A Note on Rational Approximation with Respect to Metrizable Compactifications of the Plane

M. Fragoulopoulou, V. Nestoridis

Department of Mathematics, University of Athens Panepistimiopolis, Athens 157 84, Greece fragoulop@math.uoa.gr, vnestor@math.uoa.gr

Presented by Manuel Maestre

Received February 10, 2015

Abstract: In the present note we examine possible extensions of Runge, Mergelyan and Arakelian Theorems, when the uniform approximation is meant with respect to the metric ρ of a metrizable compactification (S, ρ) of the complex plane \mathbb{C} .

Key words: compactification, Arakelian's theorem, Mergelyan's theorem, Runge's theorem, uniform approximation in the complex domain.

AMS Subject Class. (2010): 30E10.

1. Introduction

It is well known that the class of uniform limits of polynomials in $\overline{D}=\{z\in\mathbb{C}:|z|\leq 1\}$ coincides with the disc algebra A(D). A function $f:\overline{D}\to\mathbb{C}$ belongs to A(D) if and only if it is continuous on \overline{D} and holomorphic in the open unit disc D. It is less known (see $[3,\,7]$) what is the corresponding class when the uniform convergence is not meant with respect to the usual Euclidean metric on \mathbb{C} , but it is meant with respect to the chordal metric χ on $\mathbb{C}\cup\{\infty\}$. The class of χ -uniform limits of polynomials on \overline{D} is denoted by $\widetilde{A}(D)$ and contains A(D). A function $f:\overline{D}\to\mathbb{C}\cup\{\infty\}$ belongs to $\widetilde{A}(D)$ if and only if $f\equiv\infty$, or it is continuous on \overline{D} , $f(D)\subset\mathbb{C}$ and $f_{|D}$ is holomorphic. The function $f(z)=\frac{1}{1-z},\ z\in D$, belongs to $\widetilde{A}(D)$, but not to A(D); thus, it cannot be uniformly approximated on D, by polynomials with respect to the usual Euclidean metric on \mathbb{C} , but it can be uniformly approximated by polynomials with respect to the chordal metric χ .

More generally, if $K \subset \mathbb{C}$ is a compact set with connected complement, then according to Mergelyan's theorem [10] polynomials are dense in A(K) with respect to the usual Euclidean metric on \mathbb{C} . We recall that a function $f: K \to \mathbb{C}$ belongs to A(K) if and only if it is continuous on K and holomorphic in the interior K° of K.

An open problem is to characterize the class $\widetilde{A}(K)$ of χ -uniform limits of polynomials on K.

CONJECTURE. ([1, 6]) Let $K \subset \mathbb{C}$ be a compact set with connected complement K^c . A function $f: K \to \mathbb{C} \cup \{\infty\}$ belongs to $\widetilde{A}(K)$ if and only if it is continuous on K and for each component V of K° , either $f(V) \subset \mathbb{C}$ and $f_{|V|}$ is holomorphic, or $f_{|V|} \equiv \infty$.

Extensions of this result have been obtained in [5] when K^c has a finite number of components and K is bounded by a finite set of disjoint Jordan curves. In this case, the χ -uniform approximation is achieved using rational functions with poles out of K instead of polynomials. Furthermore, extensions of Runge's theorem are also proved in [5]. Finally a first result has been obtained in [5] concerning an extension of the approximation theorem of Arakelian ([2]).

Instead of considering the one point compactification $\mathbb{C} \cup \{\infty\}$ of the complex plane \mathbb{C} , we can consider an arbitrary metrizable compactification (S, ϱ) of \mathbb{C} and investigate the analogues of all previous results. This is the content of the present paper.

2. Preliminaries

We say that (S, ϱ) is a metrizable compactification of the plane \mathbb{C} , if ϱ is a metric on S, S is compact, $S \supset \mathbb{C}$ and \mathbb{C} is an open dense subset of S. Obviously, $S \backslash \mathbb{C}$ is a closed subset of S. We say that the points in $S \backslash \mathbb{C}$ are the points at infinity.

Let (S, ϱ) be a metrizable compactification of \mathbb{C} with metric ϱ . Many such compactifications can be found in [1]. The one point compactification $\mathbb{C} \cup \{\infty\}$ with the chordal metric χ is a distinct one of them. We note that in this case, the continuous function $\pi: S \to \mathbb{C} \cup \{\infty\}$, such that $\pi(c) = c$, for every $c \in \mathbb{C}$ and $\pi(x) = \infty$, for every $x \in S \setminus \mathbb{C}$, is useful.

