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Abstract : In this paper, we study the linearization theorem for the weighted space Hw(U ;F )
of holomorphic functions defined on an open subset U of a Banach space E with values in
a Banach space F . After having introduced a locally convex topology τM on the space
Hw(U ;F ), we show that (Hw(U ;F ), τM) is topologically isomorphic to (L(Gw(U);F ), τc)
where Gw(U) is the predual of Hw(U) consisting of all linear functionals whose restrictions
to the closed unit ball of Hw(U) are continuous for the compact open topology τ0. Finally,
these results have been used in characterizing the approximation property for the space
Hw(U) and its predual for a suitably restricted weight w.
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1. Introduction

Approximation properties for various classes of holomorphic functions have
been studied earlier by using linearization techniques in [6], [7], [8], [18], etc. If
E and F are Banach spaces and U is an open subset of E, then the linearization
results help in identifying a given class of holomorphic functions defined on U
with values in F , with the space of continuous linear mappings from a certain
Banach space G to F ; indeed, a holomorphic mapping is being identified with
a linear operator through linearization results. This study for various classes
of holomorphic mappings have been carried out by Beltran [2], Galindo,
Garcia and Maestre [11], Mazet [17], Mujica [18, 19, 20] and several other
mathematicians.

On the other hand, whereas the weighted spaces of holomorphic functions
defined on an open subset of the finite dimensional space CN , N ∈ N (set of
natural numbers) have been investigated in [3], [4], [5], [24], etc., the infinite
dimensional case was considered by Garcia, Maestre and Rueda [12], Jorda
[15], Rueda [25]. The present paper is an attempt to study approximation
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properties for weighted spaces of holomorphic mappings. Indeed, after having
given preliminaries in Section 2, we prove in Section 3 a linearization theorem
for the weighted space Hw(U ;F ) of holomorphic functions defined on U with
values in F . As an application of this result, we show that E is topologically
isomorphic to a complemented subspace of Gw(U) for those weights w for
which Hw(U) contains all the polynomials. In case of a weight being given by
an entire function with positive coefficients, we also obtain estimates for the
norm of the topological isomorphism.

In Section 4 we define a locally convex topology τM on the space Hw(U ;F )
and show the topological isomorphism between the spaces (Hw(U ;F ), τM) and
(L(Gw(U);F ), τc) for a weight w on an open set U .

Finally, in Section 5 we consider the applications of results proved in Sec-
tions 3 and 4 to obtain characterizations of the approximation property for the
space Hw(U) and its predual Gw(U); for instance, we prove that Hw(U) has
the approximation property if and only if it satisfies the holomorphic analogue
of Theorem 2.4(iv), i.e, for any Banach space F , each mapping in Hw(U ;F )
with relatively compact range belongs to the ∥ · ∥w-closure of the subspace of
Hw(U ;F ) consisting of finite dimensional holomorphic mappings. Besides, it
is proved that for a suitably restricted w and U , Gw(U) has the approximation
property if and only if E has the approximation property.

2. Preliminaries

Throughout this paper, the symbols N,N0 and C respectively denote the
set of natural numbers, N∪{0} and the complex plane. The letters E and F are
used for complex Banach spaces. The symbols E′ and E∗ denote respectively
the algebraic dual and topological dual of E. We denote by U a non-empty
open subset of E; and by UE and BE , the open and closed unit ball of E.
For a locally convex space X, we denote by X∗

β and X∗
c , the topological dual

X∗ of X equipped respectively with the strong topology, i.e., the topology
of uniform convergence on all bounded subsets of X, and the compact open
topology.

For each m ∈ N, L(mE;F ) is the Banach space of all continuous m-linear
mappings from E to F endowed with its natural sup norm. For m=1, we write
L(E,F ) for L(mE;F ). A mapping P : E → F is said to be a continuous
m-homogeneous polynomial if there exists a continuous m-linear map A ∈
L(mE;F ) such that

P (x) = A(x, . . . , x), x ∈ E.
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In this case, we also write P = Â. The space of all continuous m-homogeneous
polynomials from E to F is denoted by P(mE;F ) which is a Banach space
endowed with the sup norm. A continuous polynomial P is a mapping from E
into F which can be represented as a sum P = P0 + P1 + · · ·+ Pk with Pm ∈
P(mE;F ) for m = 0, 1, . . . , k. The vector space of all continuous polynomials
from E into F is denoted by P(E;F ).

A polynomial P ∈ P(mE;F ) is said to be of finite type if it is of the form

P (x) =
k∑

j=1

ϕm
j (x)yj , x ∈ E,

where ϕj ∈ E∗ and yj ∈ F , 1 ≤ j ≤ k. We denote by Pf (
mE;F ) the

space of finite type polynomials from E into F . A continuous polynomial P
from E into F is said to be of finite type if it has a representation as a sum
P = P0 + P1 + · · ·+ Pk with Pm ∈ Pf (

mE;F ) for m = 0, 1, . . . , k. The vector
space of continuous polynomials of finite type from E into F is denoted by
Pf (E;F ).

A mapping f : U → F is said to be holomorphic, if for each ξ ∈ U , there
exists a ball B(ξ, r) with center at ξ and radius r > 0, contained in U and a
sequence {Pm}∞m=1 of polynomials with Pm ∈ P(mE;F ), m ∈ N0 such that

f(x) =

∞∑
m=0

Pm(x− ξ), (2.1)

where the series converges uniformly for x ∈ B(ξ, r). The series in (2.1) is
called the Taylor series of f at ξ and in analogy with complex variable case,
it is written as

f(x) =

∞∑
m=0

1

m!
d̂mf(ξ)(x− ξ), (2.2)

where Pm = 1
m! d̂

mf(ξ).

