On a ρ_n -Dilation of Operator in Hilbert Spaces [†]

A. Salhi, H. Zerouali

PB 1014, Departement of Mathematics, Siences Faculty, Mohamed V University in Rabat, Rabat, Morocco radi237@gmail.com, zerouali@fsr.ac.ma

Presented by Mostafa Mbekhta

Received March 21, 2016

Abstract: In this paper we define the class of ρ_n -dilations for operators on Hilbert spaces. We give various properties of this new class extending several known results ρ -contractions. Some applications are also given.

Key words: ρ_n -dilation, ρ -dilation. AMS Subject Class. (2010): 47A20.

1. INTRODUCTION

Sz-Nagy and Foias introduced in [8], the subclass C_{ρ} of the algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators on a given complex Hilbert space \mathcal{H} . More precisely, for each fixed $\rho > 0$, an operator $\mathbf{T} \in C_{\rho}$ if there exists a Hilbert space \mathcal{K} containing \mathcal{H} as a subspace and a unitary transformation \mathbf{U} on \mathcal{K} such that;

$$\mathbf{T}^{n} = \rho Pr \mathbf{U}_{|\mathcal{H}|}^{n} \quad \text{for all } n \in \mathbb{N}^{*}.$$
(1)

Where $Pr : \mathcal{K} \to \mathcal{H}$ is the orthogonal projection on \mathcal{H} . The unitary operator **U** is then called a unitary ρ -dilation of **T**, and the operator **T** is a ρ -contraction.

Recall that T is power bounded if $||T^n|| \leq M$ for some fixed M and every nonegative integer n. From Equation (1), it follows that every ρ -contraction is power bounded since $||\mathbf{T}^n|| \leq \rho$ for all $n \in \mathbb{N}^*$. Computing the spectral radius of \mathbf{T} , it comes that the spectrum of the operator \mathbf{T} satisfies $\sigma(\mathbf{T}) \subset \overline{\mathbf{D}}$, where $\mathbf{D} = D(0, 1)$ is the open unit disc of the set of complex numbers \mathbb{C} .

Operators in the class C_{ρ} enjoy several nice properties, we list below the most known, we refer to [7] for proofs and further information.

 $^{^\}dagger {\rm This}$ work is partially supported by Hassan II Academy of Siences and the CNRST Project URAC 03.

- (1) The function $\rho \mapsto C_{\rho}$ is nondecreasing, that is $C_{\rho} \subsetneq C_{\rho'}$ if $\rho < \rho'$. We will denote by $C_{\infty} = \bigcup_{\rho > 0} C_{\rho}$.
- (2) C_1 coincides which the class of contractions (see [6]) and C_2 is the class of operators **T** having a numerical radius less or equal to 1 (see [1]). The numerical radius is given by the expression, w(**T**) = sup{ $|\langle \mathbf{T}h; h \rangle|$: ||h|| = 1}.
- (3) If $T \in \mathcal{C}_{\rho}$ so is T^n . It is however not true in general that the product of two operators in \mathcal{C}_{ρ} is in \mathcal{C}_{ρ} . Also it is not always true that $\xi \mathbf{T}$ belongs to \mathcal{C}_{ρ} when $\mathbf{T} \in \mathcal{C}_{\rho}$ for $|\xi| \neq 1$.
- (4) For any M a **T**-invariant subspace, the restriction of **T** to the subspace M is in the class C_{ρ} whenever **T** is.
- (5) Any operator **T** such that $\sigma(\mathbf{T}) \subset \mathbf{D}$ belongs to \mathcal{C}_{∞} .

Numerous papers where devoted the study of differents aspects of C_{ρ} ; we refer to [2, 4, 5] for more information.

