Weighted Spaces of Holomorphic Functions on Banach Spaces and the Approximation Property

Manjul Gupta, Deepika Baweja

Department of Mathematics and Statistics, IIT Kanpur, India - 208016 manjul@iitk.ac.in, dbaweja@iitk.ac.in

Presented by Manuel Maestre

Received April 4, 2016

Abstract: In this paper, we study the linearization theorem for the weighted space $\mathcal{H}_w(U; F)$ of holomorphic functions defined on an open subset U of a Banach space E with values in a Banach space F. After having introduced a locally convex topology $\tau_{\mathcal{M}}$ on the space $\mathcal{H}_w(U; F)$, we show that $(\mathcal{H}_w(U; F), \tau_{\mathcal{M}})$ is topologically isomorphic to $(\mathcal{L}(\mathcal{G}_w(U); F), \tau_c)$ where $\mathcal{G}_w(U)$ is the predual of $\mathcal{H}_w(U)$ consisting of all linear functionals whose restrictions to the closed unit ball of $\mathcal{H}_w(U)$ are continuous for the compact open topology τ_0 . Finally, these results have been used in characterizing the approximation property for the space $\mathcal{H}_w(U)$ and its predual for a suitably restricted weight w.

 $Key\ words:$ Holomorphic mappings, weighted spaces of holomorphic functions, linearization, approximation property.

AMS Subject Class. (2010): 46G20, 46E50, 46B28.

1. INTRODUCTION

Approximation properties for various classes of holomorphic functions have been studied earlier by using linearization techniques in [6], [7], [8], [18], etc. If E and F are Banach spaces and U is an open subset of E, then the linearization results help in identifying a given class of holomorphic functions defined on Uwith values in F, with the space of continuous linear mappings from a certain Banach space G to F; indeed, a holomorphic mapping is being identified with a linear operator through linearization results. This study for various classes of holomorphic mappings have been carried out by Beltran [2], Galindo, Garcia and Maestre [11], Mazet [17], Mujica [18, 19, 20] and several other mathematicians.

On the other hand, whereas the weighted spaces of holomorphic functions defined on an open subset of the finite dimensional space \mathbb{C}^N , $N \in \mathbb{N}$ (set of natural numbers) have been investigated in [3], [4], [5], [24], etc., the infinite dimensional case was considered by Garcia, Maestre and Rueda [12], Jorda [15], Rueda [25]. The present paper is an attempt to study approximation

123

properties for weighted spaces of holomorphic mappings. Indeed, after having given preliminaries in Section 2, we prove in Section 3 a linearization theorem for the weighted space $\mathcal{H}_w(U; F)$ of holomorphic functions defined on U with values in F. As an application of this result, we show that E is topologically isomorphic to a complemented subspace of $\mathcal{G}_w(U)$ for those weights w for which $\mathcal{H}_w(U)$ contains all the polynomials. In case of a weight being given by an entire function with positive coefficients, we also obtain estimates for the norm of the topological isomorphism.

In Section 4 we define a locally convex topology $\tau_{\mathcal{M}}$ on the space $\mathcal{H}_w(U; F)$ and show the topological isomorphism between the spaces $(\mathcal{H}_w(U; F), \tau_{\mathcal{M}})$ and $(\mathcal{L}(\mathcal{G}_w(U); F), \tau_c)$ for a weight w on an open set U.

Finally, in Section 5 we consider the applications of results proved in Sections 3 and 4 to obtain characterizations of the approximation property for the space $\mathcal{H}_w(U)$ and its predual $\mathcal{G}_w(U)$; for instance, we prove that $\mathcal{H}_w(U)$ has the approximation property if and only if it satisfies the holomorphic analogue of Theorem 2.4(iv), *i.e.*, for any Banach space F, each mapping in $\mathcal{H}_w(U; F)$ with relatively compact range belongs to the $\|\cdot\|_w$ -closure of the subspace of $\mathcal{H}_w(U; F)$ consisting of finite dimensional holomorphic mappings. Besides, it is proved that for a suitably restricted w and U, $\mathcal{G}_w(U)$ has the approximation property if and only if E has the approximation property.

2. Preliminaries

Throughout this paper, the symbols \mathbb{N}, \mathbb{N}_0 and \mathbb{C} respectively denote the set of natural numbers, $\mathbb{N} \cup \{0\}$ and the complex plane. The letters E and F are used for complex Banach spaces. The symbols E' and E^* denote respectively the algebraic dual and topological dual of E. We denote by U a non-empty open subset of E; and by U_E and B_E , the open and closed unit ball of E. For a locally convex space X, we denote by X^*_β and X^*_c , the topological dual X^* of X equipped respectively with the strong topology, i.e., the topology of uniform convergence on all bounded subsets of X, and the compact open topology.

For each $m \in \mathbb{N}$, $\mathcal{L}(^{m}E; F)$ is the Banach space of all continuous m-linear mappings from E to F endowed with its natural sup norm. For m=1, we write $\mathcal{L}(E, F)$ for $\mathcal{L}(^{m}E; F)$. A mapping $P : E \to F$ is said to be a continuous m-homogeneous polynomial if there exists a continuous m-linear map $A \in$ $\mathcal{L}(^{m}E; F)$ such that

$$P(x) = A(x, \dots, x), \quad x \in E.$$

In this case, we also write $P = \hat{A}$. The space of all continuous m-homogeneous polynomials from E to F is denoted by $\mathcal{P}(^{m}E; F)$ which is a Banach space endowed with the sup norm. A continuous polynomial P is a mapping from Einto F which can be represented as a sum $P = P_0 + P_1 + \cdots + P_k$ with $P_m \in$ $\mathcal{P}(^{m}E; F)$ for $m = 0, 1, \ldots, k$. The vector space of all continuous polynomials from E into F is denoted by $\mathcal{P}(E; F)$.

A polynomial $P \in \mathcal{P}(^{m}E; F)$ is said to be of finite type if it is of the form

$$P(x) = \sum_{j=1}^{k} \phi_j^m(x) y_j, \quad x \in E,$$

where $\phi_j \in E^*$ and $y_j \in F$, $1 \leq j \leq k$. We denote by $\mathcal{P}_f(^mE;F)$ the space of finite type polynomials from E into F. A continuous polynomial Pfrom E into F is said to be of finite type if it has a representation as a sum $P = P_0 + P_1 + \cdots + P_k$ with $P_m \in \mathcal{P}_f(^mE;F)$ for $m = 0, 1, \ldots, k$. The vector space of continuous polynomials of finite type from E into F is denoted by $\mathcal{P}_f(E;F)$.