The space of all holomorphic mappings from U to F is denoted byH(U ;F ).
It is usually endowed with the topology τ0 of uniform convergence on compact
subsets of U and (H(U ;F ), τ0) is a Fréchet space when U is an open subset
of a finite dimensional Banach space. In case U = E, the class H(E;F ) is
the space of entire mappings from E into F . For F = C, we write H(U) for
H(U ;C). We refer to [1], [9], [19] and [22] for notations and various results on
infinite dimensional holomorphy.
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If f ∈ H(U ;F ) and n ∈ N0, we write Snf(x) =
∑n

m=0
1
m! d̂

mf(0)(x) and
Cnf(x) =

1
n+1

∑n
k=0 Skf(x). It has been shown in [18] that

Sn(f)(x) =
1

π

∫ π

−π
f(eitx)Dn(t)dt and Cn(f)(x) =

1

π

∫ π

−π
f(eitx)Kn(t)dt,

where Dn(t) and Kn(t) are respectively the Dirichlet and Fejer kernels given
as follows:

Dn(t) =
1

2
+

n∑
k=1

cos kt and Kn(t) =
1

n+ 1

n∑
k=0

Dk(t).

A subset A of U is called U -bounded if A is bounded and dist(A, ∂U) > 0,
where ∂U denotes the boundary of U . A mapping f in H(U ;F ) is of bounded
type if it maps U -bounded sets to bounded sets. The space of holomor-
phic mappings of bounded type is denoted by Hb(U ;F ). The space Hb(U ;F )
endowed with the topology τb, the topology of uniform convergence on U -
bounded sets, is a Fréchet space, cf. [1, p. 81]. For U = UE , the following
result is quoted from [27].

Theorem 2.1. If {xn} is a sequence of distinct points in UE such that

lim
n→∞

dist({xn}, ∂UE) = 0

and {un} is a sequence of vectors in F then there exists f ∈ Hb(UE ;F ) such
that

f(xn) = un, n = 1, 2, . . .

A weight w on U is a continuous and strictly positive function satisfying

0 < inf
A

w(x) ≤ sup
A

w(x) < ∞ (2.3)

for each U -bounded set A. A weight w defined on an open balanced subset U
of E is said to be radial if w(tx) = w(x) for all x ∈ U and t ∈ C, with |t| = 1;
and on E it is said to be rapidly decreasing if supx∈E w(x)∥x∥m < ∞ for each
m ∈ N0.

Corresponding to a weight function w, the weighted space of holomorphic
functions is defined as

Hw(U ;F ) =
{
f ∈ H(U ;F ) : ∥f∥w = sup

x∈U
w(x)∥f(x)∥ < ∞

}
.
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The space (Hw(U ;F ), ∥ ·∥w) is a Banach space and Bw denotes its closed unit
ball. For F = C, we write Hw(U) = Hw(U ;C). It can be easily seen that the
norm topology τ∥·∥w on Hw(U ;F ) is finer than the topology induced by τ0. In
case, P(E) ⊂ Hw(U), we have the following result from [12].

Proposition 2.2. The topology τ∥·∥w restricted to P(mE) coincides with
the norm topology.

Since the closed unit ball Bw of Hw(U) is τ0-compact by the Ascoli’s
theorem, the predual of Hw(U) is given by

Gw(U) =
{
ϕ ∈ Hw(U)′ : ϕ|Bw is τ0 − continuous

}
by the Ng Theorem; cf. [23].

Further, we consider the locally convex topology τbc on Hw(U) for which
a set A ⊂ Hw(U) is τbc open if and only if A∩B is open in (B,B|τ0) for each
∥ · ∥w-bounded subset B of Hw(U). Concerning this topology, we have the
following result from [25].

Proposition 2.3. Let U be an open subset of a Banach space E and w
be a weight on U . Then

(i) (Hw(U), ∥ · ∥w) and (Hw(U), τbc) have the same bounded sets.

(ii) Gw(U) = (Hw(U), τbc)
∗
β .

(iii) (Hw(U), τbc) = Gw(U)∗c .

An operator T in L(E;F ) is said to have a finite rank if the range of T is
finite dimensional and, an operator T in L(E;F ) is called compact if T (BE)
is a relatively compact subset of F . We denote by F(E;F ) and K(E;F ),
respectively, the space of all finite rank operators and compact operators from
E into F .

A Banach space E is said to have the approximation property if for every
compact set K of E and ϵ > 0, there exists an operator T ∈ F(E;E) such
that

sup
x∈K

∥T (x)− x∥ < ϵ.

The following characterization of the approximation property due to
Grothendieck, is given in [16].
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Theorem 2.4. For a Banach space E, the following are equivalent:

(i) E has the approximation property.

(ii) For every Banach space F , F(E;F )
τc

= L(E;F ).

(iii) For every Banach space F , F(F ;E)
τc

= L(F ;E).

(iv) For every Banach space F , F(F ;E)
∥·∥

= K(F ;E).

Proposition 2.5. Let E be a Banach space. Then E∗ has the approxima-

tion property if and only if F(E;F )
∥·∥

= K(E;F ), for every Banach space F .

Proposition 2.6. Let E be a Banach space with the approximation prop-
erty. Then each complemented subspace of E also has the approximation
property.

3. Linearization theorem for Hw(U ;F ) and its applications

In this section, we consider the linearization theorem for Hw(U ;F ) and
some of its applications. Let us begin with

Theorem 3.1. (Linearization Theorem) For an open subset U of a Ba-
nach space E and a weight w on U , there exists a Banach space Gw(U) and
a mapping ∆w ∈ Hw(U ;Gw(U)) with the following property: for each Ba-
nach space F and each mapping f ∈ Hw(U ;F ), there is a unique operator
Tf ∈ L(Gw(U);F ) such that Tf ◦ ∆w = f . The correspondence Ψ between
Hw(U ;F ) and L(Gw(U);F ) given by

Ψ(f) = Tf

is an isometric isomorphism. The space Gw(U) is uniquely determined up to
an isometric isomorphism by these properties.

