On LS-Category of a Family of Rational Elliptic Spaces II

Khalid Boutahir, Youssef Rami
Département de Mathématiques et Informatique, Faculté des Sciences, Université My Ismail, B. P. 11201 Zitoune, Meknès, Morocco
khalid.boutahir@edu.umi.ac.ma y.rami@fs-umi.ac.ma

Presented by Antonio M. Cegarra
Received June 24, 2016

Abstract

Let X be a finite type simply connected rationally elliptic CW-complex with Sullivan minimal model $(\Lambda V, d)$ and let $k \geq 2$ the biggest integer such that $d=\sum_{i \geq k} d_{i}$ with $d_{i}(V) \subseteq \Lambda^{i} V$. If $\left(\Lambda V, d_{k}\right)$ is moreover elliptic then $\operatorname{cat}(\Lambda V, d)=\operatorname{cat}\left(\Lambda V, d_{k}\right)=$ $\operatorname{dim}\left(V^{\text {even }}\right)(k-2)+\operatorname{dim}\left(V^{\text {odd }}\right)$. Our work aims to give an almost explicit formula of LScategory of such spaces in the case when $k \geq 3$ and when $\left(\Lambda V, d_{k}\right)$ is not necessarily elliptic. Key words: Elliptic spaces, Lusternik-Schnirelman category, Toomer invariant.

AMS Subject Class. (2010): 55P62, 55M30.

1. Introduction

The Lusternik-Schirelmann category (c.f. [7]), cat (X), of a topological space X is the least integer n such that X can be covered by $n+1$ open subsets of X, each contractible in X (or infinity if no such n exists). It is an homotopy invariant (c.f. [3]). For X a simply connected $C W$ complex, the rational L-S category, $\operatorname{cat}_{0}(X)$, introduced by Félix and Halperin in [2] is given by $\operatorname{cat}_{0}(X)=\operatorname{cat}\left(X_{\mathbb{Q}}\right) \leq \operatorname{cat}(X)$.

In this paper, we assume that X is a simply connected topological space whose rational homology is finite dimensional in each degree. Such space has a Sullivan minimal model $(\Lambda V, d)$, i.e. a commutative differential graded algebra coding both its rational homology and homotopy (cf. §2).

By [1, Definition 5.22] the rational Toomer invariant of X, or equivalently of its Sullivan minimal model, denoted by $e_{0}(\Lambda V, d)$, is the largest integer s for which there is a non trivial cohomology class in $H^{*}(\Lambda V, d)$ represented by a cocycle in $\Lambda^{\geq^{s}} V$, this coincides in fact with the Toomer invariant of the fundamental class of $(\Lambda V, d)$. As usual, $\Lambda^{s} V$ denotes the elements in ΛV of "wordlength" s. For more details [1], [3] and [14] are standard references.

In [4] Y. Felix, S. Halperin and J. M. Lemaire showed that for Poincaré duality spaces, the rational L-S category coincides with the rational Toomer
invariant $e_{0}(X)$, and in [9] A. Murillo gave an expression of the fundamental class of $(\Lambda V, d)$ in the case where $(\Lambda V, d)$ is a pure model (cf. §2).

Let then $(\Lambda V, d)$ be a Sullivan minimal model. The differential d is decomposable, that is, $d=\sum_{i \geq k} d_{i}$, with $d_{i}(V) \subseteq \Lambda^{i} V$ and $k \geq 2$.

Recall first that in [8] the authors gave the explicit formula $\operatorname{cat}(\Lambda V, d)=$ $\operatorname{dim} V^{\text {odd }}+(k-2) \operatorname{dim} V^{\text {even }}$ in the case when $\left(\Lambda V, d_{k}\right)$ is also elliptic.

The aim of this paper is to consider another class of elliptic spaces whose Sullivan minimal model $(\Lambda V, d)$ is such that $\left(\Lambda V, d_{k}\right)$ is not necessarily elliptic. To do this we filter this model by

$$
\begin{equation*}
F^{p}=\Lambda^{\geq(k-1) p} V=\bigoplus_{i=(k-1) p}^{\infty} \Lambda^{i} V \tag{1}
\end{equation*}
$$

This gives us the main tool in this work, that is the following convergent spectral sequence (cf. §3):

$$
\begin{equation*}
H^{p, q}(\Lambda V, \delta) \Rightarrow H^{p+q}(\Lambda V, d) \tag{2}
\end{equation*}
$$

Notice first that, if $\operatorname{dim}(V)<\infty$ and $(\Lambda V, \delta)$ has finite dimensional cohomology, then $(\Lambda V, d)$ is elliptic. This gives a new family of rationally elliptic spaces.

In the first step, we shall treat the case under the hypothesis assuming that $H^{N}(\Lambda V, \delta)$ is one dimensional, being N the formal dimension of ($\left.\Lambda V, d\right)$ (cf. [5]). For this, we will combine the method used in [8] and a spectral sequence argument using (2). We then focus on the case where $\operatorname{dim} H^{N}(\Lambda V, \delta) \geq 2$. Our first result reads:

THEOREM 1. If $(\Lambda V, d)$ is elliptic, $\left(\Lambda V, d_{k}\right)$ is not elliptic and $H^{N}(\Lambda V, \delta)=$ $\mathbb{Q} . \alpha$ is one dimensional, then

$$
\operatorname{cat}_{0}(X)=\operatorname{cat}(\Lambda V, d)=\sup \left\{s \geq 0, \alpha=\left[\omega_{0}\right] \text { with } \omega_{0} \in \Lambda^{\geq s} V\right\}
$$

