On LS-Category of a Family of Rational Elliptic Spaces II

KHALID BOUTAHIR, YOUSSEF RAMI

Département de Mathématiques et Informatique, Faculté des Sciences, Université My Ismail, B. P. 11 201 Zitoune, Meknès, Morocco khalid.boutahir@edu.umi.ac.ma y.rami@fs-umi.ac.ma

Presented by Antonio M. Cegarra

Received June 24, 2016

Abstract: Let X be a finite type simply connected rationally elliptic CW-complex with Sullivan minimal model $(\Lambda V, d)$ and let $k \geq 2$ the biggest integer such that $d = \sum_{i\geq k} d_i$ with $d_i(V) \subseteq \Lambda^i V$. If $(\Lambda V, d_k)$ is moreover elliptic then $\operatorname{cat}(\Lambda V, d) = \operatorname{cat}(\Lambda V, d_k) = \dim(V^{\operatorname{even}})(k-2) + \dim(V^{\operatorname{odd}})$. Our work aims to give an almost explicit formula of LS-category of such spaces in the case when $k \geq 3$ and when $(\Lambda V, d_k)$ is not necessarily elliptic. Key words: Elliptic spaces, Lusternik-Schnirelman category, Toomer invariant. AMS Subject Class. (2010): 55P62, 55M30.

1. INTRODUCTION

The Lusternik-Schirelmann category (c.f. [7]), $\operatorname{cat}(X)$, of a topological space X is the least integer n such that X can be covered by n + 1 open subsets of X, each contractible in X (or infinity if no such n exists). It is an homotopy invariant (c.f. [3]). For X a simply connected CW complex, the rational L-S category, $\operatorname{cat}_0(X)$, introduced by Félix and Halperin in [2] is given by $\operatorname{cat}_0(X) = \operatorname{cat}(X_{\mathbb{O}}) \leq \operatorname{cat}(X)$.

In this paper, we assume that X is a simply connected topological space whose rational homology is finite dimensional in each degree. Such space has a Sullivan minimal model $(\Lambda V, d)$, i.e. a commutative differential graded algebra coding both its rational homology and homotopy (cf. §2).

By [1, Definition 5.22] the rational Toomer invariant of X, or equivalently of its Sullivan minimal model, denoted by $e_0(\Lambda V, d)$, is the largest integer s for which there is a non trivial cohomology class in $H^*(\Lambda V, d)$ represented by a cocycle in $\Lambda^{\geq s}V$, this coincides in fact with the Toomer invariant of the fundamental class of $(\Lambda V, d)$. As usual, $\Lambda^s V$ denotes the elements in ΛV of "wordlength" s. For more details [1], [3] and [14] are standard references.

In [4] Y. Felix, S. Halperin and J. M. Lemaire showed that for Poincaré duality spaces, the rational L-S category coincides with the rational Toomer

invariant $e_0(X)$, and in [9] A. Murillo gave an expression of the fundamental class of $(\Lambda V, d)$ in the case where $(\Lambda V, d)$ is a pure model (cf. §2).

Let then $(\Lambda V, d)$ be a Sullivan minimal model. The differential d is decomposable, that is, $d = \sum_{i>k} d_i$, with $d_i(V) \subseteq \Lambda^i V$ and $k \ge 2$.

Recall first that in [8] the authors gave the explicit formula $\operatorname{cat}(\Lambda V, d) = \dim V^{\operatorname{odd}} + (k-2) \dim V^{\operatorname{even}}$ in the case when $(\Lambda V, d_k)$ is also elliptic.

The aim of this paper is to consider another class of elliptic spaces whose Sullivan minimal model $(\Lambda V, d)$ is such that $(\Lambda V, d_k)$ is not necessarily elliptic. To do this we filter this model by

$$F^p = \Lambda^{\ge (k-1)p} V = \bigoplus_{i=(k-1)p}^{\infty} \Lambda^i V.$$
(1)

This gives us the main tool in this work, that is the following convergent spectral sequence (cf. \S 3):

$$H^{p,q}(\Lambda V, \delta) \Rightarrow H^{p+q}(\Lambda V, d).$$
 (2)

Notice first that, if dim $(V) < \infty$ and $(\Lambda V, \delta)$ has finite dimensional cohomology, then $(\Lambda V, d)$ is elliptic. This gives a new family of rationally elliptic spaces.

In the first step, we shall treat the case under the hypothesis assuming that $H^N(\Lambda V, \delta)$ is one dimensional, being N the formal dimension of $(\Lambda V, d)$ (cf. [5]). For this, we will combine the method used in [8] and a spectral sequence argument using (2). We then focus on the case where dim $H^N(\Lambda V, \delta) \geq 2$. Our first result reads:

THEOREM 1. If $(\Lambda V, d)$ is elliptic, $(\Lambda V, d_k)$ is not elliptic and $H^N(\Lambda V, \delta) = \mathbb{Q}.\alpha$ is one dimensional, then

$$\operatorname{cat}_0(X) = \operatorname{cat}(\Lambda V, d) = \sup\{s \ge 0, \ \alpha = [\omega_0] \text{ with } \omega_0 \in \Lambda^{\ge s}V\}.$$