Another metrizable compactification is the one defined in [8] and constructed as follows: consider the map

$$\begin{array}{cccc} \phi:\mathbb{C} & \longrightarrow & D = \{\lambda \in \mathbb{C} \,:\, |\lambda < 1\} \\ z & \longmapsto & \frac{z}{1 + |z|} \end{array},$$

which is a homeomorphism. A compactification of the image D of ϕ is \overline{D} , the closure of D, with the usual metric. This leads to the following compactifica-

tion of \mathbb{C}

(2.1)
$$S_1 := \mathbb{C} \cup \{ \infty e^{i\vartheta} : 0 \le \vartheta \le 2\pi \},$$

with metric d given by

$$d(z,w) = \left| \frac{z}{1+|z|} - \frac{w}{1+|w|} \right| \quad \text{if } z, w \in \mathbb{C},$$

$$(2.2) \quad d(z, \infty e^{i\vartheta}) = \left| \frac{z}{1+|z|} - e^{i\vartheta} \right| \quad \text{if } z \in \mathbb{C}, \ \vartheta \in \mathbb{R},$$

$$d(\infty e^{i\vartheta}, \infty e^{i\varphi}) = \left| e^{i\vartheta} - e^{i\varphi} \right| \quad \text{if } \vartheta, \varphi \in \mathbb{R}.$$

In what follows, with a compactification (S, ϱ) of \mathbb{C} , we shall always mean a metrizable compactification.

An important question for a given compactification of \mathbb{C} is, whether for $c \in \mathbb{C}$ and $x \in S \setminus \mathbb{C}$, the addition c + x is well defined. In other words, having two convergent sequences $\{z_n\}, \{w_n\}$ in \mathbb{C} , such that $z_n \to c$ and $w_n \to x$ does the sequence $\{z_n + w_n\}$ have a limit in S?

If the answer is positive for any such sequences $\{z_n\}, \{w_n\}$ in \mathbb{C} , then the limit $y \in S$ of the sequence $\{z_n + w_n\}$ is uniquely determined and we write c + x = y = x + c. We are interested in compactifications (S, ϱ) , where c + x is well defined for any $c \in \mathbb{C}$ and $x \in S$ (it suffices to take $x \in S \setminus \mathbb{C}$). In this case, the map $\mathbb{C} \times S \to S$, $(c, x) \mapsto c + x$, is automatically continuous.

Indeed, let $x \in S \setminus \mathbb{C}$, $y \in \mathbb{C}$ and $w = x + y \in S \setminus \mathbb{C}$. Let $\{z_n\}$ in S and $\{y_n\}$ in \mathbb{C} , such that $z_n \to x$ and $y_n \to y$. If all but finitely many z_n belong to \mathbb{C} , then by our assumption $z_n + y_n \to x + y$. Suppose that infinitely many z_n belong to $S \setminus \mathbb{C}$. Without loss of generality we may assume that all z_n belong to $S \setminus \mathbb{C}$ and by compactness we can assume that $z_n + y_n \to l \neq w = x + y$.

Let $d = \varrho(l, w) > 0$. Then there exists $n_0 \in \mathbb{N}$, such that

$$\varrho(z_n + y_n, l) < \frac{d}{2}$$
 for all $n \ge n_0$.

Fix $n \geq n_0$. Since, $z_n + y_n$ is well defined, there exists $z'_n \in \mathbb{C}$, such that

$$\varrho(z_n, z'_n) < \frac{1}{n}$$
 and $\varrho(z_n + y_n, z'_n + y_n) < \frac{1}{n}$.

It follows that

$$\varrho(z'_n, x) \le \varrho(z'_n, z_n) + \varrho(z_n, x) < \frac{1}{n} + \varrho(z_n, x) \to 0.$$

Hence, $z'_n \to x$, $y_n \to y$ and $z'_n, y_n \in \mathbb{C}$. By our assumption, it follows that $z'_n + y_n \to x + y = w$. But

$$\varrho(z'_n + y_n, l) \le \varrho(z'_n + y_n, z_n + y_n) + \varrho(z_n + y_n, l)$$

$$\le \frac{1}{n} + \varrho(z_n + y_n, l) < \frac{1}{n} + \frac{d}{2} \to \frac{d}{2}.$$

Thus, for all n large enough we have

$$\varrho(z'_n + y_n, l) \le \frac{3d}{4} < d = \varrho(l, w).$$

It follows that $\varrho(z_n'+y_n,w)\geq \frac{d}{4}$, for all n large enough. Therefore, we cannot have $z_n'+y_n\to w$.

