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1. Introduction

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H, 〈·, ·〉). We use the following notations for operators

A∇νB := (1− ν)A+ νB,

the weighted operator arithmetic mean,

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted operator geometric mean and

A!νB :=
(
(1− ν)A−1 + νB−1

)−1

the weighted operator harmonic mean, where ν ∈ [0, 1].
When ν = 1

2 , we write A∇B, A]B and A!B for brevity, respectively.
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The following fundamental inequality between the weighted arithmetic,
geometric and harmonic operator means holds

A!νB ≤ A]νB ≤ A∇νB (1.1)

for any ν ∈ [0, 1].
For various recent inequalities between these means we recommend the

recent papers [3]-[6], [8]-[12] and the references therein.
In the recent work [7] we obtained between others the following result:

Theorem 1. Let A, B be positive invertible operators and M > m > 0
such that

MA ≥ B ≥ mA. (1.2)

Then for any ν ∈ [0, 1] we have

rk (m,M)A ≤ A∇νB −A!νB ≤ RK (m,M)A, (1.3)

where r = min {ν, 1− ν}, R = max {ν, 1− ν} and the bounds K (m,M) and
k (m,M) are given by

K(m,M) (1.4)

:=


(m− 1)2 (m+ 1)−1 if M < 1,

max
{

(m− 1)2 (m+ 1)−1 , (M − 1)2 (M + 1)−1
}

if m ≤ 1 ≤M,

(M − 1)2 (M + 1)−1 if 1 < m,

and

k (m,M) :=


(M − 1)2 (M + 1)−1 if M < 1,

0 if m ≤ 1 ≤M,

(m− 1)2 (m+ 1)−1 if 1 < m.

(1.5)

In particular,

1

2
k (m,M)A ≤ A∇B −A!B ≤ 1

2
K (m,M)A. (1.6)

Let A, B positive invertible operators and positive real numbers m, m′,
M , M ′ such that the condition 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI holds.
Put h := M

m and h′ := M ′

m′ , then for any ν ∈ [0, 1] we have [7]

r
(
h′ − 1

)2 (
h′ + 1

)−1
A ≤ A∇νB −A!νB

≤ R (h− 1)2 (h+ 1)−1A,
(1.7)
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where r = min {ν, 1− ν}, R = max {ν, 1− ν} and, in particular,

1

2

(
h′ − 1

)2 (
h′ + 1

)−1
A ≤ A∇B −A!B

≤ 1

2
(h− 1)2 (h+ 1)−1A.

(1.8)

Let A, B positive invertible operators and positive real numbers m, m′,
M , M ′ such that the condition 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI holds.
Then for any ν ∈ [0, 1] we also have [7]

r
(
h′ − 1

)2 (
h′ + 1

)−1 (
h′
)−1

A ≤ A∇νB −A!νB

≤ R (h− 1)2 (h+ 1)−1 h−1A,
(1.9)

and, in particular,

1

2

(
h′ − 1

)2 (
h′ + 1

)−1 (
h′
)−1

A ≤ A∇B −A!B

≤ 1

2
(h− 1)2 (h+ 1)−1 h−1A.

(1.10)

Motivated by the above facts, in this paper we establish some new upper
and lower bounds for the difference A∇νB−A!νB for ν ∈ [0, 1] under various
assumption for the positive invertible operators A, B. Some applications when
A, B are bounded above and below by positive constants are given as well. A
graphic comparison for upper bounds is provided as well.

2. Min and max bounds

The following lemma is of interest in itself.

Lemma 1. For any a, b > 0 and ν ∈ [0, 1] we have

ν (1− ν)
(b− a)2

max {b, a}
≤ Aν (a, b)−Hν (a, b)

≤ ν (1− ν)
(b− a)2

min {b, a}
,

(2.1)

where Aν (a, b) and Hν (a, b) are the scalar weighted arithmetic mean and
harmonic mean, respectively, namely

Aν (a, b) := (1− ν) a+ νb and Hν (a, b) :=
ab

(1− ν) b+ νa
.
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In particular,

1

4

(b− a)2

max {b, a}
≤ A (a, b)−H (a, b) ≤ 1

4

(b− a)2

min {b, a}
, (2.2)

where

A (a, b) :=
a+ b

2
and H (a, b) :=

2ab

b+ a
.