Let us explain in what follow, the algorithm that gives the first inequality,

$$\operatorname{cat}(\Lambda V, d) \ge \sup\{s \ge 0, \ \alpha = [\omega_0] \text{ with } \omega_0 \in \Lambda^{\ge s} V\} := r.$$

i) Initially we fix a representative $\omega_0 \in \Lambda^{\geq r} V$ of the fundamental class α with r being the largest s such that $\omega_0 \in \Lambda^{\geq s} V$.

ii) A straightforward calculation gives successively:

$$\omega_0 = \omega_0^0 + \omega_0^1 + \dots + \omega_0^l$$

with

$$\omega_0^i = (\omega_0^{i,0}, \omega_0^{i,1}, \dots, \omega_0^{i,k-2}) \in \Lambda^{(k-1)(p+i)} V \oplus \Lambda^{(k-1)(p+i)+1} V \\ \oplus \dots \oplus \Lambda^{(k-1)(p+i)+k-2} V.$$

Using $\delta(\omega_0) = 0$ we obtain $d\omega_0 = a_2^0 + a_3^0 + \dots + a_{t+l}^0$ with $a_i^0 = (a_i^{0,0}, a_i^{0,1}, \dots, a_i^{0,k-2}) \in \Lambda^{(k-1)(p+i)} V \oplus \Lambda^{(k-1)(p+i)+1} V$ $\oplus \cdots \oplus \Lambda^{(k-1)(p+i)+k-2}V.$

iii) We take t the largest integer satisfying the inequality:

$$t \le \frac{1}{2(k-1)} \left(N - 2(k-1)(p+l) - 2k + 5 \right).$$

Since $d^2 = 0$, it follows that $a_2^0 = \delta(b_2)$ for some

$$b_2 \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)-(k-1)+j} V.$$

- iv) We continue with $\omega_1 = \omega_0 b_2$.
- v) By the imposition iii), the algorithm leads to a representative $\omega_{t+l-1} \in$ $\Lambda^{\geq r}V$ of the fundamental class of $(\Lambda V, d)$ and then $e_0(\Lambda V, d) \geq r$.

Now, dim $(V) < \infty$ imply dim $H^N(\Lambda V, \delta) < \infty$. Notice also that the filtration (1) induces on cohomology a graduation such that $H^N(\Lambda V, \delta) =$ $\oplus_{p+q=N} H^{p,q}(\Lambda V, \delta)$. There is then a basis $\{\alpha_1, ..., \alpha_m\}$ of $H^N(\Lambda V, \delta)$ with $\alpha_j \in H^{p_j,q_j}(\Lambda V, \delta), \ (1 \leq j \leq m).$ Denote by $\omega_{0j} \in \Lambda^{\geq r_j} V$ a representative of the generating class α_j with r_j being the largest s_j such that $\omega_{0j} \in \Lambda^{\geq s_j} V$. Here p_i and q_j are filtration degrees and $r_i \in \{p_i(k-1), \dots, p_i(k-1) + (k-2)\}$.

The second step in our program is given as follow:

THEOREM 2. If $(\Lambda V, d)$ is elliptic and dim $H^N(\Lambda V, \delta) = m$ with basis $\{\alpha_1,\ldots,\alpha_m\}$, then, there exists a unique p_j , such that

$$\operatorname{cat}_0(X) = \sup\{s \ge 0, \ \alpha_j = [\omega_{0j}] \text{ with } \omega_{0j} \in \Lambda^{\ge s}V\} := r_j.$$

Remark 1. The previous theorem gives us also an algorithm to determine LS-category of any elliptic Sullivan minimal model $(\Lambda V, d)$. Knowing the largest integer $k \geq 2$ such that $d = \sum_{i\geq k} d_i$ with $d_i(V) \subseteq \Lambda^i V$ and the formal dimension N (this one is given in terms of degrees of any basis elements of V), one has to check for a basis $\{\alpha_1, \ldots, \alpha_m\}$ of $H^N(\Lambda V, \delta)$ (which is finite dimensional since dim $(V) < \infty$). The NP-hard character of the problem into question, as it is proven by L. Lechuga and A. Murillo (cf [12]), sits in the determination of the unique $j \in \{1, \ldots, m\}$ for which a represent cocycle ω_{0j} of α_j survives to reach the E_∞ term in the spectral sequence (2).

2. Basic facts

We recall here some basic facts and notation we shall need.

A simply connected space X is called *rationally elliptic* if dim $H^*(X, \mathbb{Q}) < \infty$ and dim $(X) \otimes \mathbb{Q} < \infty$.

A commutative graded algebra H is said to have formal dimension N if $H^p = 0$ for all p > N, and $H^N \neq 0$. An element $0 \neq \omega \in H^N$ is called a fundamental class.

A Sullivan algebra ([3]) is a free commutative differential graded algebra (cdga for short) (ΛV , d) (where $\Lambda V = \text{Exterior}(V^{\text{odd}}) \otimes \text{Symmetric}(V^{\text{even}})$) generated by the graded K-vector space $V = \bigoplus_{i=0}^{i=\infty} V^i$ which has a well ordered basis { x_{α} } such that $dx_{\alpha} \in \Lambda V_{<\alpha}$. Such algebra is said minimal if $\deg(x_{\alpha}) < \deg(x_{\beta})$ implies $\alpha < \beta$. If $V^0 = V^1 = 0$ this is equivalent to saying that $d(V) \subseteq \bigoplus_{i=2}^{i=\infty} \Lambda^i V$.