Let us explain in what follow, the algorithm that gives the first inequality,

$$
\operatorname{cat}(\Lambda V, d) \geq \sup \left\{s \geq 0, \alpha=\left[\omega_{0}\right] \text { with } \omega_{0} \in \Lambda^{\geq s} V\right\}:=r
$$

i) Initially we fix a representative $\omega_{0} \in \Lambda^{\geq r} V$ of the fundamental class α with r being the largest s such that $\omega_{0} \in \Lambda^{\geq s} V$.
ii) A straightforward calculation gives successively:

$$
\omega_{0}=\omega_{0}^{0}+\omega_{0}^{1}+\cdots+\omega_{0}^{l}
$$

with

$$
\begin{aligned}
\omega_{0}^{i}=\left(\omega_{0}^{i, 0}, \omega_{0}^{i, 1}, \ldots, \omega_{0}^{i, k-2}\right) \in \Lambda^{(k-1)(p+i)} V & \oplus \Lambda^{(k-1)(p+i)+1} V \\
& \oplus \cdots \oplus \Lambda^{(k-1)(p+i)+k-2} V .
\end{aligned}
$$

Using $\delta\left(\omega_{0}\right)=0$ we obtain $d \omega_{0}=a_{2}^{0}+a_{3}^{0}+\cdots+a_{t+l}^{0}$ with

$$
\begin{aligned}
a_{i}^{0}=\left(a_{i}^{0,0}, a_{i}^{0,1}, \ldots, a_{i}^{0, k-2}\right) \in \Lambda^{(k-1)(p+i)} V & \oplus \Lambda^{(k-1)(p+i)+1} V \\
& \oplus \cdots \oplus \Lambda^{(k-1)(p+i)+k-2} V .
\end{aligned}
$$

iii) We take t the largest integer satisfying the inequality:

$$
t \leq \frac{1}{2(k-1)}(N-2(k-1)(p+l)-2 k+5) .
$$

Since $d^{2}=0$, it follows that $a_{2}^{0}=\delta\left(b_{2}\right)$ for some

$$
b_{2} \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)-(k-1)+j} V
$$

iv) We continue with $\omega_{1}=\omega_{0}-b_{2}$.
v) By the imposition iii), the algorithm leads to a representative $\omega_{t+l-1} \in$ $\Lambda^{\geq r} V$ of the fundamental class of $(\Lambda V, d)$ and then $e_{0}(\Lambda V, d) \geq r$.

Now, $\operatorname{dim}(V)<\infty$ imply $\operatorname{dim} H^{N}(\Lambda V, \delta)<\infty$. Notice also that the filtration (1) induces on cohomology a graduation such that $H^{N}(\Lambda V, \delta)=$ $\oplus_{p+q=N} H^{p, q}(\Lambda V, \delta)$. There is then a basis $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of $H^{N}(\Lambda V, \delta)$ with $\alpha_{j} \in H^{p_{j}, q_{j}}(\Lambda V, \delta),(1 \leq j \leq m)$. Denote by $\omega_{0 j} \in \Lambda^{\geq r_{j}} V$ a representative of the generating class α_{j} with r_{j} being the largest s_{j} such that $\omega_{0 j} \in \Lambda^{\geq s_{j}} V$. Here p_{j} and q_{j} are filtration degrees and $r_{j} \in\left\{p_{j}(k-1), \ldots, p_{j}(k-1)+(k-2)\right\}$.

The second step in our program is given as follow:
Theorem 2. If $(\Lambda V, d)$ is elliptic and $\operatorname{dim} H^{N}(\Lambda V, \delta)=m$ with basis $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, then, there exists a unique p_{j}, such that

$$
\operatorname{cat}_{0}(X)=\sup \left\{s \geq 0, \alpha_{j}=\left[\omega_{0 j}\right] \text { with } \omega_{0 j} \in \Lambda^{\geq s} V\right\}:=r_{j} .
$$

Remark 1. The previous theorem gives us also an algorithm to determine LS-category of any elliptic Sullivan minimal model ($\Lambda V, d$). Knowing the largest integer $k \geq 2$ such that $d=\sum_{i \geq k} d_{i}$ with $d_{i}(V) \subseteq \Lambda^{i} V$ and the formal dimension N (this one is given in terms of degrees of any basis elements of V), one has to check for a basis $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of $H^{N}(\Lambda V, \delta)$ (which is finite dimensional since $\operatorname{dim}(V)<\infty)$. The NP-hard character of the problem into question, as it is proven by L. Lechuga and A. Murillo (cf [12]), sits in the determination of the unique $j \in\{1, \ldots, m\}$ for which a represent cocycle $\omega_{0 j}$ of α_{j} survives to reach the E_{∞} term in the spectral sequence (2).

2. Basic facts

We recall here some basic facts and notation we shall need.
A simply connected space X is called rationally elliptic if $\operatorname{dim} H^{*}(X, \mathbb{Q})<$ ∞ and $\operatorname{dim}(X) \otimes \mathbb{Q}<\infty$.

A commutative graded algebra H is said to have formal dimension N if $H^{p}=0$ for all $p>N$, and $H^{N} \neq 0$. An element $0 \neq \omega \in H^{N}$ is called a fundamental class.

A Sullivan algebra ([3]) is a free commutative differential graded algebra (cdga for short) $(\Lambda V, d)\left(\right.$ where $\left.\Lambda V=\operatorname{Exterior}\left(V^{\text {odd }}\right) \otimes \operatorname{Symmetric}\left(V^{\text {even }}\right)\right)$ generated by the graded \mathbb{K}-vector space $V=\bigoplus_{i=0}^{i=\infty} V^{i}$ which has a well ordered basis $\left\{x_{\alpha}\right\}$ such that $d x_{\alpha} \in \Lambda V_{<\alpha}$. Such algebra is said minimal if $\operatorname{deg}\left(x_{\alpha}\right)<\operatorname{deg}\left(x_{\beta}\right)$ implies $\alpha<\beta$. If $V^{0}=V^{1}=0$ this is equivalent to saying that $d(V) \subseteq \bigoplus_{i=2}^{i=\infty} \Lambda^{i} V$.