Proof. Consider the function ξν : (0,∞)→ (0,∞) defined by

ξν(x) = 1− ν + νx− x

(1− ν)x+ ν
,

where ν ∈ [0, 1].
Then

ξν (x) =
(1− ν + νx) [(1− ν)x+ ν]− x

(1− ν)x+ ν

=
(1− ν)2 x+ ν (1− ν)x2 + ν (1− ν) + ν2x− x

(1− ν)x+ ν

=
ν (1− ν)x2 − 2ν (1− ν)x+ ν (1− ν)

(1− ν)x+ ν

=
ν (1− ν) (x− 1)2

(1− ν)x+ ν
,

(2.3)

for any x > 0 and ν ∈ [0, 1].
If we take in the definition of ξν , x = b

a > 0, then we have

ξν

(
b

a

)
=

1

a
[Aν (a, b)−Hν (a, b)] .

From the equality (2.3) we also have

ξν

(
b

a

)
=
ν (1− ν) (b− a)2

aAν (b, a)
.

Therefore, we have the equality

Aν (a, b)−Hν (a, b) =
ν (1− ν) (b− a)2

Aν (b, a)
(2.4)

for any a, b > 0 and ν ∈ [0, 1].
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Since for any a, b > 0 and ν ∈ [0, 1] we have

min {a, b} ≤ Aν (b, a) ≤ max {a, b}

then
ν (1− ν) (b− a)2

max {a, b}
≤ ν (1− ν) (b− a)2

Aν (b, a)
≤ ν (1− ν) (b− a)2

min {a, b}
(2.5)

and by (2.4) we get the desired result (2.1).

Remark 1. We show that there is no constant K1 > 1 and K2 < 1 such
that

ν (1− ν)
(b− a)2

max {b, a}
≤ Aν (a, b)−Hν (a, b)

≤ ν (1− ν)
(b− a)2

min {b, a}
,

(2.6)

for some ν ∈ (0, 1) and any a, b > 0.

Assume that there exist K1, K2 > 0 such that

K1ν (1− ν)
(b− a)2

max {b, a}
≤ Aν (a, b)−Hν (a, b)

≤ K2ν (1− ν)
(b− a)2

min {b, a}
,

(2.7)

for some ν ∈ (0, 1) and any a, b > 0.

Let ε > 0 and write the inequality (2.7) for a > 0 and b = a+ ε to get, via
(2.4) that

K1ν (1− ν)
ε2

a+ ε
≤ ν (1− ν) ε2

(1− ν) ε+ a
≤ K2ν (1− ν)

ε2

a
. (2.8)

If we divide by ν (1− ν) ε2 > 0 in (2.8), then we get

K1
1

a+ ε
≤ 1

(1− ν) ε+ a
≤ K2

1

a
, (2.9)

for any a > 0 and ε > 0.

By letting ε → 0+ in (2.9), we get K1 ≤ 1 ≤ K2 and the statement is
proved.
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We have the following operator double inequality:

Theorem 2. Let A, B be positive invertible operators and M > m > 0
such that the condition (1.2). Then for any ν ∈ [0, 1] we have

ν (1− ν) c (m,M)A ≤ ν (1− ν)

max {M, 1}
(B −A)A−1 (B −A)

≤ A∇νB −A!νB

≤ ν (1− ν)

min {m, 1}
(B −A)A−1 (B −A)

≤ ν (1− ν)C (m,M)A,

(2.10)

where

c (m,M) :=


(M − 1)2 if M < 1,

0 if m ≤ 1 ≤M,

(m−1)2

M if 1 < m,

and

C (m,M) :=


(m−1)2

m if M < 1,

1
m max

{
(m− 1)2 , (M − 1)2

}
if m ≤ 1 ≤M,

(M − 1)2 if 1 < m.

