ 2 3 _ 4 _
cg=0by, cg=0by, ¢;=0, ¢;=0,

1 1 2 0 3 2 4 0
) )

5
05:a2, C5: 65:a2, C5: 65:0,

1_ 2 _ 3_ 31 4 _ 12 5 _ 6 _
=0, =0, cg=by, cg=0by, cg=0, ¢=0,

1 2 1 3 4 2 5 6 7
C7:0 C7:a2, C7:0 C7:a2, C7:0 6720, 0720,

Cé — a2b2 5 C8 — a2b CS — CLQbQ ) 68 — a2b Cg - O,
68:07 68:07 68:0'
Proceeding as above we will get representing matrix of X®Y as

bl al albl b @b 0 0 adbl 1
0 0 ¥ 0 0 a) alb
0 0 a3 bl 0 a3b

0 0 b a3 a3b}

cC=1" " . .0 0 0 0
0 0 0

0 0

0
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Remark 3.5. From above description of representing matrix for X QY we
can actually read off representing matrices (ai )1§2Sn and (bg)lggn for X

n/n>1 n>1
and Y respectively. For example representing matrix of Y is given by
rloo 1 1 1 .
] ¢4 Cy Cpo .- Co
2 2 2 2
ci ¢y Cpo .- Cia
5 5 . 2241
Cg Cpp .- . co
10 . - 3241
042 . . Cn2
B =
—1)2+1
C(T; )*+
n

Thus if a Li-predual space has a representing matrix like C, it is actually
tensor product of two Li-predual spaces with representing matrices A and B.
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