A Sullivan model ([3]) for a commutative differential graded algebra (A,d) is a quasi-isomorphism (morphism inducing isomorphism in cohomology) $(\Lambda V, d) \longrightarrow(A, d)$ with source, a Sullivan algebra. If $H^{0}(A)=K, H^{1}(A)=0$ and $\operatorname{dim}\left(H^{i}(A, d)\right)<\infty$ for all $i \geq 0$, then, [6, Th.7.1], this minimal model exists. If X is a topological space any minimal model of the polynomial differential forms on $X, A_{P L}(X)$, is said a Sullivan minimal model of X.
$(\Lambda V, d)$ (or X) is said elliptic, if both V and $H^{*}(\Lambda V, d)$ are finite dimensional graded vector spaces (see for example [3]).

A Sullivan minimal model $(\Lambda V, d)$ is said to be pure if $d\left(V^{\text {even }}\right)=0$ and $d\left(V^{\text {odd }}\right) \subset \Lambda V^{\text {even }}$. For such one, A. Murillo [9] gave an expression of a cocycle representing the fundamental class of $H(\Lambda V, d)$ in the case where $(\Lambda V, d)$ is elliptic. We recall this expression here:

Assume $\operatorname{dim} V<\infty$, choose homogeneous basis $\left\{x_{1}, \ldots, x_{n}\right\},\left\{y_{1}, \ldots, y_{m}\right\}$
of $V^{\text {even }}$ and $V^{\text {odd }}$ respectively, and write

$$
d y_{j}=a_{j}^{1} x_{1}+a_{j}^{2} x_{2}+\cdots+a_{j}^{n-1} x_{n-1}+a_{j}^{n} x_{n}, \quad j=1,2, \ldots, m,
$$

where each a_{j}^{i} is a polynomial in the variables $x_{i}, x_{i+1}, \ldots, x_{n}$, and consider the matrix,

$$
A=\left(\begin{array}{cccc}
a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{n} \\
a_{2}^{1} & a_{2}^{2} & \cdots & a_{2}^{n} \\
\vdots & \vdots & & \vdots \\
a_{m}^{1} & a_{m}^{2} & \cdots & a_{m}^{n}
\end{array}\right) .
$$

For any $1 \leq j_{1}<\cdots<j_{n} \leq m$, denote by $P_{j_{1} \ldots j_{n}}$ the determinant of the matrix of order n formed by the columns $i_{1}, i_{2}, \ldots, i_{n}$ of A:

$$
\left(\begin{array}{cccc}
a_{j_{1}}^{1} & \ldots & \ldots & a_{j_{1}}^{n} \\
& \ddots & \\
& \ddots & \\
a_{j_{n}}^{1} & \ddots & a_{j_{n}}^{n}
\end{array}\right)
$$

Then (see [9]) if $\operatorname{dim} H^{*}(\Lambda V, d)<\infty$, the element $\omega \in \Lambda V$,

$$
\begin{equation*}
\omega=\sum_{1 \leq j_{1}<\cdots<j_{n} \leq m}(-1)^{j_{1}+\cdots+j_{n}} P_{j_{1} \ldots j_{n}} y_{1} \ldots \hat{y}_{j_{1}} \ldots \hat{y}_{j_{n}} \ldots y_{m} \tag{3}
\end{equation*}
$$

is a cocycle representing the fundamental class of the cohomology algebra.

3. Our spectral sequence

Let $(\Lambda V, d)$ be a Sullivan minimal model, where $d=\sum_{i \geq k} d_{i}$ with $d_{i}(V) \subseteq$ $\Lambda^{i} V$ and $k \geq 2$. We first recall the filtration given in the introduction:

$$
\begin{equation*}
F^{p}=\Lambda^{\geq(k-1) p} V=\bigoplus_{i=(k-1) p}^{\infty} \Lambda^{i} V . \tag{4}
\end{equation*}
$$

F^{p} is preserved by the differential d and satisfies $F^{p}(\Lambda V) \otimes F^{q}(\Lambda V) \subseteq F^{p+q}(\Lambda V)$, $\forall p, q \geq 0$, so it is a filtration of differential graded algebras. Also, since
$F^{0}=\Lambda V$ and $F^{p+1} \subseteq F^{p}$ this filtration is decreasing and bounded, so it induces a convergent spectral sequence. Its $0^{\text {th }}$-term is

$$
E_{0}^{p, q}=\left(\frac{F^{p}}{F^{p+1}}\right)^{p+q}=\left(\frac{\Lambda^{\geq(k-1) p} V}{\Lambda^{\geq(k-1)(p+1)} V}\right)^{p+q}
$$

Hence, we have the identification:

$$
\begin{equation*}
E_{0}^{p, q}=\left(\Lambda^{p(k-1)} V \oplus \Lambda^{p(k-1)+1} V \oplus \cdots \oplus \Lambda^{p(k-1)+k-2} V\right)^{p+q} \tag{5}
\end{equation*}
$$

with the product given by:

$$
\left(u_{0}, u_{1}, \ldots, u_{k-2}\right) \otimes\left(u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{k-2}^{\prime}\right)=\left(v_{0}, v_{1}, \ldots, v_{k-2}\right)
$$

for all $\left(u_{0}, u_{1}, \ldots, u_{k-2}\right),\left(u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{k-2}^{\prime}\right) \in E_{0}^{p, q}$ with $v_{m}=\sum_{i+j=m} u_{i} u_{j}^{\prime}$ and $m=0, \ldots, k-2$.