Proof. Though the proof of this result is similar to the one given in [2],
we sketch the same for the sake of completeness.

Let Bw be the closed unit ball of Hw(U). Then it is τ0-compact by Ascoli’s
Theorem. Hence by the Ng’s Theorem, Hw(U) is a dual Banach space, its
predual being given by

Gw(U) = {h ∈ Hw(U)′ : h|Bw is τ0-continuous}.
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Further the mapping Jw
U : Hw(U) → Gw(U)∗, Jw

U (f) = f̂ with f̂(h) = h(f),
f ∈ Hw(U) and h ∈ Gw(U), is an isometric isomorphism.

Now define ∆w : U → Gw(U) as ∆w(x) = δx, where δx(f) = f(x), f ∈
Hw(U).

Since for x ∈ U and f ∈ Hw(U), Jw
U (f) ◦∆w(x) = Jw

U (f)(δx) = f(x) and
Jw
U (Hw(U)) = Gw(U)∗, ∆w is weakly holomorphic and hence holomorphic, cf.

[1, p.66]. In order to show that ∆w ∈ Hw(U ;Gw(U)), fix x0 ∈ U . Then for
f ∈ Hw(U), |δx0(f)| = |f(x0)| ≤ 1

w(x0)
∥f∥w implies ∥δx0∥ ≤ 1

w(x0)
. Hence

∥∆w∥w = sup
x∈U

w(x)∥δx∥ ≤ 1. Consequently, ∆w ∈ Hw(U ;Gw(U)).

Corresponding to f in Hw(U ;F ), we now define Tf . For the case F = C,
define Tf = Jw

U (f). Then Tf ◦∆w(f) = f and ∥Tf∥ = ∥f∥w.
In case of an arbitrary Banach space F , we first define Tf : Gw(U) → F ∗∗

as

Tf (h)(ϕ) = h(ϕ ◦ f), h ∈ Gw(U), ϕ ∈ F ∗.

Note that Tf is, indeed, F -valued; for Tf (δx) = f(x) ∈ F and span{δx : x ∈
U} = Gw(U). Further,

∥f∥w = sup
x∈U

w(x)∥f(x)∥ = sup
x∈U

w(x)∥Tf (δx)∥ ≤ ∥Tf∥

and

∥Tf (h)(ϕ)∥ ≤ ∥h∥∥ϕ∥∥f∥w, h ∈ Gw(U), ϕ ∈ F ∗.

Thus ∥Tf∥ = ∥f∥w and Ψ is an isometric isomorphism.

Remark 3.2. If (w∆w)(x) = w(x)∆w(x), x ∈ U , then

Jw
U (Bw) =

{
(w∆w)(x) : x ∈ U

}◦
.

Consequently, (Jw
U (Bw))

◦ = BGw(U) = Γ{(w∆w)(x) : x ∈ U}, where Γ(A)
denotes the absolutely convex closed hull of A.

In case the weight w is given by an entire function γ with positive co-
efficients, i.e., w(x) = 1

γ(∥x∥) , x ∈ E, we write Hγ for Hw; and the above
linearization theorem takes the following form:

Theorem 3.3. Let γ be an entire function with positive coefficients. Then
for an open subset U of a Banach space E and weight w, w(x) = 1

γ(∥x∥) , x ∈
U , there exists a Banach space Gγ(U) and a mapping ∆γ ∈ Hγ(U ;Gγ(U)),
∥∆γ∥ = 1 with the following property: for each Banach space F and each
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mapping f ∈ Hγ(U ;F ), there is a unique operator Tf ∈ L(Gγ(U);F ) such
that Tf ◦∆γ = f . The correspondence Ψ between Hγ(U ;F ) and L(Gγ(U);F )
given by

Ψ(f) = Tf

is an isometric isomorphism. The space Gγ(U) is uniquely determined up to
an isometric isomorphism by these properties.

Proof. It suffices to prove here that ∥∆γ∥ = 1. Let γ(z) =
∑∞

n=0 anz
n

with an > 0 for each n ∈ N0. Fix x0 ∈ E. Choose ϕ ∈ E∗ with ∥ϕ∥ = 1 and
|ϕ(x0)| = ∥x0∥. Define f : E → C as

f(x) =
∞∑
n=1

anϕ
n(x), x ∈ E.

Clearly, f ∈ Hγ(E) and ∥f∥γ ≤ 1. Since |f(x0)| = γ(∥x0∥), we have

∥δx0∥ = sup
∥h∥γ≤1

|h(x0)| = γ(∥x0∥).

Thus ∥∆γ∥ = 1.

Before we consider the applications of the above linearization theorem, let
us prove results related to the inclusion of polynomials in the weighted space
of holomorphic mappings.

Proposition 3.4. Let w be a weight defined on an open subset U of a
Banach space E. Then, for each m ∈ N, the following are equivalent:

(a) P(mE;F ) ⊂ Hw(U ;F ) for each Banach space F .

(b) P(mE) ⊂ Hw(U).

Proof. (a)⇒(b). Immediate.
(b)⇒(a). Consider Q ∈ P(mE;F ). For x ∈ U , choose ϕx ∈ F ∗ such that
∥ϕx∥ = 1 and ϕx(Q(x)) = ∥Q(x)∥. Write A = {ϕx ◦Q : x ∈ U}. Then A is a
∥·∥-bounded subset of P(mE) since ∥ϕx◦Q∥ ≤ ∥Q∥. Hence by Proposition 2.2,
A is ∥·∥w-bounded. Consequently,

∥Q∥w = sup
x∈U

w(x)|ϕx(Q(x))| ≤ sup
x∈U

sup
y∈U

w(y)|ϕx(Q(y))| < ∞.