A mapping $f: U \to F$ is said to be holomorphic, if for each $\xi \in U$, there exists a ball $B(\xi, r)$ with center at ξ and radius r > 0, contained in U and a sequence $\{P_m\}_{m=1}^{\infty}$ of polynomials with $P_m \in \mathcal{P}(^mE; F), m \in \mathbb{N}_0$ such that

$$f(x) = \sum_{m=0}^{\infty} P_m(x-\xi),$$
 (2.1)

where the series converges uniformly for $x \in B(\xi, r)$. The series in (2.1) is called the Taylor series of f at ξ and in analogy with complex variable case, it is written as

$$f(x) = \sum_{m=0}^{\infty} \frac{1}{m!} \hat{d}^m f(\xi)(x-\xi), \qquad (2.2)$$

where $P_m = \frac{1}{m!} \hat{d}^m f(\xi)$.

The space of all holomorphic mappings from U to F is denoted by $\mathcal{H}(U; F)$. It is usually endowed with the topology τ_0 of uniform convergence on compact subsets of U and $(\mathcal{H}(U; F), \tau_0)$ is a Fréchet space when U is an open subset of a finite dimensional Banach space. In case U = E, the class $\mathcal{H}(E; F)$ is the space of entire mappings from E into F. For $F = \mathbb{C}$, we write $\mathcal{H}(U)$ for $\mathcal{H}(U; \mathbb{C})$. We refer to [1], [9], [19] and [22] for notations and various results on infinite dimensional holomorphy. If $f \in \mathcal{H}(U; F)$ and $n \in \mathbb{N}_0$, we write $S_n f(x) = \sum_{m=0}^n \frac{1}{m!} \hat{d}^m f(0)(x)$ and $C_n f(x) = \frac{1}{n+1} \sum_{k=0}^n S_k f(x)$. It has been shown in [18] that

$$S_n(f)(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(e^{it}x) D_n(t) dt \text{ and } C_n(f)(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(e^{it}x) K_n(t) dt,$$

where $D_n(t)$ and $K_n(t)$ are respectively the Dirichlet and Fejer kernels given as follows:

$$D_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos kt$$
 and $K_n(t) = \frac{1}{n+1} \sum_{k=0}^n D_k(t).$

A subset A of U is called U-bounded if A is bounded and dist $(A, \partial U) > 0$, where ∂U denotes the boundary of U. A mapping f in $\mathcal{H}(U; F)$ is of bounded type if it maps U-bounded sets to bounded sets. The space of holomorphic mappings of bounded type is denoted by $\mathcal{H}_b(U; F)$. The space $\mathcal{H}_b(U; F)$ endowed with the topology τ_b , the topology of uniform convergence on Ubounded sets, is a Fréchet space, cf. [1, p. 81]. For $U = U_E$, the following result is quoted from [27].

THEOREM 2.1. If $\{x_n\}$ is a sequence of distinct points in U_E such that

$$\lim_{n \to \infty} \operatorname{dist}(\{x_n\}, \partial U_E) = 0$$

and $\{u_n\}$ is a sequence of vectors in F then there exists $f \in \mathcal{H}_b(U_E; F)$ such that

$$f(x_n) = u_n, \quad n = 1, 2, \dots$$

A weight w on U is a continuous and strictly positive function satisfying

$$0 < \inf_{A} w(x) \le \sup_{A} w(x) < \infty$$
(2.3)

for each U-bounded set A. A weight w defined on an open balanced subset U of E is said to be radial if w(tx) = w(x) for all $x \in U$ and $t \in \mathbb{C}$, with |t| = 1; and on E it is said to be rapidly decreasing if $\sup_{x \in E} w(x) ||x||^m < \infty$ for each $m \in \mathbb{N}_0$.

Corresponding to a weight function w, the weighted space of holomorphic functions is defined as

$$\mathcal{H}_w(U;F) = \left\{ f \in \mathcal{H}(U;F) : \|f\|_w = \sup_{x \in U} w(x) \|f(x)\| < \infty \right\}.$$

126

The space $(\mathcal{H}_w(U; F), \|\cdot\|_w)$ is a Banach space and B_w denotes its closed unit ball. For $F = \mathbb{C}$, we write $\mathcal{H}_w(U) = \mathcal{H}_w(U; \mathbb{C})$. It can be easily seen that the norm topology $\tau_{\|\cdot\|_w}$ on $\mathcal{H}_w(U; F)$ is finer than the topology induced by τ_0 . In case, $\mathcal{P}(E) \subset \mathcal{H}_w(U)$, we have the following result from [12].

PROPOSITION 2.2. The topology $\tau_{\|\cdot\|_w}$ restricted to $\mathcal{P}(^m E)$ coincides with the norm topology.

Since the closed unit ball B_w of $\mathcal{H}_w(U)$ is τ_0 -compact by the Ascoli's theorem, the predual of $\mathcal{H}_w(U)$ is given by

$$\mathcal{G}_w(U) = \left\{ \phi \in \mathcal{H}_w(U)' : \phi | B_w \text{ is } \tau_0 - \text{continuous} \right\}$$

by the Ng Theorem; cf. [23].

Further, we consider the locally convex topology τ_{bc} on $\mathcal{H}_w(U)$ for which a set $A \subset \mathcal{H}_w(U)$ is τ_{bc} open if and only if $A \cap B$ is open in $(B, B|\tau_0)$ for each $\|\cdot\|_w$ -bounded subset B of $\mathcal{H}_w(U)$. Concerning this topology, we have the following result from [25].

PROPOSITION 2.3. Let U be an open subset of a Banach space E and w be a weight on U. Then

- (i) $(\mathcal{H}_w(U), \|\cdot\|_w)$ and $(\mathcal{H}_w(U), \tau_{bc})$ have the same bounded sets.
- (ii) $\mathcal{G}_w(U) = (\mathcal{H}_w(U), \tau_{bc})^*_{\beta}$.
- (iii) $(\mathcal{H}_w(U), \tau_{bc}) = \mathcal{G}_w(U)_c^*$.