The differential on E_{0} is zero, hence $E_{1}^{p, q}=E_{0}^{p, q}$ and so the identification above gives the following diagram:

with δ defined as follows,

$$
\delta\left(u_{0}, u_{1}, \ldots, u_{k-2}\right)=\left(w_{k}, w_{k+1}, \ldots, w_{2 k-2}\right) \quad \text { with } \quad w_{k+j}=\sum_{\substack{i+i^{\prime}=j \\ i^{\prime}=0, \ldots, k-2}} d_{k+i} u_{i^{\prime}}
$$

Let $E_{1}^{p}=E_{1}^{p, *}=\bigoplus_{q \geq 0} E_{1}^{p, q}$ and $E_{1}^{*}=\bigoplus_{p \geq 0} E_{1}^{p, *}=\Lambda V$ as a graded vector space. In this general situation, the $1^{\text {st }}$-term is the graded algebra ΛV provided with a differential δ, which is not necessarily a derivation on the set V of generators. That is, $(\Lambda V, \delta)$ is a commutative differential graded algebra, but it is not a Sullivan algebra. This gives, consequently, our spectral sequence:

$$
\begin{equation*}
E_{2}^{p, q}=H^{p, q}(\Lambda V, \delta) \Rightarrow H^{p+q}(\Lambda V, d) \tag{6}
\end{equation*}
$$

Once more, using this spectral sequence, the algorithm completed by proves of claims that will appear, will give the appropriate generating class of $H^{N}(\Lambda V, \delta)$ that survives to the ∞ term. Accordingly, the explicit formula of LS category for this general case, is expressed in terms of the greater filtering degree of a represent of this class.

4. Proof of the main Results

4.1. Proof of Theorem 1. Recall that $(\Lambda V, d)$ is assumed elliptic, so that, $\operatorname{cat}(\Lambda V, d)=e_{0}(\Lambda V, d)[4]$. Notice also that the subsequent notations imposed us sometimes to replace a sum by some tuple and vice-versa.
4.1.1. The first inequality. In what follows, we put:

$$
r=\sup \left\{s \geq 0, \alpha=\left[\omega_{0}\right] \text { with } \omega_{0} \in \Lambda^{\geq s} V\right\}
$$

Denote by p the least integer such that $p(k-1) \leq r<(p+1)(k-1)$ and let then $\omega_{0} \in \Lambda^{\geq r} V$. We have

$$
\begin{aligned}
\omega_{0} \in & \left(\Lambda^{(k-1) p} V \oplus \cdots \oplus \Lambda^{(k-1) p+k-2} V\right) \\
& \oplus\left(\Lambda^{(k-1) p+k-1} V \oplus \cdots \oplus \Lambda^{(k-1) p+2 k-3} V\right) \\
& \oplus \cdots
\end{aligned}
$$

Since $\left|\omega_{0}\right|=N$ and $\operatorname{dim} V<\infty$, there is an integer l such that

$$
\omega_{0}=\omega_{0}^{0}+\omega_{0}^{1}+\cdots+\omega_{0}^{l}
$$

with $\omega_{0}^{0} \neq 0$ and $\forall i=0, \ldots, l$,

$$
\omega_{0}^{i}=\left(\omega_{0}^{i, 0}, \omega_{0}^{i, 1}, \ldots, \omega_{0}^{i, k-2}\right) \in \Lambda^{(k-1)(p+i)} V \oplus \cdots \oplus \Lambda^{(k-1)(p+i)+k-2} V
$$

We have successively:

$$
\begin{aligned}
\delta\left(\omega_{0}^{i}\right)= & \delta\left(\omega_{0}^{i, 0}, \omega_{0}^{i, 1}, \ldots, \omega_{0}^{i, k-2}\right) \\
= & \left(d_{k} \omega_{0}^{i, 0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}, \sum_{i^{\prime}+i^{\prime \prime}=2} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}\right) \\
\delta\left(\omega_{0}\right)= & \sum_{i=0}^{l} \delta\left(\omega_{0}^{i, 0}, \omega_{0}^{i, 1}, \ldots, \omega_{0}^{i, k-2}\right) \\
= & \sum_{i=0}^{l}\left(d_{k} \omega_{0}^{i, 0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}, \sum_{i^{\prime}+i^{\prime \prime}=2} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}, \ldots\right. \\
& \left.\sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}\right)
\end{aligned}
$$

Also, we have $d \omega_{0}=d \omega_{0}^{0}+d \omega_{0}^{1}+\cdots+d \omega_{0}^{l}$, with:

$$
\begin{aligned}
& d \omega_{0}^{0}=d\left(\omega_{0}^{0,0}, \omega_{0}^{0,1}, \ldots, \omega_{0}^{0, k-2}\right) \\
& =\left(d_{k} \omega_{0}^{0,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} \omega_{0}^{0, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} \omega_{0}^{0, i^{\prime \prime}}\right)+\cdots \\
& \in\left(\bigoplus_{k^{\prime}=k-1}^{2 k-3} \Lambda^{(k-1) p+k^{\prime}} V\right) \oplus \cdots \\
& d \omega_{0}^{1}=d\left(\omega_{0}^{1,0}, \omega_{0}^{1,1}, \ldots, \omega_{0}^{1, k-2}\right) \\
& =\left(d_{k} \omega_{0}^{1,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} \omega_{0}^{1, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} \omega_{0}^{1, i^{\prime \prime}}\right)+\cdots \\
& \in\left(\bigoplus_{k^{\prime}=2 k-2}^{3 k-4} \Lambda^{(k-1) p+k^{\prime}} V\right) \oplus \cdots \\
& d \omega_{0}^{i}=d\left(\omega_{0}^{i, 0}, \omega_{0}^{i, 1}, \ldots, \omega_{0}^{i, k-2}\right) \\
& =\left(d_{k} \omega_{0}^{i, 0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}\right)+\cdots \\
& \in\left(\bigoplus_{k^{\prime}=(k-1) p+(i+1) k-(i+1)}^{(k-1) p+(i+2) k-(i+3)} \Lambda^{(k-1) p+k^{\prime}} V\right) \oplus \cdots
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d \omega_{0}= & \sum_{i=0}^{l}\left(d_{k} \omega_{0}^{i, 0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} \omega_{0}^{i, i^{\prime \prime}}\right) \\
& +\sum_{i=0}^{l}\left(d_{2 k-2} \omega_{0}^{i, 1}+\left(d_{2 k-2}+d_{2 k-3}\right) \omega_{0}^{i, 2}+\cdots+\left(d_{2 k-2}+d_{2 k-3}+\cdots\right.\right. \\
& \left.\left.+d_{k+1}\right) \omega_{0}^{i, k-2}\right)+\sum_{k^{\prime}>2 k-2} d_{k^{\prime}} \omega_{0}
\end{aligned}
$$