Thus Q ∈ Hw(U ;F ) and (a) follows.
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Proposition 3.5. Let w be a weight on an open subset U of a Banach
space E. Then

(a) If U is bounded, P(E) ⊂ Hw(U) if and only if w is bounded.

(b) For U = E, P(E) ⊂ Hw(E) if and only if w is rapidly decreasing.

Proof. (a) Since constant functions are in P(E), the proof follows.
(b) This is a particular case of a result proved in [12, p. 6], by taking the
family V consisting of a single weight.

In the remaining part of this section, we consider weights w defined on an
open subset U of E so that the space P(E,F ) is contained in Hw(U,F ), for
which it suffices to consider the scalar case in view of Proposition 3.4.

Proposition 3.6. Let w be a weight defined on an open subset U of a
Banach space E such that P(E) ⊂ Hw(U). Then E is topologically isomorphic
to a complemented subspace of Gw(U).

Proof. Since the inclusion map I from U to E is a member of Hw(U ;E),
by Theorem 3.1, there exists T ∈ L(Gw(U);E) and ∆w ∈ Hw(U ;Gw(U)) such
that

T ◦∆w(x) = Iw(x) = x, x ∈ U.

Fix a ∈ U and write S = d1∆w(a). Note that S ∈ L(E;Gw(U)). Further, by
Cauchy’s integral formula,

S(t) =
1

2πi

∫
|ζ|=r

∆w(a+ ζt)

ζ2
dζ, t ∈ E,

where r > 0 is chosen so that {a+ ζt : |ζ| ≤ r} ⊂ U . Now

T ◦ S(t) = 1

2πi

∫
|ζ|=r

(a+ ζt)

ζ2
dζ = t, t ∈ E.

This gives ∥S(t)∥ ≥ 1
∥T∥∥t∥ and so, S is injective and S−1 is continuous.

Define P = S ◦T . Then P is a projection map from Gw(U) into itself. Also
S(E) = P (Gw(U)). Hence S is a topological isomorphism between E and a
complemented subspace of Gw(U).

For the weight w as considered in Theorem 3.3, we have
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Proposition 3.7. Let γ be an entire function with positive coefficients
and t0 be a positive real satisfying the equation γ(t) = tγ

′
(t). Assume that

U is an open subset of a Banach space E for which {x ∈ E : ∥x∥ ≤ t0} ⊂ U.
Then there exists a topological isomorphism S between E and a complemented
subspace of Gγ(U) with ∥S∥ = γ(t0)

t0
.

Proof. Since the weight given by γ is bounded, I ∈ Hγ(U ;E). By The-
orem 3.3, there exists T ∈ L(Gγ(U);E) and ∆γ ∈ Hγ(U ;Gγ(U)) such that
T ◦∆γ = I and ∥T∥ = ∥I∥γ . But

∥T∥ = ∥I∥γ = sup
x∈U

∥x∥
γ(∥x∥)

=
t0

γ(t0)
. (3.1)

Writing S for d1∆γ(0), by Cauchy’s inequality, we get

∥S∥ = ∥d1∆γ(0)∥ ≤ 1

t0
sup

∥x∥=t0

∥∆γ(x)∥ =
1

t0
sup

∥x∥=t0

∥δx∥ =
γ(t0)

t0
. (3.2)

Now proceeding as in the proof of Proposition 3.4, we have

T ◦ S(t) = t, ∀t ∈ E.

Consequently, by (3.1) and (3.2), we get

∥t∥ = ∥T ◦ S(t)∥ ≤ t0
γ(t0)

∥S(t)∥ ≤ ∥t∥, t ∈ E.

Hence,

∥S∥ =
γ(t0)

t0
.

Illustrating the above result, we have

Example 3.8. Let γ(z) = eτz, τ > 0. One can easily find that t0 = 1
τ .

In this case ∥I∥γ = 1
τe and ∥S∥ = τe. If τ = 1

e , S becomes an isometric
isomorphism.

For our next result, we make use of the following linearization theorem
quoted from [18] and proved by using tensor product techniques for locally
convex spaces in [26].
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Theorem 3.9. Let E be a Banach space and m ∈ N. Then there exists
a Banach space Q(mE) and a polynomial qm ∈ P(mE;Q(mE)) such that for
any Banach space F and each polynomial P ∈ P(mE;F ), there is a unique
operator TP ∈ L(Q(mE);F ) satisfying TP ◦ qm = P. The correspondence
Φ : P(mE;F ) → L(Q(mE);F ), Φ(P ) = TP is an isometric isomorphism and
the space Q(mE) is uniquely determined up to an isometric isomorphism.

In the statement of the above result, the space Q(mE) is defined as the
predual of P(mE), i.e., {h ∈ P(mE)′ : h|Bm is τ0-continuous}, where Bm is the
closed unit ball of P(mE). The map qm : E → Q(mE) is given by qm(x) = δx,
where δx(P ) = P (x), P ∈ P(mE) or equivalently qm(x) = x⊗ · · · ⊗ x, cf. [10,
p. 29]. For w and U as in Proposition 3.6, we prove

Proposition 3.10. The space Q(mE) is topologically isomorphic to a
complemented subspace of Gw(U).

Proof. Consider qm ∈ P(mE;Q(mE)). By Theorem 3.1, there exist Tm ∈
L(Gw(U);Q(mE)) and ∆w ∈ Hw(U ;Gw(U)) such that Tm ◦∆w = qm. Let Sm

be the m-th Taylor series coefficient of ∆w around ’a’, .i.e., Sm = 1
m! d̂

m∆w(a).
As Sm ∈ P(mE;Gw(U)), by Theorem 3.9 there exists Rm ∈ L(Q(mE);Gw(U))
such that Rm ◦ qm = Sm. Now,

Tm ◦Rm ◦ qm = Tm ◦ Sm =
1

m!
d̂m(Tm ◦∆w)(a) =

1

m!
d̂mqm(a).