In particular,

1

4
c (m,M)A ≤ 1

4 max {M, 1}
(B −A)A−1 (B −A) ≤ A∇B −A!B

≤ 1

4 min {m, 1}
(B −A)A−1 (B −A) ≤ 1

4
C (m,M)A.

(2.11)

Proof. If we write the inequality (2.1) for a = 1 and b = x, then we get

ν (1− ν)
(x− 1)2

max {x, 1}
≤ 1− ν + νx−

(
(1− ν) + νx−1

)−1

≤ ν (1− ν)
(x− 1)2

min {x, 1}

(2.12)

for any x > 0 and for any ν ∈ [0, 1].
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If x ∈ [m,M ] ⊂ (0,∞), then max {x, 1} ≤ max {M, 1} and min {m, 1} ≤
min {x, 1} and by (2.12) we get

ν (1− ν)
minx∈[m,M ] (x− 1)2

max {M, 1}
≤ ν (1− ν)

(x− 1)2

max {M, 1}
≤ 1− ν + νx−

(
(1− ν) + νx−1

)−1

≤ ν (1− ν)
(x− 1)2

min {m, 1}

≤ ν (1− ν)
maxx∈[m,M ] (x− 1)2

min {m, 1}

(2.13)

for any x ∈ [m,M ] and for any ν ∈ [0, 1].
Observe that

min
x∈[m,M ]

(x− 1)2 =


(M − 1)2 if M < 1,

0 if m ≤ 1 ≤M,

(m− 1)2 if 1 < m,

and

max
x∈[m,M ]

(x− 1)2 =


(m− 1)2 if M < 1,

max
{

(m− 1)2 , (M − 1)2
}

if m ≤ 1 ≤M,

(M − 1)2 if 1 < m.

Then

minx∈[m,M ] (x− 1)2

max {M, 1}
=


(M − 1)2 if M < 1,

0 if m ≤ 1 ≤M,

(m−1)2

M if 1 < m,

= c (m,M)

and

maxx∈[m,M ](x− 1)2

min{m, 1}
=


(m−1)2

m if M < 1,

1
m max

{
(m− 1)2 , (M − 1)2

}
if m ≤ 1 ≤M,

(M − 1)2 if 1 < m,

= C (m,M) .
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Using the inequality (2.13) we have

ν (1− ν) c (m,M) ≤ ν (1− ν)
(x− 1)2

max {M, 1}

≤ 1− ν + νx−
(
(1− ν) + νx−1

)−1

≤ ν (1− ν)
(x− 1)2

min {m, 1}
≤ ν (1− ν)C (m,M)

(2.14)

for any x ∈ [m,M ] and for any ν ∈ [0, 1].

If we use the continuous functional calculus for the positive invertible op-
erator X with mI ≤ X ≤MI, then we have from (2.14) that

ν (1− ν) c (m,M) I ≤ ν (1− ν)

max {M, 1}
(X − I)2

≤ (1− ν) I + νX −
(
(1− ν) I + νX−1

)−1

≤ ν (1− ν)

min {m, 1}
(X − I)2

≤ ν (1− ν)C (m,M) I

(2.15)

for any ν ∈ [0, 1].

If we multiply (1.2) both sides by A−1/2 we get MI ≥ A−1/2BA−1/2 ≥ mI.

By writing the inequality (2.15) for X = A−1/2BA−1/2 we obtain

ν(1−ν)c(m,M)I

≤ ν(1− ν)

max{M, 1}

(
A−1/2BA−1/2 − I

)2
(2.16)

≤ (1− ν)I + νA−1/2BA−1/2 −A−1/2
(
(1− ν)A−1 + νB−1

)−1
A−1/2

≤ ν(1− ν)

min{m, 1}

(
A−1/2BA−1/2 − I

)2

≤ ν(1− ν)C(m,M)I

for any ν ∈ [0, 1].
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If we multiply the inequality (2.16) both sides with A1/2, then we get

ν (1− ν) c (m,M)A ≤ ν (1− ν)

max {M, 1}
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

≤ (1− ν)A+ νB −
(
(1− ν)A−1 + νB−1

)−1

≤ ν (1− ν)

min {m, 1}
A1/2

(
A−1/2BA−1/2 − I

)2
A1/2

≤ ν (1− ν)C (m,M)A,

(2.17)

and since

A1/2
(
A−1/2 BA−1/2 − I

)2
A1/2

= A1/2
(
A−1/2 (B −A)A−1/2

)2
A1/2

= A1/2A−1/2 (B −A)A−1/2A−1/2 (B −A)A−1/2A1/2

= (B −A)A−1 (B −A) ,

then by (2.17) we get the desired result (2.10).