that is:

$$
\begin{aligned}
d \omega_{0}=\delta\left(\omega_{0}\right)+\sum_{i=0}^{l}(& d_{2 k-2} \omega_{0}^{i, 1}+\left(d_{2 k-2}+d_{2 k-3}\right) \omega_{0}^{i, 2}+\cdots+\left(d_{2 k-2}+\ldots\right. \\
& \left.\left.+d_{k+1}\right) \omega_{0}^{i, k-2}\right)+\sum_{k^{\prime}>2 k-2} d_{k^{\prime}} \omega_{0}
\end{aligned}
$$

As $\delta\left(\omega_{0}\right)=0$, we can rewrite:
$d \omega_{0}=a_{2}^{0}+a_{3}^{0}+\cdots+a_{t+l}^{0} \quad$ with $\quad a_{i}^{0}=\left(a_{i}^{0,0}, \ldots, a_{i}^{0, k-2}\right) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+i)+j} V$.
Note also that t is a fixed integer. Indeed, the degree of a_{t+l}^{0} is greater than or equal to $2((k-1)(p+t+l)+k-2)$ and it coincides with $N+1, N$ being the formal dimension of $(\Lambda V, d)$.
Then

$$
N+1 \geq 2((k-1)(p+t+l)+k-2)
$$

Hence

$$
t \leq \frac{1}{2(k-1)}(N-2(k-1)(p+l)+5-2 k)
$$

In what follows, we take t the largest integer satisfying this inequality.
Now, we have:

$$
\begin{aligned}
d^{2} \omega_{0}= & d a_{2}^{0}+d a_{3}^{0}+\cdots+d a_{t+l}^{0} \\
= & d\left(a_{2}^{0,0}, a_{2}^{0,1}, \ldots, a_{2}^{0, k-2}\right)+d\left(a_{3}^{0,0}, a_{3}^{0,1}, \ldots, a_{3}^{0, k-2}\right)+\cdots \\
& +d\left(a_{t+l}^{0,0}, a_{t+l}^{0,1}, \ldots, a_{t+l}^{0, k-2}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
d\left(a_{2}^{0,0}, a_{2}^{0,1}, \ldots, a_{2}^{0, k-2}\right)= & d_{k}\left(a_{2}^{0,0}, a_{2}^{0,1}, \ldots, a_{2}^{0, k-2}\right) \\
& +d_{k+1}\left(a_{2}^{0,0}, a_{2}^{0,1}, \ldots, a_{2}^{0, k-2}\right)+\cdots \\
= & \left(d_{k} a_{2}^{0,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} a_{2}^{0, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} a_{2}^{0, i^{\prime \prime}}\right) \\
& +\left(d_{2 k-1} a_{2}^{0,0}+d_{2 k-2} a_{2}^{0,1}+\cdots, \ldots\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
d\left(a_{3}^{0,0}, a_{3}^{0,1}, \ldots, a_{3}^{0, k-2}\right)= & d_{k}\left(a_{3}^{0,0}, a_{3}^{0,1}, \ldots, a_{3}^{0, k-2}\right) \\
& +d_{k+1}\left(a_{3}^{0,0}, a_{3}^{0,1}, \ldots, a_{3}^{0, k-2}\right)+\cdots \\
= & \left(d_{k} a_{3}^{0,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} a_{3}^{0, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} a_{3}^{0, i^{\prime \prime}}\right) \\
& +\left(d_{2 k-1} a_{3}^{0,0}+d_{2 k-2} a_{3}^{0,1}+\cdots, \ldots\right)+\cdots
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
d^{2} \omega_{0}= & \left(d_{k} a_{2}^{0,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} a_{2}^{0, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} a_{2}^{0, i^{\prime \prime}}\right) \\
& +\left(d_{2 k-1} a_{2}^{0,0}+d_{2 k-2} a_{2}^{0,1}+\cdots, \ldots\right)+\cdots \\
& +\left(d_{2 k-1} a_{3}^{0,0}+d_{2 k-2} a_{3}^{0,1}+\cdots, \ldots\right)+\cdots
\end{aligned}
$$

Since $d^{2} \omega_{0}=0$, we have

$$
\left(d_{k} a_{2}^{0,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} a_{2}^{0, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} a_{2}^{0, i^{\prime \prime}}\right)=\delta\left(a_{2}^{0}\right)=0
$$

with $a_{2}^{0}=\left(a_{2}^{0,0}, \ldots, a_{2}^{0, k-2}\right) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j} V$. Consequently a_{2}^{0} is a δ-cocycle.

Claim 1. a_{2}^{0} is an δ-coboundary.
Proof. Recall first that the general $r^{t h}$-term of the spectral sequence (6) is given by the formula:

$$
E_{r}^{p, q}=Z_{r}^{p, q} / Z_{r-1}^{p+1, q-1}+B_{r-1}^{p, q}
$$

where

$$
Z_{r}^{p, q}=\left\{x \in\left[F^{p}(\Lambda V)\right]^{p+q} \mid d x \in\left[F^{p+r}(\Lambda V)\right]^{p+q+1}\right\}
$$

and

$$
B_{r}^{p, q}=d\left(\left[F^{p-r}(\Lambda V)\right]^{p+q-1}\right) \cap F^{p}(\Lambda V)=d\left(Z_{r-1}^{p-r+1, q+r-2}\right)
$$

Recall also that the differential $d_{r}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}$ in $E_{r}^{*, *}$ is induced from the differential d of $(\Lambda V, d)$ by the formula $d_{r}\left([v]_{r}\right)=[d v]_{r}, v$ being any representative in $Z_{r}^{p, q}$ of the class $[v]_{r}$ in $E_{r}^{p, q}$.