The next theorem provides a useful characterization of the class C_{ρ} in term of some positivity conditions,

THEOREM 1.1. Let **T** be a bounded operator on the Hilbert space \mathcal{H} and ρ be a nonnegative real. The following are equivalent

- (1) The operator **T** belongs to the class C_{ρ} ;
- (2) for all $h \in \mathcal{H}$; $z \in D(0; 1)$

$$(\frac{2}{\rho}-1)\|z\mathbf{T}h\|^2 + (2-\frac{2}{\rho})\operatorname{Re}(z\mathbf{T}h,h) \le \|h\|^2;$$
 (2)

(3) for all $h \in \mathcal{H}$; $z \in D(0; 1)$

$$(\rho - 2) \|h\|^2 + 2\operatorname{Re}\left((I - z\mathbf{T})^{-1}h, h\right) \ge 0.$$
(3)

2. Unitary ρ_n -dilation

We extend the notion of ρ -contractions to a more general setting. More precisely, let $(\rho_n)_{n \in \mathbb{N}}$ be a sequence of nonnegative numbers. We will say that the operator **T** on a complex Hilbert space \mathcal{H} belongs to the class \mathcal{C}_{ρ_n} if, there exists a Hilbert space \mathcal{K} containing \mathcal{H} as a subspace and a unitary operator U such that

$$\mathbf{T}^{n} = \rho_{n} Pr \mathbf{U}^{n}_{|\mathcal{H}} \text{ for all } n \in \mathbb{N}^{*}.$$
(4)

We say in this case that the unitary operator **U** is a ρ_n -dilation for the operator **T** and the operator **T** will be called a ρ_n -contraction.

Remark 2.1.

(1) For any bounded operator **T**, the operator $\frac{\mathbf{T}}{\|\mathbf{T}\|}$ is a contraction and hence admits a unitary dilation. We deduce that,

$$\mathbf{T} \in \mathcal{C}_{\rho_n}$$
 for $\rho_n = \|\mathbf{T}\|^n$ for all $n \in \mathbb{N}$.

We notice at this level that, without additional restrictive assumptions on the sequence $(\rho_n)_{n \in \mathbb{N}}$, there is no hope to construct a reasonable ρ_n -dilation theory. Our goal will be to extend the most useful properties of ρ -contraction to this more general setting.

(2) From Equation 4, for $\mathbf{T} \in \mathcal{C}_{\rho_n}$ with U a ρ_n -dilation, we obtain

$$\|\mathbf{T}^n\| \le \|\rho_n Pr \mathbf{U}_{|\mathcal{H}|}^n\| \le \rho_n.$$

Therefore the condition $\lim_{n\to\infty} (\rho_n)^{\frac{1}{n}} \leq 1$ will ensure that $\sigma(\mathbf{T}) \in \overline{D(0;1)}$. (3) In contrast with the class \mathcal{C}_{ρ} , the class $\mathcal{C}_{(\rho_n)}$ is not stable by powers. However, if $\mathbf{T} \in \mathcal{C}_{\rho_n}$ and $k \geq 1$ is a given integer, we obtain $\mathbf{T}^k \in \mathcal{C}_{\rho_{kn}}$. This latter fact can be seen as a trivial extension of the case $\rho_n = \rho_0$ for every n.

In the remaining part of this paper, we will assume that $(\rho_n)_{n\in\mathbb{N}}$ is a sequence of nonnegative numbers satisfying

$$\lim_{n \to \infty} \left(\rho_n \right)^{\frac{1}{n}} \le 1. \tag{5}$$

We associate with the sequence $(\rho_n)_{n \in \mathbb{N}}$, the following function,

$$\rho(z) = \sum_{n \ge 0} \frac{z^n}{\rho_n}.$$

It is easy to see that condition $\lim_{n\to\infty} (\rho_n)^{\frac{1}{n}} \leq 1$ implies that $\rho \in \mathcal{H}(D)$. Here $\mathcal{H}(D)$ is the set of holomorphic functions on the open unit disc D. Also, the valued-operators function

$$\rho(z\mathbf{T}) = \sum_{n \ge 0} \frac{z^n \mathbf{T}^n}{\rho_n}$$

is well defined and converges in norm for every |z| < 1.