An operator T in $\mathcal{L}(E; F)$ is said to have a finite rank if the range of T is finite dimensional and, an operator T in $\mathcal{L}(E; F)$ is called *compact* if $T(B_E)$ is a relatively compact subset of F. We denote by $\mathcal{F}(E; F)$ and $\mathcal{K}(E; F)$, respectively, the space of all finite rank operators and compact operators from E into F.

A Banach space E is said to have the approximation property if for every compact set K of E and $\epsilon > 0$, there exists an operator $T \in \mathcal{F}(E; E)$ such that

$$\sup_{x \in K} \|T(x) - x\| < \epsilon.$$

The following characterization of the approximation property due to Grothendieck, is given in [16].

THEOREM 2.4. For a Banach space E, the following are equivalent:

- (i) E has the approximation property.
- (ii) For every Banach space F, $\overline{\mathcal{F}(E;F)}^{\tau_c} = \mathcal{L}(E;F)$.
- (iii) For every Banach space F, $\overline{\mathcal{F}(F;E)}^{\tau_c} = \mathcal{L}(F;E)$.
- (iv) For every Banach space $F, \overline{\mathcal{F}(F;E)}^{\|\cdot\|} = \mathcal{K}(F;E).$

PROPOSITION 2.5. Let *E* be a Banach space. Then E^* has the approximation property if and only if $\overline{\mathcal{F}(E;F)}^{\parallel \cdot \parallel} = \mathcal{K}(E;F)$, for every Banach space *F*.

PROPOSITION 2.6. Let E be a Banach space with the approximation property. Then each complemented subspace of E also has the approximation property.

3. Linearization theorem for $\mathcal{H}_w(U;F)$ and its applications

In this section, we consider the linearization theorem for $\mathcal{H}_w(U; F)$ and some of its applications. Let us begin with

THEOREM 3.1. (Linearization Theorem) For an open subset U of a Banach space E and a weight w on U, there exists a Banach space $\mathcal{G}_w(U)$ and a mapping $\Delta_w \in \mathcal{H}_w(U; \mathcal{G}_w(U))$ with the following property: for each Banach space F and each mapping $f \in \mathcal{H}_w(U; F)$, there is a unique operator $T_f \in \mathcal{L}(\mathcal{G}_w(U); F)$ such that $T_f \circ \Delta_w = f$. The correspondence Ψ between $\mathcal{H}_w(U; F)$ and $\mathcal{L}(\mathcal{G}_w(U); F)$ given by

$$\Psi(f) = T_f$$

is an isometric isomorphism. The space $\mathcal{G}_w(U)$ is uniquely determined up to an isometric isomorphism by these properties.

Proof. Though the proof of this result is similar to the one given in [2], we sketch the same for the sake of completeness.

Let B_w be the closed unit ball of $\mathcal{H}_w(U)$. Then it is τ_0 -compact by Ascoli's Theorem. Hence by the Ng's Theorem, $\mathcal{H}_w(U)$ is a dual Banach space, its predual being given by

$$\mathcal{G}_w(U) = \{h \in \mathcal{H}_w(U)' : h | B_w \text{ is } \tau_0 \text{-continuous} \}.$$

Further the mapping $J_U^w : \mathcal{H}_w(U) \to \mathcal{G}_w(U)^*$, $J_U^w(f) = \hat{f}$ with $\hat{f}(h) = h(f)$, $f \in \mathcal{H}_w(U)$ and $h \in \mathcal{G}_w(U)$, is an isometric isomorphism.

Now define $\Delta_w : U \to \mathcal{G}_w(U)$ as $\Delta_w(x) = \delta_x$, where $\delta_x(f) = f(x), f \in \mathcal{H}_w(U)$.

Since for $x \in U$ and $f \in \mathcal{H}_w(U)$, $J_U^w(f) \circ \Delta_w(x) = J_U^w(f)(\delta_x) = f(x)$ and $J_U^w(\mathcal{H}_w(U)) = \mathcal{G}_w(U)^*$, Δ_w is weakly holomorphic and hence holomorphic, cf. [1, p.66]. In order to show that $\Delta_w \in \mathcal{H}_w(U; \mathcal{G}_w(U))$, fix $x_0 \in U$. Then for $f \in \mathcal{H}_w(U)$, $|\delta_{x_0}(f)| = |f(x_0)| \leq \frac{1}{w(x_0)} ||f||_w$ implies $||\delta_{x_0}|| \leq \frac{1}{w(x_0)}$. Hence $||\Delta_w||_w = \sup_{x \in U} w(x) ||\delta_x|| \leq 1$. Consequently, $\Delta_w \in \mathcal{H}_w(U; \mathcal{G}_w(U))$.

Corresponding to f in $\mathcal{H}_w(U; F)$, we now define T_f . For the case $F = \mathbb{C}$, define $T_f = J_U^w(f)$. Then $T_f \circ \Delta_w(f) = f$ and $||T_f|| = ||f||_w$.

In case of an arbitrary Banach space F, we first define $T_f : \mathcal{G}_w(U) \to F^{**}$ as

$$T_f(h)(\phi) = h(\phi \circ f), \quad h \in \mathcal{G}_w(U), \ \phi \in F^*$$

Note that T_f is, indeed, *F*-valued; for $T_f(\delta_x) = f(x) \in F$ and $\overline{span}\{\delta_x : x \in U\} = \mathcal{G}_w(U)$. Further,

$$||f||_{w} = \sup_{x \in U} w(x) ||f(x)|| = \sup_{x \in U} w(x) ||T_{f}(\delta_{x})|| \le ||T_{f}||$$

and

$$||T_f(h)(\phi)|| \le ||h|| ||\phi|| ||f||_w, \quad h \in \mathcal{G}_w(U), \ \phi \in F^*.$$

Thus $||T_f|| = ||f||_w$ and Ψ is an isometric isomorphism.

Remark 3.2. If $(w\Delta_w)(x) = w(x)\Delta_w(x), x \in U$, then

$$J_U^w(B_w) = \left\{ (w\Delta_w)(x) : x \in U \right\}^\circ.$$

Consequently, $(J_U^w(B_w))^\circ = B_{\mathcal{G}_w(U)} = \overline{\Gamma}\{(w\Delta_w)(x) : x \in U\}$, where $\overline{\Gamma}(A)$ denotes the absolutely convex closed hull of A.