We still assume that $\operatorname{dim} H^{N}(\Lambda V, \delta)=1$ and adopt notations of \S 4.1.1.
Notice then $\omega_{0} \in Z_{2}^{p, q}$ and it represents a non-zero class $\left[\omega_{0}\right]_{2}$ in $E_{2}^{p, q}$. Otherwise $\omega_{0}=\omega_{0}^{\prime}+d\left(\omega_{0}^{\prime \prime}\right)$, where $\omega_{0}^{\prime} \in Z_{1}^{p+1, q-1}$ and $\omega_{0}^{\prime \prime} \in B_{1}^{p, q}$, so that $\alpha=\left[\omega_{0}\right]=\left[\omega_{0}^{\prime}-(d-\delta)\left(\omega_{0}^{\prime \prime}\right)\right]$. But $\omega_{0}^{\prime}-(d-\delta)\left(\omega_{0}^{\prime \prime}\right) \in \Lambda^{\geq r+1}$ is a contradiction to the definition of ω_{0}. Now, using the isomorphism $E_{2}^{*, *} \cong H^{*, *}(\Lambda V, \delta)$, we deduce that, $\left[\omega_{0}\right]_{2} \in E_{2}^{p, q}$ (being the only generating element) must survive to $E_{3}^{p, q}$, otherwise, the spectral sequence fails to converge. Whence $d_{2}\left(\left[\omega_{0}\right]_{2}\right)=\left[a_{2}^{0}\right]_{2}=0$ in $E_{2}^{p+2, q-1}$, i.e., $a_{2}^{0} \in Z_{1}^{p+3, q-2}+B_{1}^{p+2, q-1}$. However $a_{2}^{0} \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j} V$, so $a_{2}^{0} \in B_{1}^{p+2, q-1}$, that is $a_{2}^{0}=d(x), \quad x \in$ $\bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+1)+j} V$. By wordlength argument, we have necessary $a_{2}^{0}=\delta(x)$, which finishes the proof of Claim 1.

Notice that this is the first obstruction to [ω_{0}] to represent a non zero class in the term $E_{3}^{*, *}$ of (6). The others will appear progressively as one advances in the algorithm.

Let then $b_{2} \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)-(k-1)+j} V$ such that $a_{2}^{0}=\delta\left(b_{2}\right)$ and put $\omega_{1}=\omega_{0}-b_{2}$. Reconsider the previous calculation for it:

$$
\begin{aligned}
d \omega_{1} & =d \omega_{0}-d b_{2} \\
& =\left(a_{2}^{0}+a_{3}^{0}+\cdots+a_{t+l}^{0}\right)-\left(d_{k} b_{2}+d_{4} b_{2}+\cdots\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& d_{k} b_{2}=d_{k}\left(b_{2}^{0}, b_{2}^{1}, \ldots, b_{2}^{k-2}\right)=\left(d_{k} b_{2}^{0}, d_{k} b_{2}^{1}, \ldots, d_{k} b_{2}^{k-2}\right) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j} V \\
& d_{k+1} b_{2}= \\
& \quad=d_{k+1}\left(b_{2}^{0}, b_{2}^{1}, \ldots, b_{2}^{k-2}\right) \\
& =\left(d_{k+1} b_{2}^{0}, d_{k+1} b_{2}^{1}, \ldots, d_{k+1} b_{2}^{k-2}\right) \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+2)+j+1} V
\end{aligned}
$$

This implies that

$$
\begin{aligned}
d \omega_{1}= & a_{2}^{0}+a_{3}^{0}+\cdots+a_{t+l}^{0}-\left(d_{k} b_{2}^{0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} b_{2}^{i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} b_{2}^{i^{\prime \prime}}\right) \\
& -\left(d_{2 k-1} b_{2}^{0}+\cdots, \ldots\right) \\
= & a_{2}^{0}-\delta\left(b_{2}\right)+a_{3}^{0}-\left(d_{2 k-1} b_{2}^{0}+\cdots, \ldots\right)+\cdots \\
= & a_{3}^{0}-\left(d_{2 k-1} b_{2}^{0}+\cdots, \ldots\right)+\cdots,
\end{aligned}
$$

and then:

$$
d \omega_{1}=a_{3}^{1}+a_{4}^{1}+\cdots+a_{t+l}^{1}, \quad \text { with } \quad a_{i}^{1} \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+i)+j} V
$$

So,

$$
\begin{aligned}
d^{2} \omega_{1}= & d a_{3}^{1}+d a_{4}^{1}+\cdots+d a_{t+l}^{1} \\
= & \left(d_{k} a_{3}^{1,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} a_{3}^{1, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} a_{3}^{1, i^{\prime \prime}}\right) \\
& +\left(d_{2 k-1} a_{3}^{1,0}+\cdots, \ldots\right)+\cdots
\end{aligned}
$$

Since $d^{2} \omega_{1}=0$, by wordlength reasons,

$$
\left(d_{k} a_{3}^{1,0}, \sum_{i^{\prime}+i^{\prime \prime}=1} d_{k+i^{\prime}} a_{3}^{1, i^{\prime \prime}}, \ldots, \sum_{i^{\prime}+i^{\prime \prime}=k-2} d_{k+i^{\prime}} a_{3}^{1, i^{\prime \prime}}\right)=\delta\left(a_{3}^{1}\right)=0 .
$$

We claim that $a_{3}^{1}=\delta\left(b_{3}\right)$ and consider $\omega_{2}=\omega_{1}-b_{3}$.
We continue this process defining inductively $\omega_{j}=\omega_{j-1}-b_{j+1}, j \leq t+l-2$ such that:

$$
d \omega_{j}=a_{j+2}^{j}+a_{j+3}^{j}+\cdots+a_{t+l}^{j}, \quad \text { with } \quad a_{i}^{j} \in \bigoplus_{h=0}^{k-2} \Lambda^{(k-1)(p+i)+h} V
$$

and a_{j+2}^{j} a δ-cocycle.