A Sullivan model ([3]) for a commutative differential graded algebra (A,d) is a quasi-isomorphism (morphism inducing isomorphism in cohomology) $(\Lambda V, d) \longrightarrow (A, d)$ with source, a Sullivan algebra. If $H^0(A) = K$, $H^1(A) = 0$ and dim $(H^i(A, d)) < \infty$ for all $i \ge 0$, then, [6, Th.7.1], this minimal model exists. If X is a topological space any minimal model of the polynomial differential forms on X, $A_{PL}(X)$, is said a Sullivan minimal model of X.

 $(\Lambda V, d)$ (or X) is said *elliptic*, if both V and $H^*(\Lambda V, d)$ are finite dimensional graded vector spaces (see for example [3]).

A Sullivan minimal model $(\Lambda V, d)$ is said to be pure if $d(V^{\text{even}}) = 0$ and $d(V^{\text{odd}}) \subset \Lambda V^{\text{even}}$. For such one, A. Murillo [9] gave an expression of a cocycle representing the fundamental class of $H(\Lambda V, d)$ in the case where $(\Lambda V, d)$ is elliptic. We recall this expression here:

Assume dim $V < \infty$, choose homogeneous basis $\{x_1, \ldots, x_n\}, \{y_1, \ldots, y_m\}$

of V^{even} and V^{odd} respectively, and write

$$dy_j = a_j^1 x_1 + a_j^2 x_2 + \dots + a_j^{n-1} x_{n-1} + a_j^n x_n, \quad j = 1, 2, \dots, m,$$

where each a_j^i is a polynomial in the variables $x_i, x_{i+1}, \ldots, x_n$, and consider the matrix,

$$A = \begin{pmatrix} a_1^1 & a_1^2 & \dots & a_1^n \\ a_2^1 & a_2^2 & \dots & a_2^n \\ \vdots & \vdots & & \vdots \\ a_m^1 & a_m^2 & \dots & a_m^n \end{pmatrix}.$$

For any $1 \leq j_1 < \cdots < j_n \leq m$, denote by $P_{j_1...j_n}$ the determinant of the matrix of order n formed by the columns i_1, i_2, \ldots, i_n of A:

Then (see [9]) if dim $H^*(\Lambda V, d) < \infty$, the element $\omega \in \Lambda V$,

$$\omega = \sum_{1 \le j_1 < \dots < j_n \le m} (-1)^{j_1 + \dots + j_n} P_{j_1 \dots j_n} y_1 \dots \hat{y}_{j_1} \dots \hat{y}_{j_n} \dots y_m,$$
(3)

is a cocycle representing the fundamental class of the cohomology algebra.

3. Our spectral sequence

Let $(\Lambda V, d)$ be a Sullivan minimal model, where $d = \sum_{i \ge k} d_i$ with $d_i(V) \subseteq \Lambda^i V$ and $k \ge 2$. We first recall the filtration given in the introduction:

$$F^p = \Lambda^{\ge (k-1)p} V = \bigoplus_{i=(k-1)p}^{\infty} \Lambda^i V.$$
(4)

 F^p is preserved by the differential d and satisfies $F^p(\Lambda V) \otimes F^q(\Lambda V) \subseteq F^{p+q}(\Lambda V)$, $\forall p, q \geq 0$, so it is a filtration of differential graded algebras. Also, since $F^0 = \Lambda V$ and $F^{p+1} \subseteq F^p$ this filtration is decreasing and bounded, so it induces a convergent spectral sequence. Its 0^{th} -term is

$$E_0^{p,q} = \left(\frac{F^p}{F^{p+1}}\right)^{p+q} = \left(\frac{\Lambda^{\ge (k-1)p}V}{\Lambda^{\ge (k-1)(p+1)}V}\right)^{p+q}.$$

Hence, we have the identification:

$$E_0^{p,q} = \left(\Lambda^{p(k-1)}V \oplus \Lambda^{p(k-1)+1}V \oplus \dots \oplus \Lambda^{p(k-1)+k-2}V\right)^{p+q},\tag{5}$$

with the product given by:

$$(u_0, u_1, \dots, u_{k-2}) \otimes (u'_0, u'_1, \dots, u'_{k-2}) = (v_0, v_1, \dots, v_{k-2})$$

$$(u_0, u_1, \dots, u_{k-2}) \quad (u'_0, u'_1, \dots, u'_{k-2}) \in E^{p,q} \text{ with } v_1 = \sum_{k=1}^{n} u_{k-2}$$

for all $(u_0, u_1, \ldots, u_{k-2})$, $(u'_0, u'_1, \ldots, u'_{k-2}) \in E_0^{p,q}$ with $v_m = \sum_{i+j=m} u_i u'_j$ and $m = 0, \ldots, k-2$.