Consequently, one concludes that the addition map is continuous at every (x,y) with $x \in S \setminus \mathbb{C}$ and $y \in \mathbb{C}$. Obviously, it is also continuous at every (x,y) with x and y in \mathbb{C} . Thus, addition is continuous on $S \times \mathbb{C}$. Furthermore, the following holds:

Let $K \subset \mathbb{C}$ be compact. Obviously, the map $K \times S \to S$, $(c, x) \mapsto c + x$, is uniformly continuous.

Remark 1. The preceding certainly holds for the compactification (S_1, d) (see (2.1)), since

$$c + \infty e^{i\vartheta} = \infty e^{i\vartheta}$$
 for all $c \in \mathbb{C}$ and $\vartheta \in \mathbb{R}$,

and we have continuity.

Remark 2. If we identify \mathbb{R} with the interval (-1,1), up to a homeomorphism, then $\mathbb{C} \cong \mathbb{R}^2$ is identified with the square $(-1,1) \times (-1,1)$. An obvious compactification of \mathbb{C} is then the closed square with the usual metric. The points at infinity are those on the boundary of the square, for instance, those points on the side $\{1\} \times [-1,1]$. If $x \in \{1\} \times (-1,1)$ and $c \in \mathbb{C}$, then c+x is a point in the same side; if $\operatorname{Im} c \neq 0$, then $c+x \neq x$. If x = (1,1) and $c \in \mathbb{C}$, then x+c=x. If $\operatorname{Im} c > 0$, then c+x lies higher than x in the side $\{1\} \times (-1,1)$.

In this example, the addition is well defined and continuous, but the points at infinity are not stabilized as in Remark 1.

QUESTION. Is there a metrizable compactification of \mathbb{C} such that the addition c+x is not well defined for some $c \in \mathbb{C}$ and $x \in S \setminus \mathbb{C}$?

The answer is "yes". An example comes from the previous square in Remark 2, if we identify all the points of $\{1\} \times [-\frac{1}{2}, \frac{1}{2}]$ and make them just one point.

3. Runge and Mergelyan type theorems

In this section using a compactification of \mathbb{C} satisfying all properties discussed in the Preliminaries, we obtain the following theorem, that extends [5, Theorem 3.3].

THEOREM 3.1. Let $\Omega \subset \mathbb{C}$ be a bounded domain, whose boundary consists of a finite set of pairwise disjoint Jordan curves. Let $K = \overline{\Omega}$ and A a set containing one point from each component of $(\mathbb{C} \cup \{\infty\}) \setminus K$. Let (S, ϱ) be a compactification of \mathbb{C} , such that the addition $+ : \mathbb{C} \times S \to S$ is well defined. Let $f : K \to S$ be a continuous function, such that $f(\Omega) \subset \mathbb{C}$ and $f \upharpoonright_{\Omega}$ is holomorphic. Let $\varepsilon > 0$. Then, there exists a rational function R with poles only in A and such that $\varrho(f(z), R(z)) < \varepsilon$, for all $z \in K$.

Proof. If Ω is a disk, the proof has been given in [1]. If Ω is the interior of a Jordan curve, the proof is given again in [1], but also in [6]. In the general case, we imitate the proof of [5, Theorem 3.3]. Namely, we consider the Laurent decomposition of f, given by $f = f_0 + f_1 + \cdots + f_N$ (see [4]). The function f_0 is defined on a simply connected domain, bounded by a Jordan curve, and it can be uniformly approximated by a polynomial or a rational function R_0 with pole in the unbounded component. Similarly, f_1 is approximated by a rational function R_1 with pole in A and so on. Thus, the function $R_0 + R_1 + \cdots + R_N$ approximates, with respect to ϱ , the function $f = f_0 + f_1 + \cdots + f_N$. This is due to the fact that at every point z all the f_i 's, $i = 1, 2, \cdots, N$, except maybe one, take values in $\mathbb C$ and the one, maybe has as a value, an infinity point in $S \setminus \mathbb C$. In this way, the addition map $\mathbb C \times S \to S$, $(c,x) \mapsto c + x$, is well defined and uniformly continuous on compact sets and so we are done. \blacksquare

Another Runge–type theorem is the following, where we do not need any assumption for the compactification S, or the addition map $+: \mathbb{C} \times S \to S$.