We give next a necessary and sufficient condition to the membership to the class C_{ρ_n} ;

THEOREM 2.2. Let **T** be an operator on a Hilbert space \mathcal{H} and $(\rho_n)_{n \in \mathbb{N}}$ is a sequence of nonnegative numbers. The operator **T** has a ρ_n -dilation if and only if

$$(1 - \frac{2}{\rho_0}) \|h\|^2 + 2\operatorname{Re} \left\langle \rho(z\mathbf{T})(h); h \right\rangle \ge 0 \text{ for all } h \in \mathcal{H}; z \in D(0; 1).$$
(6)

We recall first the next well known lemma from [7, Theorem 7.1] that will be needed in the proof of the previous theorem.

LEMMA 2.3. Let \mathcal{H} be a Hilbert space, G be a multiplicative group and Ψ be an operator valued function $s \in G \mapsto \Psi(s) \in \mathcal{L}(\mathcal{H})$ such that

$$\begin{cases} \Psi(e) = I, \ e \text{ is the identity element of } G \\ \Psi(s^{-1}) = \Psi(s)^* \\ \sum_{s \in G} \sum_{t \in G} (\Psi(t^{-1}s)h(s); h(t)) \ge 0 \end{cases}$$

for finitely non-zero function h(s) from G.

Then, there exists a Hilbert space \mathcal{K} containing \mathcal{H} as a subspace and a unitary representation U of G, such that

$$\Psi(s) = Pr(U(s)) \qquad (s \in G)$$

and

$$\mathcal{K} = \bigvee_{s \in G} U(s) \mathcal{H}$$

Proof of Theorem 2.2. Let **T** be a bounded operator in the class C_{ρ_n} and **U** be the unitary ρ_n -dilation of **T**, given by the expression 4. We have clearly,

$$I + 2\sum_{n\geq 1} z^n \mathbf{U}^n$$
 converges to $(I + z\mathbf{U})(I - z\mathbf{U})^{-1}$

for all complex numbers z such that |z| < 1. And

$$Pr(I+2\sum_{n\geq 1}z^{n}\mathbf{U}^{n})=I+2\sum_{n\geq 1}\frac{z^{n}}{\rho_{n}}\mathbf{T}^{n}.$$

14

By writing,

$$I + 2\sum_{n\geq 1} \frac{z^n}{\rho_n} \mathbf{T}^n = (1 - \frac{2}{\rho_0})I + 2\sum_{n\geq 0} \frac{z^n}{\rho_n} \mathbf{T}^n$$
$$= (1 - \frac{2}{\rho_0})I + 2\rho(z\mathbf{T}),$$

we get

$$Pr((I + z\mathbf{U})(I - z\mathbf{U})^{-1}) = (1 - \frac{2}{\rho_0})I + 2\rho(z\mathbf{T}).$$

On the other hand,

$$\langle (I+z\mathbf{U})k; (I-z\mathbf{U})k \rangle = ||k||^2 + \langle z\mathbf{U}k; k \rangle - \langle k; z\mathbf{U}k \rangle - ||z\mathbf{U}k||^2$$

It follows that for every $k \in \mathcal{K}$, we have

Re
$$\langle (I + z\mathbf{U})k; (I - z\mathbf{U})k \rangle = ||k||^2 - ||z\mathbf{U}k||^2$$

= $||k||^2 - |z|^2 ||k||^2$
= $||k||^2 (1 - |z|^2) \ge 0$ since $|z| < 1$.

Now if we take $h = (I - z\mathbf{U})k$ we will find,

$$\operatorname{Re} \left\langle (I+z\mathbf{U})(I-z\mathbf{U})^{-1}h;h\right\rangle = \operatorname{Re} \left\langle Pr(I+z\mathbf{U})(I-z\mathbf{U})^{-1}h;h\right\rangle$$
$$= \operatorname{Re} \left\langle (1-\frac{2}{\rho_0})h + 2\rho(z\mathbf{T})(h);h\right\rangle,$$

and hence for every $h \in \mathcal{H}$, we obtain

Re
$$\langle (1-\frac{2}{\rho_0})h + 2\rho(z\mathbf{T})(h);h\rangle \ge 0$$

or equivalently,

$$(1 - \frac{2}{\rho_0}) \|h\|^2 + 2\operatorname{Re} \langle \rho(z\mathbf{T})(h); h \rangle \ge 0$$

for every $h \in \mathcal{H}$ and all complex number z such that |z| < 1.