In case the weight w is given by an entire function γ with positive coefficients, i.e., $w(x) = \frac{1}{\gamma(||x||)}, x \in E$, we write \mathcal{H}_{γ} for \mathcal{H}_{w} ; and the above linearization theorem takes the following form:

THEOREM 3.3. Let γ be an entire function with positive coefficients. Then for an open subset U of a Banach space E and weight $w, w(x) = \frac{1}{\gamma(||x||)}, x \in$ U, there exists a Banach space $G_{\gamma}(U)$ and a mapping $\Delta_{\gamma} \in \mathcal{H}_{\gamma}(U; G_{\gamma}(U))$, $\|\Delta_{\gamma}\| = 1$ with the following property: for each Banach space F and each mapping $f \in \mathcal{H}_{\gamma}(U; F)$, there is a unique operator $T_f \in \mathcal{L}(G_{\gamma}(U); F)$ such that $T_f \circ \Delta_{\gamma} = f$. The correspondence Ψ between $\mathcal{H}_{\gamma}(U; F)$ and $\mathcal{L}(G_{\gamma}(U); F)$ given by

$$\Psi(f) = T_f$$

is an isometric isomorphism. The space $G_{\gamma}(U)$ is uniquely determined up to an isometric isomorphism by these properties.

Proof. It suffices to prove here that $\|\Delta_{\gamma}\| = 1$. Let $\gamma(z) = \sum_{n=0}^{\infty} a_n z^n$ with $a_n > 0$ for each $n \in \mathbb{N}_0$. Fix $x_0 \in E$. Choose $\phi \in E^*$ with $\|\phi\| = 1$ and $|\phi(x_0)| = \|x_0\|$. Define $f: E \to \mathbb{C}$ as

$$f(x) = \sum_{n=1}^{\infty} a_n \phi^n(x), \quad x \in E.$$

Clearly, $f \in \mathcal{H}_{\gamma}(E)$ and $||f||_{\gamma} \leq 1$. Since $|f(x_0)| = \gamma(||x_0||)$, we have

$$\|\delta_{x_0}\| = \sup_{\|h\|_{\gamma} \le 1} |h(x_0)| = \gamma(\|x_0\|).$$

Thus $\|\Delta_{\gamma}\| = 1$.

Before we consider the applications of the above linearization theorem, let us prove results related to the inclusion of polynomials in the weighted space of holomorphic mappings.

PROPOSITION 3.4. Let w be a weight defined on an open subset U of a Banach space E. Then, for each $m \in \mathbb{N}$, the following are equivalent:

- (a) $\mathcal{P}(^{m}E;F) \subset \mathcal{H}_{w}(U;F)$ for each Banach space F.
- (b) $\mathcal{P}(^{m}E) \subset \mathcal{H}_{w}(U).$

Proof. (a) \Rightarrow (b). Immediate.

(b) \Rightarrow (a). Consider $Q \in \mathcal{P}(^{m}E; F)$. For $x \in U$, choose $\phi_x \in F^*$ such that $\|\phi_x\| = 1$ and $\phi_x(Q(x)) = \|Q(x)\|$. Write $A = \{\phi_x \circ Q : x \in U\}$. Then A is a $\|\cdot\|$ -bounded subset of $\mathcal{P}(^{m}E)$ since $\|\phi_x \circ Q\| \leq \|Q\|$. Hence by Proposition 2.2, A is $\|\cdot\|_w$ -bounded. Consequently,

$$||Q||_{w} = \sup_{x \in U} w(x) |\phi_{x}(Q(x))| \le \sup_{x \in U} \sup_{y \in U} w(y) |\phi_{x}(Q(y))| < \infty.$$

Thus $Q \in \mathcal{H}_w(U; F)$ and (a) follows.

PROPOSITION 3.5. Let w be a weight on an open subset U of a Banach space E. Then

- (a) If U is bounded, $\mathcal{P}(E) \subset \mathcal{H}_w(U)$ if and only if w is bounded.
- (b) For U = E, $\mathcal{P}(E) \subset \mathcal{H}_w(E)$ if and only if w is rapidly decreasing.

Proof. (a) Since constant functions are in $\mathcal{P}(E)$, the proof follows. (b) This is a particular case of a result proved in [12, p. 6], by taking the family V consisting of a single weight.

In the remaining part of this section, we consider weights w defined on an open subset U of E so that the space $\mathcal{P}(E, F)$ is contained in $\mathcal{H}_w(U, F)$, for which it suffices to consider the scalar case in view of Proposition 3.4.

PROPOSITION 3.6. Let w be a weight defined on an open subset U of a Banach space E such that $\mathcal{P}(E) \subset \mathcal{H}_w(U)$. Then E is topologically isomorphic to a complemented subspace of $\mathcal{G}_w(U)$.

Proof. Since the inclusion map I from U to E is a member of $\mathcal{H}_w(U; E)$, by Theorem 3.1, there exists $T \in \mathcal{L}(\mathcal{G}_w(U); E)$ and $\Delta_w \in \mathcal{H}_w(U; \mathcal{G}_w(U))$ such that

$$T \circ \Delta_w(x) = I_w(x) = x, \ x \in U.$$

Fix $a \in U$ and write $S = d^1 \Delta_w(a)$. Note that $S \in \mathcal{L}(E; \mathcal{G}_w(U))$. Further, by Cauchy's integral formula,

$$S(t) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{\Delta_w(a+\zeta t)}{\zeta^2} d\zeta, \quad t \in E,$$

where r > 0 is chosen so that $\{a + \zeta t : |\zeta| \le r\} \subset U$. Now

$$T \circ S(t) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{(a+\zeta t)}{\zeta^2} d\zeta = t, \quad t \in E.$$

This gives $||S(t)|| \ge \frac{1}{||T||} ||t||$ and so, S is injective and S^{-1} is continuous.

Define $P = S \circ T$. Then P is a projection map from $\mathcal{G}_w(U)$ into itself. Also $S(E) = P(\mathcal{G}_w(U))$. Hence S is a topological isomorphism between E and a complemented subspace of $\mathcal{G}_w(U)$.