THEOREM 3.2. Let $\Omega \subset \mathbb{C}$ be open, $f:\Omega \to \mathbb{C}$ be holomorphic and (S,ϱ) a compactification of \mathbb{C} . Let A be a set containing one point from each component of $(\mathbb{C} \cup \infty) \backslash \Omega$. Let $\varepsilon > 0$ and $L \subset \Omega$ compact. Then, there

exists a rational function R with poles in A, such that $\varrho(f(z), R(z)) < \varepsilon$ for all $z \in L$.

Proof. Clearly the subset f(L) of \mathbb{C} is compact. Then, from the classical theorem of Runge, there exist rational functions $\{R_n\}$, with poles only in A, converging uniformly to f on L, with respect to the Euclidean metric $|\cdot|$. Hence, there is a positive integer n_0 and a compact K, such that

$$f(L) \subset K \subset \mathbb{C}$$
 and $R_n(L) \subset K$ for all $n \geq n_0$.

But on K the metrics $|\cdot|$ and ϱ are uniformly equivalent. Therefore, $R_n \to f$ uniformly on L, with respect to ϱ . To conclude the proof, it suffices to put $R = R_n$, for n large enough.

Theorem 3.2 easily yields the following

COROLLARY 3.3. Under the assumptions of Theorem 3.2 there exists a sequence $\{R_n\}$ of rational functions with poles in A, such that $R_n \to f$, ϱ -uniformly, on each compact subset of Ω .

Remark. According to Corollary 3.3, some of the ϱ -uniform limits, on compacta, of rational functions with poles in A, are the holomorphic functions $f: \Omega \to \mathbb{C}$. Those are limits of the finite type. The other limits of sequences $\{R_n\}$ as above may be functions $f: \Omega \to S \setminus \mathbb{C}$ of infinite type, continuous (but maybe not all of them, as the Example (S_1, d) shows; cf. [8]).

QUESTION. Is a characterization possible for such limits $f: \Omega \to S_1 \backslash \mathbb{C}$?

An imitation of the arguments in [8, p. 1007] gives that f must be of the form $f(z) = \infty e^{i\vartheta(z)}$, $z \in \Omega$, where ϑ is a multivalued harmonic function. The following extends [5, Section 5].

Theorem 3.4. Let $\Omega \subset \mathbb{C}$ be open and f a meromorphic function on Ω . Let B denote the set of poles of f. Let (S,ϱ) be a compactification of \mathbb{C} , such that the addition $+: \mathbb{C} \times S \to S$ is well defined. Let $\varepsilon > 0$ and $K \subset \Omega$ be a compact set. Then, there is a rational function g, such that $\varrho(f(z), g(z)) < \varepsilon$, for every $z \in K \setminus B$.

Proof. Since $B \cap K$ is a finite set, the function f decomposes to f = h + w, where h is a rational function with poles in $B \cap K$ and w is holomorphic on an open set containing K. By Runge's theorem there exists a rational function R

with poles off K, such that $|w(z) - R(z)| < \varepsilon'$ on K. Since w(K) is a compact subset of \mathbb{C} and the addition $+ : \mathbb{C} \times S \to S$ is well defined, a suitable choice of ε' gives

$$\varrho([h(z) + w(z)], [h(z) + R(z)]) < \varepsilon$$
 on $K \setminus B$.

We set g = h + R and the result follows.

4. Arakelian sets

A closed set $F \subset \mathbb{C}$ is said a set of approximation if every function $f: F \to \mathbb{C}$ continuous on F and holomorphic in F° can be approximated by entire functions, uniformly on the whole F. This is equivalent to the fact that F is an Arakelian set (see [2]), that is $(\mathbb{C} \cup \{\infty\}) \setminus F$ is connected and locally connected (at ∞).

We can now ask about an extension of the Arakelian theorem in the context of metrizable compactifications. A result in this direction is the following

PROPOSITION 4.1. Let $F \subset \mathbb{C}$ be a closed Arakelian set with empty interior, i.e., $F^{\circ} = \emptyset$. We consider the compactification (S_1, d) of \mathbb{C} (see (2.1) and (2.2)) and let $f: F \to S_1$ be a continuous function. Let $\varepsilon > 0$. Then, there is an entire function g such that $d(f(z), g(z)) < \varepsilon$, for every $z \in F$.