The differential on E_0 is zero, hence $E_1^{p,q} = E_0^{p,q}$ and so the identification above gives the following diagram:

with δ defined as follows,

$$\delta(u_0, u_1, \dots, u_{k-2}) = (w_k, w_{k+1}, \dots, w_{2k-2}) \quad \text{with} \quad w_{k+j} = \sum_{\substack{i+i'=j\\i'=0,\dots,k-2}} d_{k+i} u_{i'}.$$

Let $E_1^p = E_1^{p,*} = \bigoplus_{q \ge 0} E_1^{p,q}$ and $E_1^* = \bigoplus_{p \ge 0} E_1^{p,*} = \Lambda V$ as a graded vector space. In this general situation, the 1st-term is the graded algebra ΛV provided with a differential δ , which is not necessarily a derivation on the set V of generators. That is, $(\Lambda V, \delta)$ is a commutative differential graded algebra, but it is not a Sullivan algebra. This gives, consequently, our spectral sequence:

$$E_2^{p,q} = H^{p,q}(\Lambda V, \delta) \Rightarrow H^{p+q}(\Lambda V, d).$$
(6)

Once more, using this spectral sequence, the algorithm completed by proves of claims that will appear, will give the appropriate generating class of $H^N(\Lambda V, \delta)$ that survives to the ∞ term. Accordingly, the explicit formula of LS category for this general case, is expressed in terms of the greater filtering degree of a represent of this class.

4. Proof of the main results

4.1. PROOF OF THEOREM 1. Recall that $(\Lambda V, d)$ is assumed elliptic, so that, $\operatorname{cat}(\Lambda V, d) = e_0(\Lambda V, d)$ [4]. Notice also that the subsequent notations imposed us sometimes to replace a sum by some tuple and vice-versa.

4.1.1. The first inequality. In what follows, we put:

 $r = \sup\{s \ge 0, \ \alpha = [\omega_0] \text{ with } \omega_0 \in \Lambda^{\ge s} V\}.$

Denote by p the least integer such that $p(k-1) \leq r < (p+1)(k-1)$ and let then $\omega_0 \in \Lambda^{\geq r} V$. We have

$$\omega_0 \in (\Lambda^{(k-1)p}V \oplus \cdots \oplus \Lambda^{(k-1)p+k-2}V) \\ \oplus (\Lambda^{(k-1)p+k-1}V \oplus \cdots \oplus \Lambda^{(k-1)p+2k-3}V) \\ \oplus \cdots$$

Since $|\omega_0| = N$ and dim $V < \infty$, there is an integer l such that

$$\omega_0 = \omega_0^0 + \omega_0^1 + \dots + \omega_0^l$$

with $\omega_0^0 \neq 0$ and $\forall i = 0, \dots, l$,

$$\omega_0^i = (\omega_0^{i,0}, \omega_0^{i,1}, \dots, \omega_0^{i,k-2}) \in \Lambda^{(k-1)(p+i)} V \oplus \dots \oplus \Lambda^{(k-1)(p+i)+k-2} V.$$

We have successively:

$$\begin{split} \delta(\omega_0^i) &= \delta\left(\omega_0^{i,0}, \omega_0^{i,1}, \dots, \omega_0^{i,k-2}\right) \\ &= \left(d_k \omega_0^{i,0}, \sum_{i'+i''=1} d_{k+i'} \omega_0^{i,i''}, \sum_{i'+i''=2} d_{k+i'} \omega_0^{i,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} \omega_0^{i,i''}\right), \\ \delta(\omega_0) &= \sum_{i=0}^l \delta\left(\omega_0^{i,0}, \omega_0^{i,1}, \dots, \omega_0^{i,k-2}\right) \\ &= \sum_{i=0}^l \left(d_k \omega_0^{i,0}, \sum_{i'+i''=1} d_{k+i'} \omega_0^{i,i''}, \sum_{i'+i''=2} d_{k+i'} \omega_0^{i,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} \omega_0^{i,i''}\right) \end{split}$$

Also, we have $d\omega_0 = d\omega_0^0 + d\omega_0^1 + \dots + d\omega_0^l$, with:

$$\begin{aligned} d\omega_0^0 &= d\left(\omega_0^{0,0}, \omega_0^{0,1}, \dots, \omega_0^{0,k-2}\right) \\ &= \left(d_k \omega_0^{0,0}, \sum_{i'+i''=1} d_{k+i'} \omega_0^{0,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} \omega_0^{0,i''}\right) + \cdots \\ &\in \left(\bigoplus_{k'=k-1}^{2k-3} \Lambda^{(k-1)p+k'} V\right) \oplus \cdots \\ d\omega_0^1 &= d\left(\omega_0^{1,0}, \omega_0^{1,1}, \dots, \omega_0^{1,k-2}\right) \\ &= \left(d_k \omega_0^{1,0}, \sum_{i'+i''=1} d_{k+i'} \omega_0^{1,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} \omega_0^{1,i''}\right) + \cdots \\ &\in \left(\bigoplus_{k'=2k-2}^{3k-4} \Lambda^{(k-1)p+k'} V\right) \oplus \cdots \end{aligned}$$

$$\begin{aligned} & \cdots \\ & d\omega_0^i = d\left(\omega_0^{i,0}, \omega_0^{i,1}, \dots, \omega_0^{i,k-2}\right) \\ & = \left(d_k \omega_0^{i,0}, \sum_{i'+i''=1} d_{k+i'} \omega_0^{i,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} \omega_0^{i,i''}\right) + \cdots \\ & \in \left(\bigoplus_{k'=(k-1)p+(i+2)k-(i+3)} \Lambda^{(k-1)p+k'} V\right) \oplus \cdots \end{aligned}$$