For the weight w as considered in Theorem 3.3, we have

PROPOSITION 3.7. Let γ be an entire function with positive coefficients and t_0 be a positive real satisfying the equation $\gamma(t) = t\gamma'(t)$. Assume that U is an open subset of a Banach space E for which $\{x \in E : ||x|| \le t_0\} \subset U$. Then there exists a topological isomorphism S between E and a complemented subspace of $G_{\gamma}(U)$ with $||S|| = \frac{\gamma(t_0)}{t_0}$.

Proof. Since the weight given by γ is bounded, $I \in H_{\gamma}(U; E)$. By Theorem 3.3, there exists $T \in \mathcal{L}(G_{\gamma}(U); E)$ and $\Delta_{\gamma} \in \mathcal{H}_{\gamma}(U; G_{\gamma}(U))$ such that $T \circ \Delta_{\gamma} = I$ and $||T|| = ||I||_{\gamma}$. But

$$||T|| = ||I||_{\gamma} = \sup_{x \in U} \frac{||x||}{\gamma(||x||)} = \frac{t_0}{\gamma(t_0)}.$$
(3.1)

Writing S for $d^1 \Delta_{\gamma}(0)$, by Cauchy's inequality, we get

$$||S|| = ||d^{1}\Delta_{\gamma}(0)|| \le \frac{1}{t_{0}} \sup_{||x||=t_{0}} ||\Delta_{\gamma}(x)|| = \frac{1}{t_{0}} \sup_{||x||=t_{0}} ||\delta_{x}|| = \frac{\gamma(t_{0})}{t_{0}}.$$
 (3.2)

Now proceeding as in the proof of Proposition 3.4, we have

$$T \circ S(t) = t, \quad \forall t \in E.$$

Consequently, by (3.1) and (3.2), we get

$$||t|| = ||T \circ S(t)|| \le \frac{t_0}{\gamma(t_0)} ||S(t)|| \le ||t||, \ t \in E.$$

Hence,

$$|S|| = \frac{\gamma(t_0)}{t_0}.$$

Illustrating the above result, we have

EXAMPLE 3.8. Let $\gamma(z) = e^{\tau z}$, $\tau > 0$. One can easily find that $t_0 = \frac{1}{\tau}$. In this case $||I||_{\gamma} = \frac{1}{\tau e}$ and $||S|| = \tau e$. If $\tau = \frac{1}{e}$, S becomes an isometric isomorphism.

For our next result, we make use of the following linearization theorem quoted from [18] and proved by using tensor product techniques for locally convex spaces in [26].

THEOREM 3.9. Let E be a Banach space and $m \in \mathbb{N}$. Then there exists a Banach space $Q(^{m}E)$ and a polynomial $q_m \in \mathcal{P}(^{m}E;Q(^{m}E))$ such that for any Banach space F and each polynomial $P \in \mathcal{P}(^{m}E;F)$, there is a unique operator $T_P \in \mathcal{L}(Q(^{m}E);F)$ satisfying $T_P \circ q_m = P$. The correspondence $\Phi : \mathcal{P}(^{m}E;F) \to \mathcal{L}(Q(^{m}E);F), \Phi(P) = T_P$ is an isometric isomorphism and the space $Q(^{m}E)$ is uniquely determined up to an isometric isomorphism.

In the statement of the above result, the space $Q({}^{m}E)$ is defined as the predual of $\mathcal{P}({}^{m}E)$, i.e., $\{h \in \mathcal{P}({}^{m}E)' : h | B_{m} \text{ is } \tau_{0}\text{-continuous}\}$, where B_{m} is the closed unit ball of $\mathcal{P}({}^{m}E)$. The map $q_{m} : E \to Q({}^{m}E)$ is given by $q_{m}(x) = \delta_{x}$, where $\delta_{x}(P) = P(x), P \in \mathcal{P}({}^{m}E)$ or equivalently $q_{m}(x) = x \otimes \cdots \otimes x$, cf. [10, p. 29]. For w and U as in Proposition 3.6, we prove

PROPOSITION 3.10. The space $Q(^{m}E)$ is topologically isomorphic to a complemented subspace of $\mathcal{G}_{w}(U)$.

Proof. Consider $q_m \in \mathcal{P}(^mE; Q(^mE))$. By Theorem 3.1, there exist $T_m \in \mathcal{L}(\mathcal{G}_w(U); Q(^mE))$ and $\Delta_w \in \mathcal{H}_w(U; G_w(U))$ such that $T_m \circ \Delta_w = q_m$. Let S_m be the m-th Taylor series coefficient of Δ_w around 'a', .i.e., $S_m = \frac{1}{m!} d^m \Delta_w(a)$. As $S_m \in \mathcal{P}(^mE; \mathcal{G}_w(U))$, by Theorem 3.9 there exists $R_m \in \mathcal{L}(Q(^mE); \mathcal{G}_w(U))$ such that $R_m \circ q_m = S_m$. Now,

$$T_m \circ R_m \circ q_m = T_m \circ S_m = \frac{1}{m!} \widehat{d}^m (T_m \circ \Delta_w)(a) = \frac{1}{m!} \widehat{d}^m q_m(a).$$

As $\overline{span}\{q_m(x) : x \in E\} = Q(^mE)$, it follows that $T_m \circ R_m(u) = u, u \in Q(^mE)$. Let $P_m = R_m \circ T_m$. Then P_m is a projection map from $\mathcal{G}_w(U)$ into itself and R_m is the topological isomorphism between $Q(^mE)$ and a complemented subspace of $\mathcal{G}_w(U)$.

PROPOSITION 3.11. For $m \in \mathbb{N}$, there exists a topological isomorphism R_m between the space $Q(^mE)$ and a complemented subspace of $G_{\gamma}(U)$, for any open subset U of E containing the set $\{x \in E : ||x|| \leq r_0\}$, r_0 being a positive real number satisfying the equation $r\gamma'(r) - m\gamma(r) = 0$ and $r_0 > m$. Further $||R_m|| = \frac{\gamma(r_0)}{r_0^m}$.