When the operators A and B are bounded above and below by constants
we have the following result as well:

Corollary 1. Let A, B be two positive operators and m, m′, M , M ′ be
positive real numbers. Put h := M

m and h′ := M ′

m′ .
(i) if 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

ν (1− ν)
(h′ − 1)2

h
A ≤ ν (1− ν)

h
(B −A)A−1 (B −A)

≤ A∇νB −A!νB

≤ ν (1− ν) (B −A)A−1 (B −A)

≤ ν (1− ν) (h− 1)2A,

(2.18)

and, in particular,

(h′ − 1)2

4h
A ≤ 1

4h
(B −A)A−1 (B −A) ≤ A∇B −A!B

≤ 1

4
(B −A)A−1 (B −A) ≤ 1

4
(h− 1)2A.

(2.19)
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(ii) if 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then

ν (1− ν)

(
h′ − 1

h′

)2

A ≤ ν (1− ν) (B −A)A−1 (B −A)

≤ A∇νB −A!νB

≤ ν (1− ν)h (B −A)A−1 (B −A)

≤ ν (1− ν)
(h− 1)2

h
A

(2.20)

and, in particular,

1

4

(
h′ − 1

h′

)2

A ≤ 1

4
(B −A)A−1 (B −A) ≤ A∇B −A!B

≤ 1

4
h (B −A)A−1 (B −A) ≤ (h− 1)2

4h
A.

(2.21)

Proof. We observe that h, h′ > 1 and if either of the condition (i) or (ii)
holds, then h ≥ h′.

If (i) is valid, then we have

A < h′A =
M ′

m′
A ≤ B ≤ M

m
A = hA, (2.22)

while, if (ii) is valid, then we have

1

h
A ≤ B ≤ 1

h′
A < A. (2.23)

If we use the inequality (2.10) and the assumption (i), then we get (2.18). If
we use the inequality (2.10) and the assumption (ii), then we get (2.20).

3. Bounds in term of Kantorovich’s constant

We consider the Kantorovich’s constant defined by

K (h) :=
(h+ 1)2

4h
, h > 0. (3.1)

The function K is decreasing on (0, 1) and increasing on [1,∞), K(h) ≥ 1 for
any h > 0 and K(h) = K( 1

h) for any h > 0.
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Observe that for any h > 0

K(h)− 1 =
(h− 1)2

4h
= K

(
1

h

)
− 1.

Observe that

K

(
b

a

)
− 1 =

(b− a)2

4ab
for a, b > 0.

Since, obviously

ab = min {a, b}max {a, b} for a, b > 0,

then we have the following version of Lemma 1:

Lemma 2. For any a, b > 0 and ν ∈ [0, 1] we have

4ν (1− ν) min {a, b}
[
K

(
b

a

)
− 1

]
≤ Aν (a, b)−Hν (a, b)

≤ 4ν (1− ν) max {a, b}
[
K

(
b

a

)
− 1

]
.

(3.2)

For positive invertible operators A, B we define

A∇∞B :=
1

2
(A+B) +

1

2
A1/2

∣∣∣A−1/2 (B −A)A−1/2
∣∣∣A1/2,

A∇−∞B :=
1

2
(A+B)− 1

2
A1/2

∣∣∣A−1/2 (B −A)A−1/2
∣∣∣A1/2.

If we consider the continuous functions f∞, f−∞ : [0,∞)→ [0,∞) defined by

f∞ (x) = max {x, 1} =
1

2
(x+ 1) +

1

2
|x− 1| ,

f−∞ (x) = max {x, 1} =
1

2
(x+ 1)− 1

2
|x− 1| ,

then, obviously, we have

A∇±∞B = A1/2f±∞

(
A−1/2BA−1

)
A1/2. (3.3)

If A and B are commutative, then

A∇±∞B =
1

2
(A+B)± 1

2
|B −A| = B∇±∞A.
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Theorem 3. Let A, B be positive invertible operators and M > m > 0
such that the condition (1.2) holds. Then we have

4ν (1− ν) g (m,M)A∇−∞B ≤ A∇νB −A!νB

≤ 4ν (1− ν)G (m,M)A∇∞B,
(3.4)

where

g (m,M) :=


K (M)− 1 if M < 1,

0 if m ≤ 1 ≤M,

K (m)− 1 if 1 < m,

G (m,M) :=


K (m)− 1 if M < 1,

max {K (m) ,K (M)} − 1 if m ≤ 1 ≤M,

K (M)− 1 if 1 < m.