Therefore

$$d\omega_{0} = \sum_{i=0}^{l} \left(d_{k}\omega_{0}^{i,0}, \sum_{i'+i''=1}^{l} d_{k+i'}\omega_{0}^{i,i''}, \dots, \sum_{i'+i''=k-2}^{l} d_{k+i'}\omega_{0}^{i,i''} \right)$$

+
$$\sum_{i=0}^{l} \left(d_{2k-2}\omega_{0}^{i,1} + (d_{2k-2} + d_{2k-3})\omega_{0}^{i,2} + \dots + (d_{2k-2} + d_{2k-3} + \dots + d_{k+1})\omega_{0}^{i,k-2} \right) + \sum_{k'>2k-2}^{l} d_{k'}\omega_{0}$$

that is:

$$d\omega_0 = \delta(\omega_0) + \sum_{i=0}^{l} \left(d_{2k-2}\omega_0^{i,1} + (d_{2k-2} + d_{2k-3})\omega_0^{i,2} + \dots + (d_{2k-2} + \dots + d_{k+1})\omega_0^{i,k-2} \right) + \sum_{k'>2k-2} d_{k'}\omega_0.$$

As $\delta(\omega_0) = 0$, we can rewrite:

$$d\omega_0 = a_2^0 + a_3^0 + \dots + a_{t+l}^0$$
 with $a_i^0 = (a_i^{0,0}, \dots, a_i^{0,k-2}) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+i)+j} V.$

Note also that t is a fixed integer. Indeed, the degree of a_{t+l}^0 is greater than or equal to 2((k-1)(p+t+l)+k-2) and it coincides with N+1, N being the formal dimension of $(\Lambda V, d)$. Then

$$N+1 \ge 2((k-1)(p+t+l)+k-2).$$

Hence

$$t \le \frac{1}{2(k-1)} \left(N - 2(k-1)(p+l) + 5 - 2k \right).$$

In what follows, we take t the largest integer satisfying this inequality.

Now, we have:

$$d^{2}\omega_{0} = da_{2}^{0} + da_{3}^{0} + \dots + da_{t+l}^{0}$$

= $d(a_{2}^{0,0}, a_{2}^{0,1}, \dots, a_{2}^{0,k-2}) + d(a_{3}^{0,0}, a_{3}^{0,1}, \dots, a_{3}^{0,k-2}) + \dots$
+ $d(a_{t+l}^{0,0}, a_{t+l}^{0,1}, \dots, a_{t+l}^{0,k-2}),$

with

$$d(a_{2}^{0,0}, a_{2}^{0,1}, \dots, a_{2}^{0,k-2}) = d_{k}(a_{2}^{0,0}, a_{2}^{0,1}, \dots, a_{2}^{0,k-2}) + d_{k+1}(a_{2}^{0,0}, a_{2}^{0,1}, \dots, a_{2}^{0,k-2}) + \cdots = \left(d_{k}a_{2}^{0,0}, \sum_{i'+i''=1} d_{k+i'}a_{2}^{0,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'}a_{2}^{0,i''}\right) + \left(d_{2k-1}a_{2}^{0,0} + d_{2k-2}a_{2}^{0,1} + \cdots, \dots\right) + \cdots$$

$$d(a_3^{0,0}, a_3^{0,1}, \dots, a_3^{0,k-2}) = d_k(a_3^{0,0}, a_3^{0,1}, \dots, a_3^{0,k-2}) + d_{k+1}(a_3^{0,0}, a_3^{0,1}, \dots, a_3^{0,k-2}) + \dots = \left(d_k a_3^{0,0}, \sum_{i'+i''=1} d_{k+i'} a_3^{0,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} a_3^{0,i''} \right) + \left(d_{2k-1} a_3^{0,0} + d_{2k-2} a_3^{0,1} + \dots, \dots \right) + \dots$$

• • •

It follows that:

$$d^{2}\omega_{0} = \left(d_{k}a_{2}^{0,0}, \sum_{i'+i''=1} d_{k+i'}a_{2}^{0,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'}a_{2}^{0,i''}\right)$$
$$+ \left(d_{2k-1}a_{2}^{0,0} + d_{2k-2}a_{2}^{0,1} + \dots, \dots\right) + \dots$$
$$+ \left(d_{2k-1}a_{3}^{0,0} + d_{2k-2}a_{3}^{0,1} + \dots, \dots\right) + \dots$$

Since $d^2\omega_0 = 0$, we have

$$\left(d_k a_2^{0,0}, \sum_{i'+i''=1} d_{k+i'} a_2^{0,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} a_2^{0,i''}\right) = \delta(a_2^0) = 0$$

with $a_2^0 = (a_2^{0,0}, \dots, a_2^{0,k-2}) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j} V$. Consequently a_2^0 is a δ -cocycle.

CLAIM 1. a_2^0 is an δ -coboundary.