Proof. As $q_m \in H_{\gamma}(U; Q(^mE))$, by Theorem 3.3, there exist $T_m \in \mathcal{L}(G_{\gamma}(U); Q(^mE))$ and $\Delta_{\gamma} \in \mathcal{H}_{\gamma}(U; G_{\gamma}(U))$ such that $T_m \circ \Delta_{\gamma} = q_m$. Since $\sup_{x \in U} \frac{\|x\|^m}{\gamma(\|x\|)} = \frac{r_0^m}{\gamma(r_0)}$, we have

$$||q_m||_{\gamma} = ||T_m|| = \frac{r_0^m}{\gamma(r_0)}.$$
(3.3)

Now by Cauchy's inequality, we get

$$\left\|\frac{1}{m!}\widehat{d}^m \Delta_{\gamma}(0)\right\| \le \frac{1}{r_0^m} \sup_{\|x\|=r_0} \|\Delta_{\gamma}(x)\| = \frac{\gamma(r_0)}{r_0^m}.$$

Continuing as in the proof of the above result, we have

$$T_m \circ R_m(u) = u, \quad u \in Q(^m E).$$
(3.4)

By using (3.3) and (3.4), we get

$$||u|| = ||T_m \circ R_m(u)|| \le \frac{r_0^m}{\gamma(r_0)} ||R_m(u)|| \le ||u||$$

for every $u \in Q(^mE)$. Thus $||R_m|| = \frac{\gamma(r_0)}{r_0^m}$.

Considering the function given in Example 3.8, we have the following, illustrating the above result

EXAMPLE 3.12. If $\gamma(z) = e^{\tau z}$, $\tau > 0$, we find $r_0 = \frac{m}{\tau}$ and, so $||R_m|| = \frac{\tau^m e^m}{m^m}$.

Also, by using the same argument as in Proposition 3.11, one can easily check

EXAMPLE 3.13. For $n \in \mathbb{N}$, define $w : U_E \to (0, \infty)$ by $w(x) = (1 - ||x||)^n$, $x \in U_E$. Then

$$||R_m|| = (\frac{n}{m+n})^n$$

for any $m \in \mathbb{N}$.

4. The topology $\tau_{\mathcal{M}}$

In this section we introduce a locally convex topology $\tau_{\mathcal{M}}$ on $\mathcal{H}_w(U; F)$ of which the particular cases have been considered in [18] and [25]. For a finite set A and r > 0, let us define

$$N(A, r) = \{ f \in \mathcal{H}_w(U; F) : \inf_{x \in A} w(x) \sup_{y \in A} \| f(y) \| \le r \}.$$

Consider the class

$$\mathcal{U} = \left\{ \bigcap_{j=1}^{\infty} N(A_j, r_j) : (A_j) \text{ varies over all sequences of finite subsets of } U \text{ and} \\ (r_j) \text{ varies over all positive sequences diverging to infinity} \right\}$$

It can be easily checked that each member of \mathcal{U} is balanced, convex and absorbing. Thus it forms a fundamental neighborhood system at 0 for a locally convex topology, which we denote by $\tau_{\mathcal{M}}$. Equivalently, this topology is generated by the family

$$\left\{p_{\overline{\alpha},\overline{A}}:\overline{\alpha}=(\alpha_j)\in c_0^+,\ \overline{A}=(A_j),\ A_j \text{ being finite subset of } U \text{ for each } j\right\}$$

of seminorms given by

$$p_{\overline{\alpha},\overline{A}}(f) = \sup_{j \in \mathbb{N}} \Big(\alpha_j \inf_{x \in A_j} w(x) \sup_{y \in A_j} \|f(y)\| \Big).$$

These are the Minkowski functionals of members in \mathcal{U} . For $F = \mathbb{C}$, $\tau_{\mathcal{M}} = \tau_{bc}$, cf. [25, p. 350].

For our results in the sequel, we make use of the following

LEMMA 4.1. Let M be a compact subset of $\mathcal{G}_w(U)$. Then there exist sequences $\overline{\alpha} = (\alpha_j) \in c_0^+$ and $\overline{A} = (A_j)$ of finite subsets of U such that

$$M \subset \overline{\Gamma}\Big(\bigcup_{j \ge 1} \Big\{ \alpha_j \inf_{x \in A_j} w(x) \Delta_w(y) : y \in A_j \Big\} \Big).$$

Proof. Since M° is a τ_c -neighborhood of 0 in $\mathcal{G}_w(U)^*$, it is τ_{bc} -neighborhood of 0 by Proposition 2.3(iii). Consequently, there exist sequences $(\alpha_j) \in c_0^+$ and $\overline{A} = (A_j)$ of finite subsets of U such that $\{f \in \mathcal{H}_w(U) : p_{\overline{\alpha},\overline{A}}(f) \leq 1\}$ $\subset M^{\circ}$, where $M^{\circ} = \{f \in \mathcal{H}_w(U) : \sup_{u \in M} | \langle f, u \rangle | \leq 1\}$. Writing $B = \bigcup_{j \geq 1} \{\alpha_j \inf_{x \in A_j} w(x) \Delta_w(y) : y \in A_j\}$, we get $B^{\circ} \subset M^{\circ}$. Therefore, by the bipolar theorem, we have

$$M \subset \overline{\Gamma}\Big(\bigcup_{j \ge 1} \Big\{ \alpha_j \inf_{x \in A_j} w(x) \Delta_w(y) : y \in A_j \Big\} \Big).$$

Relating $\tau_{\mathcal{M}}$ with τ_0 and $\tau_{\|.\|_w}$, and bounded sets with respect to these topologies, we prove

PROPOSITION 4.2. For a weight w on an open subset U of a Banach space E, the following hold:

- (i) $\tau_0 \leq \tau_{\mathcal{M}} \leq \tau_{\parallel,\parallel_w}$ on $\mathcal{H}_w(U; F)$.
- (ii) $\tau_{\mathcal{M}}$ and $\|\cdot\|_w$ -bounded sets are the same.
- (iii) $\tau_{\mathcal{M}}|\mathcal{B} = \tau_0|\mathcal{B}$ for any $\|\cdot\|_w$ -bounded set \mathcal{B} .