As span{qm(x) : x ∈ E} = Q(mE), it follows that Tm ◦ Rm(u) = u, u ∈
Q(mE). Let Pm = Rm ◦ Tm. Then Pm is a projection map from Gw(U) into
itself and Rm is the topological isomorphism between Q(mE) and a comple-
mented subspace of Gw(U).

Proposition 3.11. For m ∈ N, there exists a topological isomorphism
Rm between the space Q(mE) and a complemented subspace of Gγ(U), for
any open subset U of E containing the set {x ∈ E : ∥x∥ ≤ r0}, r0 being a
positive real number satisfying the equation rγ′(r)−mγ(r) = 0 and r0 > m.

Further ∥Rm∥ = γ(r0)
rm0

.

Proof. As qm ∈ Hγ(U ;Q(mE)), by Theorem 3.3, there exist Tm ∈
L(Gγ(U);Q(mE)) and ∆γ ∈ Hγ(U ;Gγ(U)) such that Tm ◦ ∆γ = qm. Since

supx∈U
∥x∥m
γ(∥x∥) =

rm0
γ(r0)

, we have

∥qm∥γ = ∥Tm∥ =
rm0

γ(r0)
. (3.3)
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Now by Cauchy’s inequality, we get∥∥∥ 1

m!
d̂m∆γ(0)

∥∥∥ ≤ 1

rm0
sup

∥x∥=r0

∥∆γ(x)∥ =
γ(r0)

rm0
.

Continuing as in the proof of the above result, we have

Tm ◦Rm(u) = u, u ∈ Q(mE). (3.4)

By using (3.3) and (3.4), we get

∥u∥ = ∥Tm ◦Rm(u)∥ ≤ rm0
γ(r0)

∥Rm(u)∥ ≤ ∥u∥

for every u ∈ Q(mE). Thus ∥Rm∥ = γ(r0)
rm0

.

Considering the function given in Example 3.8, we have the following,
illustrating the above result

Example 3.12. If γ(z) = eτz, τ > 0, we find r0 = m
τ and, so ∥Rm∥ =

τmem

mm .

Also, by using the same argument as in Proposition 3.11, one can easily
check

Example 3.13. For n ∈ N, define w : UE → (0,∞) by w(x) = (1 −
∥x∥)n, x ∈ UE . Then

∥Rm∥ = (
n

m+ n
)n

for any m ∈ N.

4. The topology τM

In this section we introduce a locally convex topology τM on Hw(U ;F ) of
which the particular cases have been considered in [18] and [25]. For a finite
set A and r > 0, let us define

N(A, r) = {f ∈ Hw(U ;F ) : inf
x∈A

w(x) sup
y∈A

∥f(y)∥ ≤ r}.

Consider the class

U =

{ ∞∩
j=1

N(Aj , rj) : (Aj) varies over all sequences of finite subsets of U and

(rj) varies over all positive sequences diverging to infinity

}
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It can be easily checked that each member of U is balanced, convex and
absorbing. Thus it forms a fundamental neighborhood system at 0 for a
locally convex topology, which we denote by τM. Equivalently, this topology
is generated by the family{

pα,A : α = (αj) ∈ c+0 , A = (Aj), Aj being finite subset of U for each j
}

of seminorms given by

pα,A(f) = sup
j∈N

(
αj inf

x∈Aj

w(x) sup
y∈Aj

∥f(y)∥
)
.

These are the Minkowski functionals of members in U . For F = C, τM = τbc,
cf. [25, p. 350].

For our results in the sequel, we make use of the following

Lemma 4.1. Let M be a compact subset of Gw(U). Then there exist
sequences α = (αj) ∈ c+0 and A = (Aj) of finite subsets of U such that

M ⊂ Γ
( ∪

j≥1

{
αj inf

x∈Aj

w(x)∆w(y) : y ∈ Aj

})
.

Proof. SinceM◦ is a τc-neighborhood of 0 in Gw(U)∗, it is τbc-neighborhood
of 0 by Proposition 2.3(iii). Consequently, there exist sequences (αj) ∈ c+0
and A = (Aj) of finite subsets of U such that {f ∈ Hw(U) : pα,A(f) ≤ 1}
⊂ M◦, where M◦ = {f ∈ Hw(U) : supu∈M | < f, u > | ≤ 1}. Writing
B =

∪
j≥1{αj infx∈Aj w(x)∆w(y) : y ∈ Aj}, we get B◦ ⊂ M◦. Therefore, by

the bipolar theorem, we have

M ⊂ Γ
( ∪

j≥1

{
αj inf

x∈Aj

w(x)∆w(y) : y ∈ Aj

})
.

Relating τM with τ0 and τ∥.∥w , and bounded sets with respect to these
topologies, we prove

Proposition 4.2. For a weight w on an open subset U of a Banach space
E, the following hold:

(i) τ0 ≤ τM ≤ τ∥.∥w on Hw(U ;F ).

(ii) τM and ∥·∥w-bounded sets are the same.

(iii) τM|B = τ0|B for any ∥·∥w-bounded set B.
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Proof. (i) Let K be a compact subset of U . Then by Lemma 4.1, there
exist sequences (αj) ∈ c+0 and A = (Aj) of finite subsets of U such that

∆w(K) ⊂ Γ
( ∪

j≥1

{
αj inf

x∈Aj

w(x)∆w(y) : y ∈ Aj

})
.