In particular,

g (m,M)A∇−∞B ≤ A∇B −A!B ≤ G (m,M)A∇∞B. (3.5)

Proof. From (3.2) we have for a = 1 and b = x that

4ν (1− ν) min {1, x} [K (x)− 1] ≤ 1− ν + νx−
(
(1− ν) + νx−1

)−1

≤ 4ν (1− ν) max {1, x} [K (x)− 1]
(3.6)

for any x > 0.
From (3.6) we then have

4ν (1− ν) f−∞(x) min
x∈[m,M ]

[K (x)− 1] ≤ 1− ν + νx−
(
(1− ν) + νx−1

)−1

≤ 4ν (1− ν) f∞ (x) max
x∈[m,M ]

[K (x)− 1] (3.7)

for any x ∈ [m,M ].
Observe that

max
x∈[m,M ]

[K (x)− 1] =


K (m)− 1 if M < 1,

max {K (m) ,K (M)} − 1 if m ≤ 1 ≤M,

K (M)− 1 if 1 < m,

= G (m,M)
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and

min
x∈[m,M ]

[K (x)− 1] =


K (M)− 1 if M < 1,

0 if m ≤ 1 ≤M,

K (m)− 1 if 1 < m.

= g (m,M) .

Therefore by (3.7) we get

4ν (1− ν) f−∞ (x) g (m,M) ≤ 1− ν + νx−
(
(1− ν) + νx−1

)−1

≤ 4ν (1− ν) f∞ (x)G (m,M)
(3.8)

for any x ∈ [m,M ] and ν ∈ [0, 1].
If we use the continuous functional calculus for the positive invertible op-

erator X with mI ≤ X ≤MI, then we have from (3.8) that

4ν (1− ν) f−∞ (X) g (m,M) ≤ (1− ν) I + νX −
(
(1− ν) + νX−1

)−1

≤ 4ν (1− ν) f∞ (X)G (m,M)
(3.9)

for any x ∈ [m,M ] and ν ∈ [0, 1].
By writing the inequality (3.9) for X = A−1/2BA−1/2 we obtain

4ν (1− ν) f−∞

(
A−1/2BA−1/2

)
g (m,M) (3.10)

≤ (1− ν) I + νA−1/2BA−1/2 −A−1/2
(
(1− ν)A−1 + νB−1

)−1
A−1/2

≤ 4ν (1− ν) f∞

(
A−1/2BA−1/2

)
G (m,M)

for any ν ∈ [0, 1].
If we multiply (3.10) both sides by A1/2 we get

4ν (1− ν)A1/2f−∞

(
A−1/2BA−1/2

)
A1/2g (m,M)

≤ (1− ν)A+ νB −
(
(1− ν)A−1 + νB−1

)−1

≤ 4ν (1− ν)A1/2f∞

(
A−1/2BA−1/2

)
A1/2G (m,M)

for any ν ∈ [0, 1], which, by (3.3) produces the desired result (3.4).

We have:
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Corollary 2. Let A, B be two positive operators and m, m′, M , M ′ be
positive real numbers. Put h := M

m and h′ := M ′

m′ . If either of the conditions
(i) or (ii) from Corollary 1 holds, then

4ν (1− ν)
[
K
(
h′
)
− 1
]
A∇−∞B ≤ A∇νB −A!νB (3.11)

≤ 4ν (1− ν) [K (h)− 1]A∇∞B.

In particular,[
K
(
h′
)
− 1
]
A∇−∞B ≤ A∇B −A!B ≤ [K (h)− 1]A∇∞B. (3.12)

Proof. If (i) is valid, then we have

A < h′A =
M ′

m′
A ≤ B ≤ M

m
A = hA.

By using the inequality (3.4) we get (3.11).

If (ii) is valid, then we have

1

h
A ≤ B ≤ 1

h′
A < A.