Proof. (i) Let K be a compact subset of U. Then by Lemma 4.1, there exist sequences $(\alpha_j) \in c_0^+$ and $\overline{A} = (A_j)$ of finite subsets of U such that

$$\Delta_w(K) \subset \overline{\Gamma}\Big(\bigcup_{j \ge 1} \Big\{ \alpha_j \inf_{x \in A_j} w(x) \Delta_w(y) : y \in A_j \Big\} \Big).$$

Hence, for $f \in \mathcal{H}_w(U; F)$, we have

$$\sup_{x \in K} \|f(x)\| = \sup_{x \in K} \|T_f \circ \Delta_w(x)\| \le p_{\overline{\alpha},\overline{A}}(f).$$

Thus $\tau_{\mathcal{M}} \geq \tau_0$ on $\mathcal{H}_w(U; F)$. The inequality $\tau_{\mathcal{M}} \leq \tau_{\|\cdot\|_w}$ clearly holds.

(ii) As every $\|\cdot\|_w$ -bounded set is τ_M -bounded, it suffices to prove the other implication. Assume that there exists a τ_M -bounded set A which is not $\|\cdot\|_w$ bounded. Then for each $k \in \mathbb{N}$, there exist $f_k \in A$ such that

$$||f_k||_w > k^2.$$

Therefore, $w(x_k)||f_k(x_k)|| > k^2$ for some sequence $\{x_k\} \subset U$. Consider the $\tau_{\mathcal{M}}$ -continuous semi-norm p on $\mathcal{H}_w(U; F)$ defined by the sequences $\{\frac{1}{j}\}$ and $\{x_j\}$ obtained as above, namely

$$p(f) = \sup_{j \in \mathbb{N}} \frac{1}{j} w(x_j) \|f(x_j)\|.$$

Then $p(\frac{f_k}{k}) > 1$, for each k. This contradicts the $\tau_{\mathcal{M}}$ -boundedness of A as $\frac{1}{k} \to 0$ and $\{f_k\} \subset A$, cf. [14, p. 161].

(iii) Let \mathcal{B} be a bounded set in $(\mathcal{H}_w(U; F), \|\cdot\|_w)$. Then there exists a constant M > 0 such that $\|f\|_w \leq M$, for every $f \in \mathcal{B}$. In order to show that $\tau_{\mathcal{M}} | \mathcal{B} \leq \tau_0 | \mathcal{B}$, consider a $\tau_{\mathcal{M}}$ -continuous semi-norm p given by

$$p(f) = \sup_{j \in \mathbb{N}} \left(\alpha_j \inf_{x \in A_j} w(x) \sup_{y \in A_j} \|f(y)\| \right), \quad f \in \mathcal{H}_w(U; F),$$

where $(\alpha_j) \in c_0^+$ and (A_j) is a sequence of finite subsets of U. Fix $\epsilon > 0$ arbitrarily. Then there exists $k_0 \in \mathbb{N}$ such that

$$\alpha_j < \frac{\epsilon}{2M}, \quad \forall j > k_0.$$

Write $K = \bigcup_{j \le k_0} A_j$. Then K is a compact subset of U. For $f, g \in \mathcal{B}$,

$$p(f-g) < \epsilon$$
 whenever $p_K(f-g) < \delta$,

where

$$\delta = \frac{\epsilon}{\|\overline{\alpha}\|_{\infty} \sup_{1 \le j \le k_0} \left(\inf_{x \in A_j} w(x)\right)};$$

indeed

$$\sup_{j \le k_0} \left(\alpha_j \inf_{x \in A_j} w(x) \sup_{y \in A_j} \| (f - g)(y) \| \right) \le \|\overline{\alpha}\|_{\infty} \sup_{1 \le j \le k_0} \left(\inf_{x \in A_j} w(x) \right) p_K(f - g).$$

This completes the proof as the other implication is obviously true.

Proceeding on the lines similar to [25, Remark 3.32], it can be proved that the topology $\tau_{\mathcal{M}}$ may be strictly finer than τ_0 on $\mathcal{H}_w(U; F)$. However, for the sake of convenience of the reader, we give

EXAMPLE 4.3. Let E be a Banach space and w be a bounded weight on U_E . Assume that $\tau_{\mathcal{M}} = \tau_0$ on $\mathcal{H}_w(U_E; F)$. Choose a sequence $\{x_n\}$ in U_E such that $||x_n|| \to 1$ and $\{u_n\}$ in F with $||u_n|| = n$, $n \in \mathbb{N}$. Then by Theorem 2.1, there exists a function $f \in \mathcal{H}_b(U; F)$ such that

$$f(x_n) = \frac{u_n}{w(x_n)}, \quad n \in \mathbb{N}.$$

Since $||f||_w = \sup_{x \in U} w(x) ||f(x)|| > n$ for all $n \in \mathbb{N}$, $f \notin \mathcal{H}_w(U_E; F)$. Consequently, the set

$$A = \left\{ \sum_{m=0}^{N} \frac{1}{m!} \ \hat{d}^{m} f(0) : N = 0, 1, 2, \dots \right\}$$

is not $\|\cdot\|_w$ bounded. But the convergence of the series $\sum_{m=0}^{\infty} \frac{1}{m!} \hat{d}^m f(0)$ to f in τ_0 topology yields that the set A is τ_0 -bounded. As $\tau_{\mathcal{M}}$ and $\|\cdot\|_w$ -bounded sets are the same by Proposition 4.2(ii), it follows that $\tau_{\mathcal{M}} \neq \tau_0$, i.e., $\tau_0 < \tau_{\mathcal{M}}$.

One can easily establish the following observation which we write as

PROPOSITION 4.4. Let (A_j) be a sequence of finite sets in E and $A = \bigcup_{j \in \mathbb{N}} A_j$. Then A is bounded if and only if the set $K = (\bigcup_{j \in \mathbb{N}} \alpha_j A_j) \bigcup \{0\}$ is compact for each $\overline{\alpha} = (\alpha_j) \in c_0$.

Proof. Immediate.

PROPOSITION 4.5. Let E and F be Banach spaces. For a weight w on an open subset U of E with $\mathcal{P}(E) \subset \mathcal{H}_w(U)$, $\tau_{\mathcal{M}}$ coincides with τ_0 on $\mathcal{P}(^mE; F)$ for each $m \in \mathbb{N}$.