Hence, for f ∈ Hw(U ;F ), we have

sup
x∈K

∥f(x)∥ = sup
x∈K

∥Tf ◦∆w(x)∥ ≤ pα,A(f).

Thus τM ≥ τ0 on Hw(U ;F ). The inequality τM ≤ τ∥·∥w clearly holds.

(ii) As every ∥·∥w-bounded set is τM-bounded, it suffices to prove the other
implication. Assume that there exists a τM-bounded set A which is not ∥·∥w-
bounded. Then for each k ∈ N, there exist fk ∈ A such that

∥fk∥w > k2.

Therefore, w(xk)∥fk(xk)∥ > k2 for some sequence {xk} ⊂ U . Consider the
τM-continuous semi-norm p on Hw(U ;F ) defined by the sequences {1

j } and
{xj} obtained as above, namely

p(f) = sup
j∈N

1

j
w(xj)∥f(xj)∥.

Then p(fkk ) > 1, for each k. This contradicts the τM-boundedness of A as
1
k → 0 and {fk} ⊂ A, cf. [14, p. 161] .

(iii) Let B be a bounded set in (Hw(U ;F ), ∥·∥w). Then there exists a constant
M > 0 such that ∥f∥w ≤ M , for every f ∈ B. In order to show that τM|B ≤
τ0|B, consider a τM-continuous semi-norm p given by

p(f) = sup
j∈N

(
αj inf

x∈Aj

w(x) sup
y∈Aj

∥f(y)∥
)
, f ∈ Hw(U ;F ),

where (αj) ∈ c+0 and (Aj) is a sequence of finite subsets of U . Fix ϵ > 0
arbitrarily. Then there exists k0 ∈ N such that

αj <
ϵ

2M
, ∀j > k0.

Write K =
∪

j≤k0
Aj . Then K is a compact subset of U . For f, g ∈ B,

p(f − g) < ϵ whenever pK(f − g) < δ,
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where

δ =
ϵ

∥α∥∞ sup
1≤j≤k0

(
inf
x∈Aj

w(x)
) ;

indeed

sup
j≤k0

(
αj inf

x∈Aj

w(x) sup
y∈Aj

∥(f − g)(y)∥
)
≤ ∥α∥∞ sup

1≤j≤k0

(
inf
x∈Aj

w(x)
)
pK(f − g).

This completes the proof as the other implication is obviously true.

Proceeding on the lines similar to [25, Remark 3.32], it can be proved that
the topology τM may be strictly finer than τ0 on Hw(U ;F ). However, for the
sake of convenience of the reader, we give

Example 4.3. Let E be a Banach space and w be a bounded weight on
UE . Assume that τM = τ0 on Hw(UE ;F ). Choose a sequence {xn} in UE such
that ∥xn∥ → 1 and {un} in F with ∥un∥ = n, n ∈ N. Then by Theorem 2.1,
there exists a function f ∈ Hb(U ;F ) such that

f(xn) =
un

w(xn)
, n ∈ N.

Since ∥f∥w = supx∈U w(x)∥f(x)∥ > n for all n ∈ N, f /∈ Hw(UE ;F ). Conse-
quently, the set

A =

{ N∑
m=0

1

m!
d̂mf(0) : N = 0, 1, 2, . . .

}

is not ∥·∥w bounded. But the convergence of the series
∑∞

m=0
1
m! d̂

mf(0) to f
in τ0 topology yields that the set A is τ0-bounded. As τM and ∥·∥w-bounded
sets are the same by Proposition 4.2(ii), it follows that τM ̸= τ0, i.e., τ0 < τM.

One can easily establish the following observation which we write as

Proposition 4.4. Let (Aj) be a sequence of finite sets in E and A =∪
j∈NAj . Then A is bounded if and only if the set K = (

∪
j∈N αjAj)

∪
{0} is

compact for each α = (αj) ∈ c0.

Proof. Immediate.
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Proposition 4.5. Let E and F be Banach spaces. For a weight w on an
open subset U of E with P(E) ⊂ Hw(U), τM coincides with τ0 on P(mE;F )
for each m ∈ N.

Proof. Let p be a τM-continuous semi-norm on Hw(U ;F ). Then there
exist sequences α = (αj) ∈ c+0 and A = (Aj) of finite subsets of U such that

p(f) = sup
j∈N

(
αj inf

x∈Aj

w(x) sup
y∈Aj

∥f(y)∥
)
, f ∈ Hw(U ;F ).

Define K =
∪

j∈N
{
(αj infx∈Aj w(x))

1
m y : y ∈ Aj

}
∪ {0}. For each y ∈ U ,

choose ϕy ∈ E∗ with ∥ϕy∥ = 1 and ϕy(y) = ∥y∥. Then the set B = {ϕm
y :

y ∈ U} is a norm bounded subset of P(mE) and hence ∥ · ∥w-bounded by
Proposition 2.2. Therefore

sup
j∈N

sup
y∈Aj

w(y)∥y∥m ≤ sup
y∈U

sup
x∈U

w(x)∥ϕm
y (x)∥ < ∞.

Then by Proposition 4.4, K is a compact subset of E. Since

p(P ) = sup
j∈N

sup
y∈Aj

∥∥∥P((
αj inf

x∈Aj

w(x)
) 1

m y
)∥∥∥ = pK(P ).

for any P ∈ P(mE;F ), the proof follows.

Next, we prove

Proposition 4.6. Let E and F be Banach spaces. For a radial weight w
on a balanced open subset U of E with P(E) ⊂ Hw(U), the space P(E;F ) is
τM-dense in Hw(U ;F ).