By using the inequality (3.4) we get

4ν (1− ν)

[
K

(
1

h′

)
− 1

]
A∇−∞B ≤ A∇νB −A!νB

≤ 4ν (1− ν)

[
K

(
1

h

)
− 1

]
A∇∞B,

and since K
(

1
h′

)
= K (h′) and K

(
1
h

)
= K (h), the inequality (3.11) is also

obtained.

4. Further bounds

The following result also holds:

Theorem 4. Let A, B be positive invertible operators and M > m > 0
such that the condition (1.2) holds. Then we have

pν (m,M)A ≤ A∇νB −A!νB ≤ Pν (m,M)A (4.1)
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for any ν ∈ [0, 1], where

pν(m,M) :=


ν(1−ν)(M−1)2

(1−ν)M+ν if M < 1,

0 if m ≤ 1 ≤M,

ν(1−ν)(m−1)2

(1−ν)m+ν if 1 < m,

Pν (m,M) :=


ν(1−ν)(m−1)2

(1−ν)m+ν if M < 1,

max
{
ν(1−ν)(m−1)2

(1−ν)m+ν , ν(1−ν)(M−1)2

(1−ν)M+ν

}
if m ≤ 1 ≤M,

ν(1−ν)(M−1)2

(1−ν)M+ν if 1 < m.

Proof. Consider the function ξν : (0,∞)→ (0,∞) defined by

ξν (x) = 1− ν + νx− x

(1− ν)x+ ν
,

where ν ∈ [0, 1].
Taking the derivative, we have

ξ′ν(x) = ν − (1− ν)x+ ν − x(1− ν)

[(1− ν)x+ ν]2
= ν

[(1− ν)x+ ν]2 − 1

[(1− ν)x+ ν]2

=
ν(1− ν)(x− 1) [(1− ν)x+ ν + 1]

[(1− ν)x+ ν]2

for any x ≥ 0 and ν ∈ [0, 1].
This shows that the function is decreasing on [0, 1] and increasing on

(1,∞). We have ξν (0) = 1− ν, ξν (1) = 0 and limx→∞ ξν (x) =∞.
Since, by (2.3)

ξν (x) =
ν (1− ν) (x− 1)2

(1− ν)x+ ν
, x ≥ 0,

then for [m,M ] ⊂ [0,∞) we have

min
x∈[m,M ]

ξν (x) =


ν(1−ν)(M−1)2

(1−ν)M+ν if M < 1,

0 if m ≤ 1 ≤M,

ν(1−ν)(m−1)2

(1−ν)m+ν if 1 < m,

= pν (m,M)



56 s.s. dragomir

and

max
x∈[m,M ]

ξν(x) =


ν(1−ν)(m−1)2

(1−ν)m+ν if M < 1,

max
{
ν(1−ν)(m−1)2

(1−ν)m+ν , ν(1−ν)(M−1)2

(1−ν)M+ν

}
if m ≤ 1 ≤M,

ν(1−ν)(M−1)2

(1−ν)M+ν if 1 < m,

= Pν (m,M) .

Therefore

pν (m,M) ≤ 1− ν + νx−
(
(1− ν) + νx−1

)−1 ≤ Pν (m,M) (4.2)

for any x ∈ [m,M ] and ν ∈ [0, 1].

If we use the continuous functional calculus for the positive invertible
operator X with mI ≤ X ≤MI, then we have from (4.2) that

p (m,M) I ≤ (1− ν) I + νX −
(
(1− ν) I + νX−1

)−1

≤ Pν (m,M) I
(4.3)

for any ν ∈ [0, 1].

If we multiply (1.2) both sides by A−1/2 we get

MI ≥ A−1/2BA−1/2 ≥ mI.

By writing the inequality (4.3) for X = A−1/2BA−1/2 we obtain

p(m,M)I ≤ (1− ν)I + νA−1/2BA−1/2

−A−1/2
(
(1− ν)A−1 + νB−1

)−1
A−1/2

≤ Pν (m,M) I

(4.4)

for any ν ∈ [0, 1].