Claim 2. a_{j+2}^{j} is a δ-coboundary, i.e., there is

$$
b_{j+2} \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1)(p+j+2)-(k-1)+j} V
$$

such that $\delta\left(b_{j+2}\right)=a_{j+2}^{j} ; 1 \leq j \leq t+l-2$.
Proof. We proceed in the same manner as for the first claim. Indeed, we have clearly for any $1 \leq j \leq t+l-2, \omega_{j}=\omega_{j-1}-b_{j+1}=\omega_{0}-b_{2}-b_{3}-\cdots-b_{j+1} \in$ $Z_{j+2}^{p, q}$ and it represents a non zero class $\left[\omega_{j}\right]_{j+2}$ in $E_{j+2}^{p, q}$ which is also one dimensional. Whence as in Claim 1, we conclude that, a_{j+2}^{j} is a δ-coboundary for all $1 \leq j \leq t+l-2$.

Consider $\omega_{t+l-1}=\omega_{t+l-2}-b_{t+l}$, where $\delta\left(b_{t+l}\right)=a_{t+l}^{t+l-2}$. Notice that $\left|d \omega_{t+l-1}\right|=\left|d \omega_{t+l-2}\right|=N+1$, but by the hypothesis on t, we have $d\left(\omega_{t+l-2}\right)=$ a_{t+l}^{t+l-2} and then

$$
\left|d\left(\omega_{t+l-2}-b_{t+l}\right)\right|=\left|a_{t+l}^{t+l-2}-\delta\left(b_{t+l}\right)-(d-\delta) b_{t+l}\right|=\left|-(d-\delta) b_{t+l}\right|>N+1 .
$$

It follows that $d \omega_{t+l-1}=0$, that is ω_{t+l-1} is a d-cocycle. But it can't be a d-coboundary. Indeed suppose that $\omega_{t+l-1}=\left(\omega_{0}^{0}+\omega_{0}^{1}+\cdots+\omega_{0}^{l}\right)-\left(b_{2}+\right.$ $b_{3}+\cdots+b_{t+l}$), were a d-coboundary, by wordlength reasons, ω_{0}^{0} would be a δ-coboundary, i.e., there is $x \in \bigoplus_{j=0}^{k-2} \Lambda^{(k-1) p-(k-1)+j} V$ such that $\delta(x)=\omega_{0}^{0}$. Then

$$
\omega_{0}=\delta(x)+\omega_{0}^{1}+\cdots+\omega_{0}^{l} .
$$

Since $\delta\left(\omega_{0}\right)=0$, we would have $\delta\left(\omega_{0}^{1}+\cdots+\omega_{0}^{l}\right)=0$ and then $\left[\omega_{0}\right]=\left[\omega_{0}^{1}+\cdots+\right.$ $\left.\omega_{0}^{l}\right]$. But $\omega_{0}^{1}+\cdots+\omega_{0}^{l} \in \Lambda^{>r} V$, contradicts the property of ω_{0}. Consequently ω_{t+l-1} represents the fundamental class of $(\Lambda V, d)$.

Finally, since $\omega_{t+l-1} \in \Lambda^{\geq r} V$ we have

$$
e_{0}(\Lambda V, d) \geq r .
$$

4.1.2. For the second inequality. Denote $s=e_{0}(\Lambda V, d)$ and let $\omega \in \Lambda^{\geq s} V$ be a cocycle representing the generating class α of $H^{N}(\Lambda V, d)$.

Write $\omega=\omega_{0}+\omega_{1}+\cdots+\omega_{t}, \omega_{i} \in \Lambda^{s+i} V$. We deduce that:

$$
\begin{aligned}
d \omega & =\left(d_{k} \omega_{0}+\sum_{i+i^{\prime}=1} d_{k+i} \omega_{i^{\prime}}+\cdots+\sum_{i+i^{\prime}=k-2} d_{k+i} \omega_{i^{\prime}}\right)+d_{k} \omega_{k-1}+d_{2 k-1} \omega_{0}+\cdots \\
& =\delta\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right)+\cdots
\end{aligned}
$$

Since $d \omega=0$, by wordlength reasons, it follows that $\delta\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right)=$ 0. If $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right)$, were a δ-boundary, i.e., $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right)=\delta(x)$, then

$$
\begin{aligned}
\omega-d x & =\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right)-\delta(x)+\left(\omega_{k-1}+\cdots+\omega_{t}\right)-(d-\delta)(x) \\
& =\left(\omega_{k-1}+\cdots+\omega_{t}\right)-(d-\delta)(x)
\end{aligned}
$$

so, $\omega-d x \in \Lambda^{\geq s+k-1} V$, which contradicts the fact $s=e_{0}(\Lambda V, d)$. Hence $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right)$ represents the generating class of $H^{N}(\Lambda V, \delta)$. But $\left(\omega_{0}, \omega_{1}, \ldots, \omega_{k-2}\right) \in \Lambda^{\geq s} V$ implies that $s \leq r$. Consequently, $e_{0}(\Lambda V, d) \leq r$.