Conversely, let us show that condition (6) implies that the operator **T** belongs to the class C_{ρ_n} . To this aim, assume that (6) is satisfied and take $0 \leq r < 1$ and $0 \leq \phi < 2\pi$. We introduce the next operator valued function

$$Q(r;\phi) = I + \sum_{n \ge 1} \frac{r^n}{\rho_n} (e^{in\phi} \mathbf{T}^n + e^{-in\phi} \mathbf{T}^{*n}).$$

Then $Q(r; \phi)$ converges in the norm operator for every r and ϕ . Moreover, from the inequality 6, we have

$$\langle Q(r;\phi)l;l\rangle \ge 0$$

for every $l \in \mathcal{H}$. Therefore

$$J = \frac{1}{2\pi} \int_0^{2\pi} \langle Q(r;\phi) h(\phi); h(\phi) \rangle d\phi \ge 0$$

for every $h(\phi) = \sum_{-\infty}^{+\infty} h_n e^{-in\phi}$ where $(h_n)_{n \in \mathbb{Z}}$ is a sequence with only finite number of nonzero elements in \mathcal{H} . We have

$$J =: \sum_{-\infty}^{+\infty} \|h_n\|^2 + \sum_{m} \sum_{n>m} \frac{r^{n-m}}{\rho_{n-m}} \langle \mathbf{T}^{n-m} h_n; h_m \rangle + \sum_{m} \sum_{n$$

for every $0 \le r < 1$. Now taking $r \to 1^-$ will imply

$$\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \langle \Psi_{(\rho_n)}(n-m)h_n; h_m \rangle \ge 0,$$

where $\Psi_{(\rho_n)}: \mathbb{Z} \to \mathcal{L}(\mathcal{H})$ is defined by $\Psi_{(\rho_n)}(0) = I$, $\Psi_{(\rho_n)}(n) = \frac{1}{\rho_n} \mathbf{T}^n$ and

 $\Psi_{(\rho_n)}(-n) = \frac{1}{\rho_n} \mathbf{T}^{*n} \text{ for every } n > 0.$ It is immediate that $\Psi_{(\rho_n)}(n)$ is nonnegative on the additive group \mathbb{Z} of integers. Using Lemma 2.3, there exists a unitary operator U on a Hilbert space \mathcal{K} containing \mathcal{H} as a subspace and such that $\Psi_{(\rho_n)}(n) = Pr\mathbf{U}(n)$ for all $n \in \mathbb{Z}$.

Therefore for all $n \in \mathbb{N}^*$

$$\mathbf{T}^n = \rho_n Pr \mathbf{U}_{|\mathcal{H}|}^n.$$

The proof is completed.

Remark 2.4. In the case where $(\rho_n)_{n\in\mathbb{N}}$ is a constant sequence, that is $\rho_n = \rho \text{ for all } n \in \mathbb{N} \text{ with } \rho > 0, \text{ we obtain}$

$$\rho(z) = \frac{1}{1-z}$$

and hence, the inequality 6 becomes

$$(1-\frac{2}{\rho})||h||^2 + 2\text{Re }\langle (I-z\mathbf{T})^{-1}h;h\rangle \ge 0$$

for all $h \in \mathcal{H}$ and $z \in \mathbb{D}$. We substitute h by $l = (I - z\mathbf{T})^{-1}h$ to retrieve relation 3 and by Theorem (2.1) we obtain \mathbf{T} is a ρ -contraction.

The next two corollaries are immediate consequences of Equation (6) and are related to analogous results of ρ -contraction.

COROLLARY 2.5. Let $\mathbf{T} \in \mathcal{C}_{\rho_n}$ and M a \mathbf{T} -invariant subspace. Then $\mathbf{T}_{|M} \in \mathcal{C}_{\rho_n}$.