Proof. Recalling the notations Sn(f) and Cn(f), and their integral repre-
sentations for f ∈ Hw(U ;F ) from Section 2, we have

∥Cn(f)(x)∥ =
∥∥∥ 1
π

∫ π

−π
f(eitx)Kn(t)dt

∥∥∥ ≤ sup
t∈[−π,π]

∥f(eitx)∥

since
∫ π
−π Kn(t)dt = 1, cf. [28, p. 45]. Consequently, for each n ∈ N0,

∥Cn(f)(x)∥w ≤ sup
x∈U

w(x) sup
|t|=1

∥f(tx)∥ = sup
x∈U

sup
|t|=1

w(tx)∥f(tx)∥ ≤ ∥f∥w < ∞.

Thus, for given f ∈ Hw(U ;F ), the set {Cn(f) : n ∈ N0} is ∥ ·∥w-bounded
in Hw(U ;F ). As Cnf → f in (H(U ;F ), τ0), the result follows by Proposi-
tion 4.2(iii).



weighted spaces of holomorphic functions 139

Finally in this section, we consider an analogue of Theorem 3.1 onHw(U ;F )
when it is equipped with the topology τM. This result will be useful for our
study of approximation properties in the next section. Indeed, we prove

Theorem 4.7. Let E and F be Banach spaces, and w be a weight on an
open subset U of E. Then the mapping

Ψ :
(
Hw(U ;F ), τM

)
→

(
L(Gw(U);F ), τc

)
is a topological isomorphism.

Proof. Let M be a compact subset of Gw(U). Then by Lemma 4.1, there
exist sequences (αj) ∈ c+0 and A = (Aj) of finite subsets of U such that

M ⊂ Γ

( ∪
j≥1

{
αj inf

x∈Aj

w(x)∆w(y) : y ∈ Aj

})
.

Hence for f ∈ Hw(U ;F ),

pM (Ψ(f)) = sup
u∈M

∥Tf (u)∥ ≤ sup
j∈N

(
αj inf

x∈Aj

w(x) sup
y∈Aj

∥f(y)∥
)
= pα,A(f).

Thus Ψ is τM − τc continuous.
In order to show the continuity of the inverse map Ψ−1, let us note that

sup
j∈N

sup
y∈Aj

(
inf
x∈Aj

w(x)∥∆w(y)∥
)
≤ 1.

Hence by Proposition 4.4, the set

K = Γ

( ∪
j≥1

{
αj inf

x∈Aj

w(x)∆w(y) : y ∈ Aj

})
∪ {0}

is a compact subset of Gw(U), which immediately yields the τc−τM continuity
of the inverse mapping Ψ−1.

5. The approximation properties

This section is devoted to the study of the approximation property for the
space E, the weighted space Hw(U) of holomorphic mappings and its predual
Gw(U). We write

Hw(U)⊗ F = {f ∈ Hw(U ;F ) : f has finite dimensional range}
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and

Hc
w(U ;F ) = {f ∈ Hw(U ;F ) : wf has a relatively compact range}.

In the next proposition we establish the interplay between the properties of a
mapping f ∈ Hw(U ;F ) and the corresponding operator Tf ∈ L(Gw(U);F ).

Proposition 5.1. Let U be an open subset of a Banach space E and w
be a weight on U . Then for any Banach space F ,

(a) f ∈ Hw(U)⊗ F if and only if Tf ∈ F(Gw(U);F ),

(b) f ∈ Hc
w(U ;F ) if and only if Tf ∈ K(Gw(U);F ).

Proof. (a) Note that for (gi)
n
i=1 ⊂ Hw(U) and (yi)

n
i=1 ⊂ F ,

f(x) =

n∑
i=1

gi(x)yi ⇔ Tf (δx) =

n∑
i=1

< δx, gi > yi

for each x ∈ U . As Gw(U)∗ = Hw(U) and span{δx : x ∈ U} = Gw(U), the
result follows.
(b) By Remark 3.2, BGw(U) = Γ(w∆w)(U), the result follows from

(wf)(U) = Tf

(
(w∆w)(U)

)
⊂ Tf

(
Γ(w∆w)(U)

)
= Γ

(
(wf)(U)

)
.

Proposition 5.2. Let w be a weight on an open subset U of a Banach

space E. Then F(Gw(U);F )
∥·∥

= K(Gw(U);F ) if and only ifHw(U)⊗ F
∥·∥w

=
Hc

w(U ;F ) for each Banach space F .

Proof. Assume that F(Gw(U);F )
∥·∥

= K(Gw(U);F ). Consider f ∈
Hc

w(U ;F ). Then Tf ∈ K(Gw(U);F ) by Proposition 5.1(b). Hence there exists

a net (Tα) ⊂ F(Gw(U);F ) such that Tα
∥·∥−−→ Tf . Now, corresponding to each

α, we have fα ∈ Hw(U)⊗F such that Tfα = Tα by Proposition 5.1(a). Apply

Theorem 3.1 to get fα
∥·∥w−−−→ f , thereby proving Hw(U)⊗ F

∥·∥w
= Hw(U ;F ).

Conversely, for T ∈ K(Gw(U);F ), there exists f ∈ Hc
w(U ;F ) such that

T = Tf by Proposition 5.1(b). Then there exists a net {fα} ⊂ Hw(U) ⊗ F

such that fα
∥·∥w−−−→ f . Thus (Tfα) ⊂ F(Gw(U);F ) by Proposition 5.1(a) and

Tα
∥·∥−−→ Tf = T by Proposition 3.1.
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Proposition 5.3. Let w be a weight on an open subset U of a Banach
space E. Then F(Gw(U);F )

τc
= L(Gw(U);F ) if and only if Hw(U)⊗ F

τM
=

Hw(U ;F ) for each Banach space F .

Proof. The proof follows analogously by using Theorem 4.7 and Proposi-
tion 5.1(b).

Characterizing the approximation property for the space E, we have

Theorem 5.4. Let E be a Banach space. Then for each Banach space F ,
the following are equivalent:

(i) E has the approximation property.