Thus, we conclude that

$$
e_{0}(\Lambda V, d)=r
$$

4.2. Proof of Theorem 2. It suffices to remark that since $(\Lambda V, d)$ is elliptic, it has Poincaré duality property and then $\operatorname{dim} H^{N}(\Lambda V, d)=1$. The convergence of (6) implies that $\operatorname{dim} E_{\infty}^{*, *}=1$. Hence there is a unique (p, q) such that $p+q=N$ and $E_{\infty}^{*, *}=E_{\infty}^{p, q}$. Consequently only one of the generating classes $\alpha_{1}, \ldots, \alpha_{m}$ had to survive to E_{∞}. Let α_{j} this representative class and $\left(p_{j}, q_{j}\right)$ its pair of degrees.

Example 1. Let $d=\sum_{i \geq 3} d_{i}$ and $(\Lambda V, d)$ be the model defined by $V^{\text {even }}=$ $<x_{2}, x_{2}^{\prime}>, V^{\text {odd }}=<y_{5}, y_{7}, y_{7}^{\prime}>, d x_{2}=d x_{2}^{\prime}=0, d y_{5}=x_{2}^{3}, d y_{7}=x_{2}^{4}$ and $d y_{7}^{\prime}=x_{2}^{2} x_{2}^{, 2}$, in which subscripts denote degrees.

For $k \geq 3, l \geq 0$, we have

$$
x_{2}^{k} x_{2}^{, l}=x_{2}^{k-3} x_{2}^{3} x_{2}^{l}=d\left(y_{5} x_{2}^{k-3} x_{2}^{, l}\right)
$$

For $k \geq 4, l \geq 0$,

$$
x_{2}^{, k} x_{2}^{l}=x_{2}^{l} x_{2}^{, k-4} x_{2}^{4}=d\left(x_{2}^{l} x_{2}^{, k-4} y_{7}\right)
$$

Clearly we have

$$
\operatorname{dim} H(\Lambda V, d)<\infty \text { and } \operatorname{dim} H\left(\Lambda V, d_{3}\right)=\infty
$$

Using A. Murillo's algorithm (cf. §2) the matrix determining the fundamental class is:

$$
A=\left(\begin{array}{cc}
x_{2}^{2} & 0 \\
0 & x_{2}^{, 3} \\
x_{2} x_{2}^{, 2} & 0
\end{array}\right)
$$

so, $\omega=-x_{2}^{2} x_{2}^{3} y_{7}^{\prime}+x_{2} x_{2}^{5} y_{5} \in \Lambda{ }^{\geq 6} V$ is a generator of this fundamental cohomology class.

It follows that $e_{0}(\Lambda V, d)=6 \neq m+n(k-2)$.

Example 2. Let $d=\sum_{i \geq 3} d_{i}$ and $(\Lambda V, d)$ be the model defined by $V^{\text {even }}=$ $<x_{2}, x_{2}^{\prime}>, V^{\text {odd }}=<y_{5}, y_{9}, y_{9}^{\prime}>, d x_{2}=d x_{2}^{\prime}=0, d y_{5}=x_{2}^{3}, d y_{9}=x_{2}^{, 5}$ and $d y_{9}^{\prime}=x_{2}^{3} x_{2}^{, 2}$.

Clearly we have

$$
\operatorname{dim} H(\Lambda V, d)<\infty \text { and } \operatorname{dim} H\left(\Lambda V, d_{3}\right)=\infty
$$

Using A. Murillo's algorithm (cf. §2) the matrix determining the fundamental class is:

$$
A=\left(\begin{array}{cc}
x_{2}^{2} & 0 \\
0 & x_{2}^{4} \\
x_{2}^{2} x_{2}^{2} & 0
\end{array}\right)
$$

so, $\omega=-x_{2}^{2} x_{2}^{4} y_{9}^{\prime}+x_{2}^{2} x_{2}^{6} y_{5} \in \Lambda \geq^{\geq 7} V$ is a generator of this fundamental cohomology class.

It follows that $e_{0}(\Lambda V, d)=7 \neq m+n(k-2)$.

References

[1] O. Cornea, G. Lupton, J. Oprea, D. Tanré, "Lusternik-Schnirelmann Category", Mathematical Surveys and Monographs 103, American Mathematical Society, Providence, RI, 2003.
[2] Y. Félix, S. Halperin, Rational LS-category and its applications, Trans. Amer. Math. Soc. 273 (1) (1982), 1-37.
[3] Y. Félix, S. Halperin, J.-C. Thomas, "Rational Homotopy Theory", Graduate Texts in Mathematics 205, Springer-Verlag, New York, 2001.
[4] Y. Félix, S. Halperin, J. M. Lemaire, The rational LS-category of products and Poincaré duality complexes, Topology 37 (4) (1998), 749-756.
[5] Y. Félix, S. Halperin, J.-C. Thomas, "Gorenstein Spaces", Adv. in Math. 71 (1) (1988), 92-112.
[6] S. HALPERIN, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83 (3) (1992), 237-282.
[7] I. M. James, Lusternik-Schnirelmann category, in "Handbook of Algebraic Topology", North-Holland, Amsterdam, 1995, 1293-1310.
[8] L. Lechuga, A. Murillo, A formula for the rational LS-category of certain spaces, Ann. Inst. Fourier (Grenoble) 52 (5) (2002), 1585-1590.
[9] A. Murillo, The top cohomology class of certain spaces, J. Pure Appl. Algebra 84 (2) (1993), 209-214.
[10] A. Murillo, The evaluation map of some Gorenstein algebras, J. Pure Appl. Algebra 91 (1-3) (1994), 209-218.
[11] L. Lechuga, A. Murillo, The fundamental class of a rational space, the graph coloring problem and other classical decision problems, Bull. Belgian Math. Soc. 8 (3) (2001), 451-467.
[12] L. Lechuga, A. Murillo, Complexity in rational homotopy, Topology 39 (1) (2000), 89-94.
[13] Y. Rami, K. Boutahir, On L.S.-category of a family of rational elliptic spaces, http://arxiv.org/abs/1310.6247 (submitted for publication).
[14] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 269-331.