Proof. Recall first that the general r^{th} -term of the spectral sequence (6) is given by the formula:

$$E_r^{p,q} = Z_r^{p,q} / Z_{r-1}^{p+1,q-1} + B_{r-1}^{p,q}$$

where

$$Z_r^{p,q} = \left\{ x \in [F^p(\Lambda V)]^{p+q} \mid dx \in [F^{p+r}(\Lambda V)]^{p+q+1} \right\}$$

and

$$B_r^{p,q} = d([F^{p-r}(\Lambda V)]^{p+q-1}) \cap F^p(\Lambda V) = d(Z_{r-1}^{p-r+1,q+r-2}).$$

Recall also that the differential $d_r: E_r^{p,q} \to E_r^{p+r,q-r+1}$ in $E_r^{*,*}$ is induced from the differential d of $(\Lambda V, d)$ by the formula $d_r([v]_r) = [dv]_r, v$ being any representative in $Z_r^{p,q}$ of the class $[v]_r$ in $E_r^{p,q}$.

We still assume that dim $H^N(\Lambda V, \delta) = 1$ and adopt notations of §4.1.1.

Notice then $\omega_0 \in Z_2^{p,q}$ and it represents a non-zero class $[\omega_0]_2$ in $E_2^{p,q}$. Otherwise $\omega_0 = \omega'_0 + d(\omega''_0)$, where $\omega'_0 \in Z_1^{p+1,q-1}$ and $\omega''_0 \in B_1^{p,q}$, so that $\alpha = [\omega_0] = [\omega'_0 - (d - \delta)(\omega''_0)]$. But $\omega'_0 - (d - \delta)(\omega''_0) \in \Lambda^{\geq r+1}$ is a contradiction to the definition of ω_0 . Now, using the isomorphism $E_2^{*,*} \cong H^{*,*}(\Lambda V, \delta)$, we deduce that, $[\omega_0]_2 \in E_2^{p,q}$ (being the only generating element) must survive to $E_3^{p,q}$, otherwise, the spectral sequence fails to converge. Whence $d_2([\omega_0]_2) = [a_2^0]_2 = 0$ in $E_2^{p+2,q-1}$, i.e., $a_2^0 \in Z_1^{p+3,q-2} + B_1^{p+2,q-1}$. However $a_2^0 \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j}V$, so $a_2^0 \in B_1^{p+2,q-1}$, that is $a_2^0 = d(x)$, $x \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+1)+j}V$. By wordlength argument, we have necessary $a_2^0 = \delta(x)$, which finishes the proof of Claim 1.

Notice that this is the first obstruction to $[\omega_0]$ to represent a non zero class in the term $E_3^{*,*}$ of (6). The others will appear progressively as one advances in the algorithm.

Let then $b_2 \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)-(k-1)+j} V$ such that $a_2^0 = \delta(b_2)$ and put $\omega_1 = \omega_0 - b_2$. Reconsider the previous calculation for it:

$$d\omega_1 = d\omega_0 - db_2$$

= $(a_2^0 + a_3^0 + \dots + a_{t+l}^0) - (d_k b_2 + d_4 b_2 + \dots),$

with

$$d_k b_2 = d_k (b_2^0, b_2^1, \dots, b_2^{k-2}) = (d_k b_2^0, d_k b_2^1, \dots, d_k b_2^{k-2}) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j} V,$$

$$d_{k+1}b_2 = d_{k+1}(b_2^0, b_2^1, \dots, b_2^{k-2})$$

= $(d_{k+1}b_2^0, d_{k+1}b_2^1, \dots, d_{k+1}b_2^{k-2}) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j+1}V,$

• • •

This implies that

$$d\omega_{1} = a_{2}^{0} + a_{3}^{0} + \dots + a_{t+l}^{0} - \left(d_{k}b_{2}^{0}, \sum_{i'+i''=1} d_{k+i'}b_{2}^{i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'}b_{2}^{i''}\right)$$
$$- \left(d_{2k-1}b_{2}^{0} + \dots, \dots\right)$$
$$= a_{2}^{0} - \delta(b_{2}) + a_{3}^{0} - \left(d_{2k-1}b_{2}^{0} + \dots, \dots\right) + \dots$$
$$= a_{3}^{0} - \left(d_{2k-1}b_{2}^{0} + \dots, \dots\right) + \dots,$$

and then:

$$d\omega_1 = a_3^1 + a_4^1 + \dots + a_{t+l}^1$$
, with $a_i^1 \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+i)+j} V$.

So,

$$d^{2}\omega_{1} = da_{3}^{1} + da_{4}^{1} + \dots + da_{t+l}^{1}$$

= $\left(d_{k}a_{3}^{1,0}, \sum_{i'+i''=1} d_{k+i'}a_{3}^{1,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'}a_{3}^{1,i''} \right)$
+ $\left(d_{2k-1}a_{3}^{1,0} + \dots, \dots \right) + \dots$

Since $d^2\omega_1 = 0$, by wordlength reasons,

$$\left(d_k a_3^{1,0}, \sum_{i'+i''=1} d_{k+i'} a_3^{1,i''}, \dots, \sum_{i'+i''=k-2} d_{k+i'} a_3^{1,i''}\right) = \delta(a_3^1) = 0.$$

We claim that $a_3^1 = \delta(b_3)$ and consider $\omega_2 = \omega_1 - b_3$. We continue this process defining inductively $\omega_j = \omega_{j-1} - b_{j+1}, j \le t+l-2$ such that:

$$d\omega_j = a_{j+2}^j + a_{j+3}^j + \dots + a_{t+l}^j$$
, with $a_i^j \in \bigoplus_{h=0}^{k-2} \Lambda^{(k-1)(p+i)+h} V$

and a_{j+2}^j a δ -cocycle.