(ii) Hw(V )⊗ E
τM

= Hw(V ;E), for each open subset V of F and weight w
on V .

(iii) Hw(V )⊗ E
∥·∥w

= Hc
w(V ;E), for each open subset V of F and weight w

on V .

Proof. (i) ⇒ (ii): Assume that E has the approximation property. Then
by Theorem 2.4, F(Gw(U);E)

τc
= L(Gw(U);E). Thus Hw(V )⊗ E

τM
=

Hw(V ;E) by Proposition 5.3.

(ii) ⇒(i): We claim that F(F ;E)
τc

= L(F ;E) for each Banach space F .
Let A ∈ L(F ;E). Applying Proposition 3.4 , there exist operators S ∈
L(F ;Gw(UF )) and T ∈ L(Gw(UF );F ) such that T ◦ S(y) = y, y ∈ F . Since
Gw(UF )∗ ⊗ E

τM
= Hw(UF ;E) by (ii), in view of Proposition 5.3 there exists a

net (Aα) ⊂ F(Gw(UF );E) such that Aα
τc−→ A◦T . Thus Aα ◦S

τc−→ A◦T ◦S =
A. As Aα ◦ S ⊂ F(F ;E), our claim holds and (i) follows by Theorem 2.4.

(i) ⇒ (iii): Again using Theorem 2.4, F(Gw(U);E)
∥·∥

= K(Gw(U);E) by (i).

Therefore Hw(U)⊗ F
∥·∥w

= Hc
w(U ;F ) by Proposition 5.2.

(iii) ⇒(i): Let A ∈ K(F ;E) and T , S be the operators as above. Then
A ◦ T ∈ K(Gw(UF );E). By hypothesis and Proposition 5.2, there exists a

sequence (An) ⊂ F(Gw(UF );E) such that An
∥·∥−−→ A ◦ T . Thus An ◦ S ∥·∥−−→ A

and we have, F(F ;E)
∥·∥

= K(F ;E). This proves (i).

Next, we characterize the approximation property for the weighted space
Hw(U).
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Theorem 5.5. For an open subset U of a Banach space E, Hw(U) has the
approximation property if and only if Hw(U)⊗ F is ∥·∥w-dense in Hc

w(U ;F )
for each Banach space F .

Proof. By Proposition 2.5, Gw(U)∗ has the approximation property if and
only if F(Gw(U);F ) is ∥·∥-dense in K(Gw(U);F ) for each Banach space F . As
Hw(U) = Gw(U)∗, the result follows by Proposition 5.2.

We now cite the following known result, cf. [18]; along with the proof for
convenience.

Proposition 5.6. If a Banach space E has the approximation property,
then for every Banach space F and m ∈ N, Pf (mE;F )

τc
= P(mE;F ).

Proof. Let P ∈ P(mE;F ). Then for a compact subset K of E and
ϵ > 0, there exists a δ > 0 such that ∥P (x) − P (y)∥ < ϵ whenever x ∈
K and y ∈ E with ∥y − x∥ < δ. Since E has the approximation prop-
erty, there is a T ∈ F(E;E) such that supx∈K ∥T (x)− x∥ < δ. Thus,
supx∈K ∥P ◦ T (x)− P (x)∥ < ϵ.

Making use of the above proposition, we finally prove

Theorem 5.7. Let E be a Banach space and w be a radial weight on a
balanced open subset U of E such that Hw(U) contains all the polynomials.
Then the following assertions are equivalent:

(i) E has the approximation property.

(ii) Pf (E;F )
τM

= Hw(U ;F ) for each Banach space F .

(iii) Hw(U)⊗ F
τM

= Hw(U ;F ) for each Banach space F .

(iv) Gw(U) has the approximation property.

Proof. (i) ⇒ (ii): Let p be a τM continuous semi-norm on Hw(U ;F ).
Then for f ∈ Hw(U ;F ), there exists P ∈ P(E;F ) such that p(f − P ) < ϵ

2 by
Proposition 4.6. Let P = P0+P1+· · ·+Pk, Pm ∈ P(mE;F ), 0 ≤ m ≤ k. Then
by using Proposition 5.6 and Proposition 4.5, there exist Qm in Pf (

mE;F ),
0 ≤ m ≤ k such that

p(Pm −Qm) <
ϵ

2(k + 1)
.

Write Q = Q0 +Q1 + · · ·+Qk. Clearly Q ∈ Pf (E;F ) and p(f −Q) < ϵ.
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(ii) ⇒ (iii): It suffices to prove that Pf (E;F ) ⊂ Hw(U) ⊗ F . Consider P ∈
Pf (E;F ). Then there exist ϕj ∈ E∗ and yj ∈ F , 1 ≤ j ≤ k such that

P =

k∑
j=1

ϕm
j ⊗ yj .

Now, ϕm
j ∈ Hw(U) for each 1 ≤ j ≤ k as w is bounded. Thus P ∈ Hw(U)⊗F .

(iii) ⇒ (iv): Note that ∆w ∈ Hw(U)⊗ Gw(U)
τM

by taking F = Gw(U) in
(iii). Now Hw(U)⊗ Gw(U)

τM
can be identified with F(Gw(U);Gw(U))

τc
via

the map Ψ by Proposition 5.1(a) and Theorem 4.7 . Since T∆w ◦∆w = ∆w,
we get Ψ(∆w) = I, the identity map on Gw(U). Thus I ∈ F(Gw(U);Gw(U))

τc
.

(iv) ⇒(i) follows from Proposition 2.6 and Proposition 3.6.
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[7] E. Çalişkan, Bounded holomorphic mappings and the compact approxima-
tion property in Banach spaces, Port. Math. (N.S.) 61 (1) (2004), 25 – 33.
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