Proof. It suffices to see that Equation 6 is close to restrictions.

COROLLARY 2.6. Let **T** be in the class C_{ρ_n} and $r \ge 1$ be a real number, then **T** is in the class $C_{r\rho_n}$.

Proof. The inequality 6 is equivalent to

$$(\rho_0 - 2) \|h\|^2 + 2\rho_0 \operatorname{Re} \langle \rho(z\mathbf{T})(h); h \rangle \ge 0.$$

Pluging $r\rho_n$ instead of ρ_n , we get

$$(r\rho_0 - 2) \|h\|^2 + 2r\rho_0 \operatorname{Re} \left\langle \frac{1}{r} \rho(z\mathbf{T})(h); h \right\rangle \ge 0,$$

and thus

$$(1-\frac{2}{r\rho_0})\|h\|^2 + 2\operatorname{Re}\left\langle\frac{1}{r}\rho(z\mathbf{T})(h);h\right\rangle \ge 0.$$

Therefore $\mathbf{T} \in \mathcal{C}_{(r\rho_n)}$.

We also have,

PROPOSITION 2.7. Let T be a bounded operator on a Hilbert space \mathcal{H} . Then for every $\alpha > 2$, there exists $\Gamma(\alpha) > 0$ such that the operator T belongs to $\mathcal{C}_{(\rho_n)}$, where ρ_n is a sequence given by $\rho_n = \Gamma(\alpha) . ||T^n|| (1 + n^{\alpha})$.

Proof. Let $\Gamma > 0$ and $\rho_{\alpha}(z) = \sum_{n \ge 1} \frac{z^n}{\Gamma . \|T^n\|(1+n^{\alpha})}$ for all $|z| \le 1$. Then

$$\rho_{\alpha}(z\mathbf{T}) = \sum_{n \ge 1} \frac{z^{n} \mathbf{T}^{n}}{\Gamma . \|T^{n}\|(1+n^{\alpha})} \text{ for all } |z| \le 1.$$

For every vector h in \mathcal{H} , we set

$$A(z) = \langle \rho_{\alpha}(zT)h; h \rangle$$

$$\begin{aligned} |A(z)| &= \big| \sum_{n \ge 0} \langle \frac{z^n}{\Gamma . \|T^n\| (1+n^\alpha)} T^n h; h \rangle \big| \\ &\leq \sum_{n \ge 0} |\frac{\langle T^n h; h \rangle}{\Gamma . \|T^n\| (1+n^\alpha)} z^n|. \end{aligned}$$

Setting $a_n = \frac{\langle T^n h; h \rangle}{\Gamma \cdot ||T^n||(1+n^{\alpha})}$, we have

$$|a_n| \le \frac{\|T^n\| \|h\|^2}{\Gamma \|T^n\| (1+n^{\alpha})} = \frac{\|h\|^2}{\Gamma (1+n^{\alpha})} < \infty.$$

We conclude that A(z) is holomorphic in the unit disc and continuous on the boundary. Since the maximum is attained of the circle |z| = 1, we obtain

$$A(z)| = |\sum_{n \ge 0} a_n z^n|$$

$$\leq \sum_{n \ge 0} |a_n| |z|^n = \sum_{n \ge 1} |a_n|$$

$$\leq \sum_{n \ge 0} \frac{\|h\|^2}{\Gamma \cdot (1+n^{\alpha})}$$

Now, since $\sum_{n\geq 0} \frac{1}{1+(n)^{\alpha}}$ is a convergent sequence $(\alpha > 2)$, then choosing $\Gamma = 2 \sum_{n\geq 0} \frac{1}{1+n^{\alpha}}$ will leads to

$$|A(z)| \le \frac{1}{2} \|h\|^2,$$

and then

$$||h||^2 + 2\operatorname{Re} \langle \rho_{\alpha}(zT)h; h \rangle \geq 0$$
 for all $h \in \mathcal{H}$ and $z \in D$.

Finally , Inequality (6) is satisfied and the operator T belongs to the class $\mathcal{C}_{(\rho_n)}$.