If we multiply (4.4) both sides by A1/2 we get

p (m,M)A ≤ (1− ν)A+ νB −
(
(1− ν)A−1 + νB−1

)−1

≤ Pν (m,M)A

for any ν ∈ [0, 1].
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Remark 2. If we consider

p (m,M) :=


(M−1)2

2(M+1) if M < 1,

0 if m ≤ 1 ≤M,

(m−1)2

2(m+1) if 1 < m,

P (m,M) :=


(m−1)2

2(m+1) if M < 1,

max
{

(m−1)2

2(m+1) ,
(M−1)2

2(M+1)

}
if m ≤ 1 ≤M,

(M−1)2

2(M+1) if 1 < m,

then by (4.1) we have

p (m,M)A ≤ A∇B −A!B ≤ P (m,M)A, (4.5)

provided that A, B are positive invertible operators and M > m > 0 are such
that the condition (1.2) holds.

Corollary 3. Let A, B be two positive operators and m, m′, M , M ′ be
positive real numbers. Put h := M

m and h′ := M ′

m′ .
(i) if 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then for any ν ∈ [0, 1]

ν (1− ν) (h′ − 1)2

(1− ν)h′ + ν
A ≤ A∇νB −A!νB

≤ ν (1− ν) (h− 1)2

(1− ν)h+ ν
A

(4.6)

and, in particular,

(h′ − 1)2

2 (h′ + 1)
A ≤ A∇B −A!B ≤ (h− 1)2

2 (h+ 1)
A. (4.7)

(ii) if 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then for any ν ∈ [0, 1]

ν (1− ν) (h′ − 1)2

h′ (1− ν + νh′)
A ≤ A∇νB −A!νB

≤ ν (1− ν) (h− 1)2

h (1− ν + νh)
A

(4.8)
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and, in particular,

(h′ − 1)2

2h′ (1 + h′)
A ≤ A∇B −A!B ≤ (h− 1)2

2h (1 + h)
A. (4.9)

Proof. We observe that h, h′ > 1 and if either of the condition (i) or (ii)
holds, then h ≥ h′.

If (i) is valid, then we have

A < h′A =
M ′

m′
A ≤ B ≤ M

m
A = hA,

while, if (ii) is valid, then we have

1

h
A ≤ B ≤ 1

h′
A < A.

If we use the inequality (4.1) and the assumption (i), then we get (4.6). If we
use the inequality (4.1) and the assumption (ii), then we get (4.8).

5. A comparison

We observe that an upper bound for the difference A∇νB −A!νB as pro-
vided in (1.3) is

B1 (ν,m,M)A := max {ν, 1− ν}×


(m−1)2

m+1 A if M < 1,

max
{

(m−1)2

m+1 , (M−1)2

M+1

}
A if m ≤ 1 ≤M,

(M−1)2

M+1 A if 1 < m

while the one from (2.10) is

B2 (ν,m,M)A := ν (1− ν)×


(m−1)2

m A if M < 1,

1
m max

{
(m− 1)2, (M − 1)2

}
A if m ≤ 1 ≤M,

(M − 1)2A if 1 < m,

where A, B are positive invertible operators and M > m > 0 such that the
condition (1.2) holds.
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We consider for x = m ∈ (0, 1) and y = ν ∈ [0, 1] the difference

D1 (x, y) = max {y, 1− y} (x− 1)2

x+ 1
− y (1− y)

(x− 1)2

x

that has the 3D plot on the box [0.3, 0.6] × [0, 1] depicted in Figure 1 show-
ing that it takes both positive and negative values, meaning that neither
of the bounds B1 (ν,m,M)A and B2 (ν,m,M)A is better in the case
0 < m < M < 1.

Figure 1: Plot of difference D1(x, y)

Figure 2: Plot of difference D2(x, y)
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We consider for x = M ∈ (1,∞) and y = ν ∈ [0, 1] the difference

D2 (x, y) = max {y, 1− y} (x− 1)2

x+ 1
− y (1− y) (x− 1)2

that has the 3D plot on the box [1, 3]× [0, 1] depicted in Figure 2 showing that
it takes both positive and negative values, meaning that neither of the bounds
B1 (ν,m,M)A and B2 (ν,m,M)A is better in the case 1 < m < M <∞.

Similar conclusions may be derived for lower bounds, however the details
are left to the interested reader.
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