Proof. According to (1.1), the compactification S_1 is homeomorphic to $\overline{D} = \{z \in \mathbb{C} : |z| \le 1\}$. For each 0 < R < 1 let us define

$$\begin{array}{cccc} \phi_R: \overline{D} & \longrightarrow & \{z \in \mathbb{C} \, : \, |z| \leq R\} \subset \overline{D} \\ \\ z & \longmapsto & \left\{ \begin{array}{ll} z \, , & \text{if} & |z| \leq R \, , \\ \frac{Rz}{|z|} \, , & \text{if} & R \leq |z| \leq 1 \, . \end{array} \right. \end{array}$$

In other words, the whole line segment $[Re^{i\vartheta}, e^{i\vartheta}]$ is mapped at the end point $Re^{i\vartheta}$. The function ϕ_R is continuous and induces a continuous function $\widetilde{\phi}_R: S_1 \to S_1$. It suffices to take $\widetilde{\phi}_R := T^{-1} \circ \phi_R \circ T$, where $T: S_1 \to \{w \in \mathbb{C}: |w| \leq 1\}$ is defined as follows

$$T(z) := rac{z}{1+|z|} \qquad ext{for } z \in \mathbb{C} \subset S_1 \,,$$
 $T(\infty e^{i\vartheta}) := e^{i\vartheta} \qquad ext{for } \vartheta \in \mathbb{R} \,.$

If $\varepsilon > 0$ is given, then there exists $R_{\varepsilon} < 1$, such that for $R_{\varepsilon} \leq R < 1$ and $z \in S_1$, we have $d(z, \widetilde{\phi}_R(z)) < \frac{\varepsilon}{2}$.

Let now f be as in the statement of the Proposition 4.1. Then,

$$d(f(z), (\widetilde{\phi}_R \circ f)(z)) < \frac{\varepsilon}{2}$$
 for all $z \in F$.

Moreover, the function $\widetilde{\phi}_R \circ f : F \to \mathbb{C}$ is continuous. Since F is a closed Arakelian set, with empty interior, and $(\widetilde{\phi}_R \circ f)(F) \subset K$, is included in a compact subset K of \mathbb{C} , there exists g entire, such that

$$\left| (\widetilde{\phi}_R \circ f)(z) - g(z) \right| < \varepsilon' \quad \text{for all } z \in F.$$

Since $(\widetilde{\phi}_R \circ f)(F)$ is contained in a compact subset K of \mathbb{C} , for a suitable choice of ε' , it follows that

$$d\Big(\big(\widetilde{\phi}_R\circ f\big)(z),g(z)\Big)<\frac{\varepsilon}{2}\qquad \text{ for all } z\in F\,.$$

The triangle inequality completes the proof.

An analogue of Proposition 4.1 for the one point compactification $\mathbb{C} \cup \{\infty\}$ of \mathbb{C} has been established in [5].

REFERENCES

- [1] I. Androulidakis, V. Nestoridis, Extension of the disc algebra and of Mergelyan's theorem, C.R. Math. Acad. Sci. Paris **349** (13–14) (2011), 745–748.
- [2] N.U. Arakelian, Uniform approximation on closed sets by entire functions, *Izv. Akad. Nauk SSSR Ser. Mat.* **28** (1964), 1187–1206 (Russian).
- [3] L. Brown, P.M. Gauthier, W. Hengartner, Continuous boundary behaviour for functions defined in the open unit disc, *Nagoya Math. J.* **57** (1975), 49–58.
- [4] G. COSTAKIS, V. NESTORIDIS, I. PAPADOPERAKIS, Universal Laurent series, Proc. Edinb. Math. Soc. (2) 48 (3) (2005), 571–583.
- [5] M. Fragoulopoulou, V. Nestoridis, I. Papadoperakis, Some results on spherical approximation, Bull. Lond. Math. Soc. 45 (6) (2013), 1171–1180.
- [6] V. Nestoridis, Compactifications of the plane and extensions of the disc algebra, in "Complex Analysis and Potential Theory", CRM Proc. Lecture Notes, 55, Amer. Math. Soc., Providence, RI, 2012, 61–75.
- [7] V. NESTORIDIS, An extension of the disc algebra, I, Bull. Lond. Math. Soc. 44 (4) (2012), 775-788.

- [8] V. Nestoridis, N. Papadatos, An extension of the disc algebra, II, Complex Var. Elliptic Equ. 59 (7) (2014), 1003–1015.
- [9] V. Nestoridis, I. Papadoperakis, A remark on two extensions of the disc algebra and Mergelian's theorem, *preprint* 2011, arxiv: 1104.0833.
- [10] W. Rudin, "Real and Complex Analysis", McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.