3. The Bergmann shift

We devote this section to the membership of the Bergmann shift to the class $C_{(\rho_n)}$ for some suitable sequence ρ_n . Let \mathcal{H} be a Hilbert space and $(e_i)_{i \in \mathbb{N}^*}$ be an orthonormal basis of \mathcal{H} . Recall that for a given sequence $(\omega_n)_{n \in \mathbb{N}}$ of non negative numbers; the weighted shift S_{ω} associated with ω_n is defined on the

18

basis by $S_{\omega}(e_n) = \omega_n e_{n+1}$. A detailed study on weighted shifts can be found in the survey [9]. On the other hand; the membership of weighted shifts to the class C_{ρ} is investigated in [3].

The Bergman shift is the weighted shift defined on the basis by the expression $Te_n = w_n e_{n+1}$, where

$$w_n = \frac{n+1}{n}$$
 for all integer $n \in \mathbb{N}^*$.

It is easy to see that,

- $\|\mathbf{T}\| = \sup(w_n)_{n \in \mathbb{N}^*} = 2.$
- The weight $(w_n)_{n \in \mathbb{N}^*}$ is decreasing and then

$$\|\mathbf{T}^n\| = \prod_{i=1}^n w_i = n+1.$$

In particular T is not power bounded and hence does not belong to the class C_{ρ} for any $\rho > 0$.

We have

PROPOSITION 3.1. Let T be the Bergmann shift and ρ_n be the sequence given by $\rho_n = n^{\alpha}$ for some $\alpha > 0$. Then for every $\alpha > 2$, there exists $\Gamma(\alpha)$ such that $T \in \mathcal{C}_{\Gamma(\alpha)\rho_n}$.

Proof. Let $\Gamma > 0$ and $\rho_{\alpha}(z) = \sum_{n \ge 1} \frac{z^n}{\Gamma n^{\alpha}}$ for all $|z| \le 1$ in that $\rho(z\mathbf{T}) = \sum_{n \ge 1} \frac{z^n \mathbf{T}^n}{\Gamma n^{\alpha}}$ for all $|z| \le 1$.

We set, $S = \rho(z\mathbf{T})$ and let x be a vector in \mathcal{H} . Therefore

$$S(x) = \rho(z\mathbf{T})(x) = \sum_{i \ge 1} \frac{z^n \mathbf{T}^n x}{\Gamma n^{\alpha}}$$

Writing $x = \sum_{i \ge 1} x_i e_i$, we get

$$\mathcal{S}(x) = \sum_{i \ge 1} \langle \mathcal{S}(x); e_i \rangle e_i = \sum_{i \ge 1} (\sum_{j \ge 1} x_j \langle \mathcal{S}e_j; e_i \rangle) e_i,$$

and

$$\begin{split} \langle \mathcal{S}e_j; e_i \rangle &= \langle \sum_{n \ge 1} \frac{z^n \mathbf{T}^n}{\Gamma n^\alpha} (e_j); e_i \rangle = \sum_{n \ge 1} \frac{z^n}{\Gamma n^\alpha} \langle \mathbf{T}^n(e_j); e_i \rangle \\ &= \sum_{n \ge 1} \frac{z^n}{\Gamma n^\alpha} \langle (\prod_{p=j}^{j+n-1} w_p) e_{j+n}; e_i \rangle. \end{split}$$

It follows that

$$\langle \mathcal{S}e_j; e_i \rangle = \frac{z^{i-j}}{\Gamma} (i-j)^{\alpha} \prod_{p=j}^{i-1} w_p,$$

and then

$$S(x) = \sum_{i \ge 2} (\sum_{j=1}^{i-1} (\prod_{p=j}^{i-1} w_p) x_j \frac{z^{i-j}}{\Gamma(i-j)^{\alpha}}) e_i.$$

For the Bergman shift, we have $\prod_{p=j}^{i-1} w_p = \frac{i}{j}$ and thus

$$\rho(z\mathbf{T})(x) = \sum_{i\geq 2} \left(\sum_{j=1}^{i-1} \frac{i}{\Gamma j(i-j)^{\alpha}} x_j z^{i-j}\right) e_i.$$