CLAIM 2. a_{i+2}^{j} is a δ -coboundary, i.e., there is

$$b_{j+2} \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+j+2)-(k-1)+j} V$$

such that $\delta(b_{j+2}) = a_{j+2}^{j}; \ 1 \le j \le t+l-2.$

Proof. We proceed in the same manner as for the first claim. Indeed, we have clearly for any $1 \leq j \leq t+l-2$, $\omega_j = \omega_{j-1}-b_{j+1} = \omega_0-b_2-b_3-\cdots-b_{j+1} \in Z_{j+2}^{p,q}$ and it represents a non zero class $[\omega_j]_{j+2}$ in $E_{j+2}^{p,q}$ which is also one dimensional. Whence as in Claim 1, we conclude that, a_{j+2}^j is a δ -coboundary for all $1 \leq j \leq t+l-2$.

Consider $\omega_{t+l-1} = \omega_{t+l-2} - b_{t+l}$, where $\delta(b_{t+l}) = a_{t+l}^{t+l-2}$. Notice that $|d\omega_{t+l-1}| = |d\omega_{t+l-2}| = N+1$, but by the hypothesis on t, we have $d(\omega_{t+l-2}) = a_{t+l}^{t+l-2}$ and then

$$|d(\omega_{t+l-2} - b_{t+l})| = |a_{t+l}^{t+l-2} - \delta(b_{t+l}) - (d-\delta)b_{t+l}| = |-(d-\delta)b_{t+l}| > N+1.$$

It follows that $d\omega_{t+l-1} = 0$, that is ω_{t+l-1} is a *d*-cocycle. But it can't be a d-coboundary. Indeed suppose that $\omega_{t+l-1} = (\omega_0^0 + \omega_0^1 + \cdots + \omega_0^l) - (b_2 + b_3 + \cdots + b_{t+l})$, were a d-coboundary, by wordlength reasons, ω_0^0 would be a δ -coboundary, i.e., there is $x \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)p-(k-1)+j}V$ such that $\delta(x) = \omega_0^0$. Then

$$\omega_0 = \delta(x) + \omega_0^1 + \dots + \omega_0^l.$$

Since $\delta(\omega_0) = 0$, we would have $\delta(\omega_0^1 + \cdots + \omega_0^l) = 0$ and then $[\omega_0] = [\omega_0^1 + \cdots + \omega_0^l]$. But $\omega_0^1 + \cdots + \omega_0^l \in \Lambda^{>r}V$, contradicts the property of ω_0 . Consequently ω_{t+l-1} represents the fundamental class of $(\Lambda V, d)$.

Finally, since $\omega_{t+l-1} \in \Lambda^{\geq r} V$ we have

$$e_0(\Lambda V, d) \ge r.$$

4.1.2. FOR THE SECOND INEQUALITY. Denote $s = e_0(\Lambda V, d)$ and let $\omega \in \Lambda^{\geq s} V$ be a cocycle representing the generating class α of $H^N(\Lambda V, d)$.

Write $\omega = \omega_0 + \omega_1 + \cdots + \omega_t$, $\omega_i \in \Lambda^{s+i} V$. We deduce that:

$$d\omega = \left(d_k\omega_0 + \sum_{i+i'=1} d_{k+i}\omega_{i'} + \dots + \sum_{i+i'=k-2} d_{k+i}\omega_{i'}\right) + d_k\omega_{k-1} + d_{2k-1}\omega_0 + \dots$$
$$= \delta(\omega_0, \omega_1, \dots, \omega_{k-2}) + \dots$$

Since $d\omega = 0$, by wordlength reasons, it follows that $\delta(\omega_0, \omega_1, \dots, \omega_{k-2}) = 0$. If $(\omega_0, \omega_1, \dots, \omega_{k-2})$, were a δ -boundary, i.e., $(\omega_0, \omega_1, \dots, \omega_{k-2}) = \delta(x)$, then

$$\omega - dx = (\omega_0, \omega_1, \dots, \omega_{k-2}) - \delta(x) + (\omega_{k-1} + \dots + \omega_t) - (d-\delta)(x)$$
$$= (\omega_{k-1} + \dots + \omega_t) - (d-\delta)(x),$$

so, $\omega - dx \in \Lambda^{\geq s+k-1}V$, which contradicts the fact $s = e_0(\Lambda V, d)$. Hence $(\omega_0, \omega_1, \dots, \omega_{k-2})$ represents the generating class of $H^N(\Lambda V, \delta)$. But $(\omega_0, \omega_1, \dots, \omega_{k-2}) \in \Lambda^{\geq s}V$ implies that $s \leq r$. Consequently, $e_0(\Lambda V, d) \leq r$.

Thus, we conclude that

$$e_0(\Lambda V, d) = r$$

4.2. PROOF OF THEOREM 2. It suffices to remark that since $(\Lambda V, d)$ is elliptic, it has Poincaré duality property and then dim $H^N(\Lambda V, d) = 1$. The convergence of (6) implies that dim $E_{\infty}^{*,*} = 1$. Hence there is a unique (p,q) such that p+q = N and $E_{\infty}^{*,*} = E_{\infty}^{p,q}$. Consequently only one of the generating classes $\alpha_1, \ldots, \alpha_m$ had to survive to E_{∞} . Let α_j this representative class and (p_j, q_j) its pair of degrees.