Finally, we conclude that the inequality (6) is equivalent to

$$\sum_{i \ge 1} |x_i|^2 + 2\operatorname{Re}\left(\sum_{i \ge 2} \sum_{j=1}^{i-1} \frac{i}{\Gamma j(i-j)^{\alpha}} x_i x_j z^{i-j}\right) \ge 0.$$

If we consider the function

$$A(z) = 2\sum_{i\geq 2} \sum_{j=1}^{i-1} \frac{i}{\Gamma j (i-j)^{\alpha}} x_i x_j z^{i-j}$$

and we write n = i - j, we will obtain,

$$A(z) = 2\sum_{i\geq 2}\sum_{n=1}^{i-1} \frac{i}{\Gamma(i-n)\Gamma n^{\alpha}} x_i x_{i-n} z^n = 2\sum_{n\geq 1}\sum_{i\geq n+1} \frac{i}{\Gamma(i-n)n^{\alpha}} x_i x_{i-n} z^n.$$

We denote by $(\hat{A}(n))_n = (a_n)_{n \in \mathbb{N}^*}$ the sequence of coefficients of A,

$$a_n = \frac{1}{2} \sum_{i \ge n+1} \frac{i}{\Gamma n^{\alpha}(i-n)} x_i x_{i-n}$$

20

Since $\frac{i}{n(i-n)} = \frac{1}{n} + \frac{1}{i-n} \le 2$ for every $i \ge n+1$, we obtain

$$|a_{n}| = \left|\frac{1}{2}\sum_{i\geq n+1}\frac{i}{\Gamma n^{\alpha}(i-n)}x_{i}x_{i-n}\right| \\ \leq \frac{1}{\Gamma n^{\alpha-1}}\sum_{i\geq n+1}|x_{i}x_{i-n}| \leq \frac{1}{\Gamma n^{\alpha-1}}\sum_{i\geq n+1}|x_{i}x_{i-n}|;$$

and by the Cauchy-Schwartz inequality, it follows,

$$|a_n| \le \frac{1}{\Gamma n^{\alpha - 1}} \|x\|^2 \le \infty.$$

We deduce that A(z) is holomorphic in the open unit disc and continuous on the closed unit disc. As the maximum is attained on the circle |z| = 1, we have

$$|A(z)| = \left| \frac{1}{2} \sum_{n \ge 1} \left(\sum_{i \ge n+1} \frac{i}{\frac{1}{\Gamma n^{\alpha}} (i-n)} x_i x_{i-n} \right) z^n \right|$$

$$\le \sum_{n \ge 1} |a_n| |z|^n = \sum_{n \ge 1} |a_n|.$$

Now, since $\sum_{n\geq 1} \frac{1}{(n)^{\alpha-1}}$ is a convergente sequence $(\alpha \geq 2)$, choosing $\Gamma = \sum_{n\geq 1} \frac{1}{(n)^{\alpha-1}}$ would lead us to

$$|A(z)| \le ||x||^2 = \sum_{i \ge 1} |x_i|^2.$$

We derive that,

$$|\text{Re}(A(z))| \le |A(z)| \le ||x||^2 = \sum_{i\ge 1} |x_i|^2,$$

and hence

$$\left|\frac{1}{2} \operatorname{Re}\left(\sum_{i \ge 2} \sum_{j=1}^{i-1} \frac{i}{j\Gamma(i-j)^{\alpha}} x_i x_j z^{i-j}\right)\right| \le \sum_{i \ge 1} |x_i|^2.$$

Therefore for all $x \in \mathcal{H}$ and a complex z such that $|z| \leq 1$ we have

$$\sum_{i \ge 1} |x_i|^2 + 2\operatorname{Re}\left(\sum_{i \ge 2} \sum_{j=1}^{i-1} \frac{i}{j\Gamma(i-j)^{\alpha}} x_i x_j z^{i-j}\right) \ge 0.$$

We conclude that the weighted shift $\{w_n\}$ is a ρ_n -contraction with $\rho_n = \Gamma n^{\alpha}$.