EXAMPLE 1. Let $d = \sum_{i\geq 3} d_i$ and $(\Lambda V, d)$ be the model defined by $V^{\text{even}} = \langle x_2, x_2^{\prime} \rangle$, $V^{\text{odd}} = \langle y_5, y_7, y_7^{\prime} \rangle$, $dx_2 = dx_2^{\prime} = 0$, $dy_5 = x_2^3$, $dy_7 = x_2^{\prime,4}$ and $dy_7^{\prime} = x_2^2 x_2^2$, in which subscripts denote degrees.

For $k \geq 3$, $l \geq 0$, we have

$$x_2^k x_2^l = x_2^{k-3} x_2^3 x_2^{j} = d(y_5 x_2^{k-3} x_2^l).$$

For $k \ge 4, l \ge 0$,

$$x_2^{k}x_2^{l} = x_2^{l}x_2^{k-4}x_2^{4} = d(x_2^{l}x_2^{k-4}y_7).$$

Clearly we have

dim
$$H(\Lambda V, d) < \infty$$
 and dim $H(\Lambda V, d_3) = \infty$.

Using A. Murillo's algorithm (cf. \S 2) the matrix determining the fundamental class is:

$$A = \begin{pmatrix} x_2^2 & 0\\ 0 & x_2^3\\ x_2 x_2^{\prime 2} & 0 \end{pmatrix},$$

so, $\omega = -x_2^2 x_2^{,3} y_7^{,} + x_2 x_2^{,5} y_5 \in \Lambda^{\geq 6} V$ is a generator of this fundamental cohomology class.

It follows that $e_0(\Lambda V, d) = 6 \neq m + n(k-2)$.

EXAMPLE 2. Let $d = \sum_{i \ge 3} d_i$ and $(\Lambda V, d)$ be the model defined by $V^{\text{even}} = \langle x_2, x_2^i \rangle$, $V^{\text{odd}} = \langle y_5, y_9, y_9^i \rangle$, $dx_2 = dx_2^i = 0$, $dy_5 = x_2^3$, $dy_9 = x_2^{,5}$ and $dy_9^i = x_2^3 x_2^{,2}$.

Clearly we have

dim $H(\Lambda V, d) < \infty$ and dim $H(\Lambda V, d_3) = \infty$.

Using A. Murillo's algorithm (cf. $\S2$) the matrix determining the fundamental class is:

$$A = \begin{pmatrix} x_2^2 & 0\\ 0 & x_2^4\\ x_2^2 x_2^{,2} & 0 \end{pmatrix},$$

so, $\omega = -x_2^2 x_2^{,4} y_9^{,} + x_2^2 x_2^{,6} y_5 \in \Lambda^{\geq 7} V$ is a generator of this fundamental cohomology class.

It follows that $e_0(\Lambda V, d) = 7 \neq m + n(k-2)$.

References

- O. CORNEA, G. LUPTON, J. OPREA, D. TANRÉ, "Lusternik-Schnirelmann Category", Mathematical Surveys and Monographs 103, American Mathematical Society, Providence, RI, 2003.
- [2] Y. FÉLIX, S. HALPERIN, Rational LS-category and its applications, Trans. Amer. Math. Soc. 273 (1) (1982), 1–37.
- [3] Y. FÉLIX, S. HALPERIN, J.-C. THOMAS, "Rational Homotopy Theory", Graduate Texts in Mathematics 205, Springer-Verlag, New York, 2001.
- [4] Y. FÉLIX, S. HALPERIN, J. M. LEMAIRE, The rational LS-category of products and Poincaré duality complexes, *Topology* 37 (4) (1998), 749–756.
- [5] Y. FÉLIX, S. HALPERIN, J.-C. THOMAS, "Gorenstein Spaces", Adv. in Math. 71 (1) (1988), 92–112.
- [6] S. HALPERIN, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83 (3) (1992), 237–282.
- [7] I. M. JAMES, Lusternik-Schnirelmann category, in "Handbook of Algebraic Topology", North-Holland, Amsterdam, 1995, 1293-1310.
- [8] L. LECHUGA, A. MURILLO, A formula for the rational LS-category of certain spaces, Ann. Inst. Fourier (Grenoble) 52 (5) (2002), 1585-1590.

- [9] A. MURILLO, The top cohomology class of certain spaces, J. Pure Appl. Algebra 84 (2) (1993), 209-214.
- [10] A. MURILLO, The evaluation map of some Gorenstein algebras, J. Pure Appl. Algebra 91 (1-3) (1994), 209-218.
- [11] L. LECHUGA, A. MURILLO, The fundamental class of a rational space, the graph coloring problem and other classical decision problems, *Bull. Belgian Math. Soc.* 8 (3) (2001), 451–467.
- [12] L. LECHUGA, A. MURILLO, Complexity in rational homotopy, Topology 39 (1) (2000), 89-94.
- [13] Y. RAMI, K. BOUTAHIR, On L.S.-category of a family of rational elliptic spaces,

http://arxiv.org/abs/1310.6247 (submitted for publication).

[14] D. SULLIVAN, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 269–331.