Remark 3.2. We claim that for every $\alpha \geq 1$ the Bergmann shift belongs to a class $\mathcal{C}_{\infty,n^{\alpha}}$. A proof is not available for this claim; however it is motivated by the incomplete computations below.

Let us set, for exemple, $\rho_n = 4.n$ for all integer $n \ge 1$, Let \mathcal{H} be a Hilbert space and $(e_i)_{i \in \mathbb{N}^*}$ be a an orthonormal basis for the Hilbert space \mathcal{H} . Consider the Bergmann shift defined on the basis by $\mathbf{T}e_n = \frac{n+1}{n}e_{n+1}$ for all $n \in \mathbb{N}^*$. Then as in the proof of the previous proposition, we show that inequality (6) is equivalent to the next

$$\sum_{i\geq 1} |x_i|^2 + \operatorname{Re}\left(\sum_{i\geq 2} \sum_{j=1}^{i-1} \frac{i}{2j(i-j)} x_i x_j z^{i-j}\right) \ge 0.$$
(7)

We write

$$\sum_{i\geq 1} |x_i|^2 + \operatorname{Re}\left(\sum_{i\geq 2} \sum_{j=1}^{i-1} \frac{i}{2j(i-j)} x_i x_j z^{i-j}\right) \ge \sum_{i\geq 1} |x_i|^2 - \sum_{i\geq 2} \sum_{j=1}^{i-1} \frac{i}{2j(i-j)} |x_i| |x_j|,$$

and

$$\sum_{i\geq 1} |x_i|^2 + \sum_{i\geq 2} \sum_{j=1}^{i-1} \frac{i}{2j(i-j)} |x_i| |x_j| = \sum_{i,j\geq 1} a_{i,j} |x_i| |x_j|,$$

with

$$\begin{cases} a_{i;i} = 1 & \text{for all } i \ge 1\\ a_{i;j} = \frac{i}{4j|(i-j)|} & \text{for all } j \neq i \end{cases}$$

Then to show inequality (7), it suffices to prove that the infinite symmetric matrix with the real entries $M = [a_{i;j}]$ is nonnegative. To this aim, we compute the determinant of the first $n \times n$ -corner, to check if it is nonnegative. An attempt on classical softwares allow to show this fact for $n \leq 150$. It is hence reasonable to conjecture that the Bergman shift belongs to $\mathcal{C}_{\infty,n}$.

References

- C.A. BERGER, A strange dilation theorem, Notices Amer. Math. Soc. 12 (1965), 590.
- [2] G. CASSIER, H. ZEROUALI, Operator matrices in class C_ρ, Linear Algebra and its Applications 420 (1-2) (2007), 361–376.
- [3] G. ECKSTEIN, A. RACZ, Weighted shifts of class C_ρ, Acta Sci. Math. (Szeged) 35 (1973), 187–194.

- [4] G. ECKSTEIN, Sur les opérateurs de la classe C_{ρ} , Acta Sci. Math.(Szeged) 33 (3-4) (1972), 349–352.
- [5] H. MAHZOULI, Vecteurs cycliques, opérateurs de Toeplitz généralisés et régularité des algèbres de Banach, Thèse, Université Claude Bernard, Lyon 1, 2005.
- [6] B. SZ.-NAGY, Sur les contractions de l'éspace de Hilbert, Acta Sci. Math. (Szeged) 15 (1-1) (1953), 87-92.
- [7] B. SZ.-NAGY, C. FOIAS, "Harmonic Analysis of Operators on Hilbert Space", North-Holland, Amsterdam, 1970.
- [8] B. SZ NAGY, C. FOIAS, On certain class of power bounded operators in Hilbert space, Acta. Sci. Math. (Szeged) 27 (1-2) (1996), 17-25.
- [9] A.L. SHIELDS, Weighted shift operators and analytic function theory, in "Topics in Operator Theory", Mathematical Survey and Monograph 13, Amer. Math. Soc., Providence, RI, 1974, 49–128.