Proof. Let p be a $\tau_{\mathcal{M}}$ -continuous semi-norm on $\mathcal{H}_w(U; F)$. Then there exist sequences $\overline{\alpha} = (\alpha_j) \in c_0^+$ and $\overline{A} = (A_j)$ of finite subsets of U such that

$$p(f) = \sup_{j \in \mathbb{N}} \left(\alpha_j \inf_{x \in A_j} w(x) \sup_{y \in A_j} \|f(y)\| \right), \quad f \in \mathcal{H}_w(U; F).$$

Define $K = \bigcup_{j \in \mathbb{N}} \left\{ (\alpha_j \inf_{x \in A_j} w(x))^{\frac{1}{m}} y : y \in A_j \right\} \cup \{0\}$. For each $y \in U$, choose $\phi_y \in E^*$ with $\|\phi_y\| = 1$ and $\phi_y(y) = \|y\|$. Then the set $B = \{\phi_y^m : y \in U\}$ is a norm bounded subset of $\mathcal{P}({}^m E)$ and hence $\|\cdot\|_w$ -bounded by Proposition 2.2. Therefore

$$\sup_{j\in\mathbb{N}}\sup_{y\in A_j}w(y)\|y\|^m\leq \sup_{y\in U}\sup_{x\in U}w(x)\|\phi_y^m(x)\|<\infty.$$

Then by Proposition 4.4, K is a compact subset of E. Since

$$p(P) = \sup_{j \in \mathbb{N}} \sup_{y \in A_j} \left\| P\left(\left(\alpha_j \inf_{x \in A_j} w(x) \right)^{\frac{1}{m}} y \right) \right\| = p_K(P).$$

for any $P \in \mathcal{P}(^{m}E; F)$, the proof follows.

Next, we prove

PROPOSITION 4.6. Let E and F be Banach spaces. For a radial weight won a balanced open subset U of E with $\mathcal{P}(E) \subset \mathcal{H}_w(U)$, the space $\mathcal{P}(E; F)$ is $\tau_{\mathcal{M}}$ -dense in $\mathcal{H}_w(U; F)$.

Proof. Recalling the notations $S_n(f)$ and $C_n(f)$, and their integral representations for $f \in \mathcal{H}_w(U; F)$ from Section 2, we have

$$\|C_n(f)(x)\| = \left\|\frac{1}{\pi} \int_{-\pi}^{\pi} f(e^{it}x)K_n(t)dt\right\| \le \sup_{t \in [-\pi,\pi]} \|f(e^{it}x)\|$$

since $\int_{-\pi}^{\pi} K_n(t) dt = 1$, cf. [28, p. 45]. Consequently, for each $n \in \mathbb{N}_0$,

$$||C_n(f)(x)||_w \le \sup_{x \in U} w(x) \sup_{|t|=1} ||f(tx)|| = \sup_{x \in U} \sup_{|t|=1} w(tx) ||f(tx)|| \le ||f||_w < \infty.$$

Thus, for given $f \in \mathcal{H}_w(U; F)$, the set $\{C_n(f) : n \in \mathbb{N}_0\}$ is $\|\cdot\|_w$ -bounded in $\mathcal{H}_w(U; F)$. As $C_n f \to f$ in $(H(U; F), \tau_0)$, the result follows by Proposition 4.2(iii). Finally in this section, we consider an analogue of Theorem 3.1 on $\mathcal{H}_w(U;F)$ when it is equipped with the topology $\tau_{\mathcal{M}}$. This result will be useful for our study of approximation properties in the next section. Indeed, we prove

THEOREM 4.7. Let E and F be Banach spaces, and w be a weight on an open subset U of E. Then the mapping

 $\Psi: \left(\mathcal{H}_w(U; F), \tau_{\mathcal{M}}\right) \to \left(\mathcal{L}(\mathcal{G}_w(U); F), \tau_c\right)$

is a topological isomorphism.

Proof. Let M be a compact subset of $\mathcal{G}_w(U)$. Then by Lemma 4.1, there exist sequences $(\alpha_j) \in c_0^+$ and $\overline{A} = (A_j)$ of finite subsets of U such that

$$M \subset \overline{\Gamma}\bigg(\bigcup_{j \ge 1} \Big\{ \alpha_j \inf_{x \in A_j} w(x) \Delta_w(y) : y \in A_j \Big\} \bigg).$$

Hence for $f \in \mathcal{H}_w(U; F)$,

$$p_M(\Psi(f)) = \sup_{u \in M} \|T_f(u)\| \le \sup_{j \in \mathbb{N}} \left(\alpha_j \inf_{x \in A_j} w(x) \sup_{y \in A_j} \|f(y)\| \right) = p_{\overline{\alpha}, \overline{A}}(f).$$

Thus Ψ is $\tau_{\mathcal{M}} - \tau_c$ continuous.

In order to show the continuity of the inverse map Ψ^{-1} , let us note that

$$\sup_{j \in \mathbb{N}} \sup_{y \in A_j} \left(\inf_{x \in A_j} w(x) \| \Delta_w(y) \| \right) \le 1.$$

Hence by Proposition 4.4, the set

$$K = \overline{\Gamma}\bigg(\bigcup_{j\geq 1} \left\{ \alpha_j \inf_{x\in A_j} w(x) \Delta_w(y) : y \in A_j \right\} \bigg) \cup \{0\}$$

is a compact subset of $\mathcal{G}_w(U)$, which immediately yields the $\tau_c - \tau_{\mathcal{M}}$ continuity of the inverse mapping Ψ^{-1} .

5. The approximation properties

This section is devoted to the study of the approximation property for the space E, the weighted space $\mathcal{H}_w(U)$ of holomorphic mappings and its predual $\mathcal{G}_w(U)$. We write

$$\mathcal{H}_w(U) \otimes F = \{ f \in \mathcal{H}_w(U; F) : f \text{ has finite dimensional range} \}$$

and

140

$$\mathcal{H}_w^c(U;F) = \{ f \in \mathcal{H}_w(U;F) : wf \text{ has a relatively compact range} \}.$$

In the next proposition we establish the interplay between the properties of a mapping $f \in \mathcal{H}_w(U; F)$ and the corresponding operator $T_f \in \mathcal{L}(\mathcal{G}_w(U); F)$.

PROPOSITION 5.1. Let U be an open subset of a Banach space E and w be a weight on U. Then for any Banach space F,

- (a) $f \in \mathcal{H}_w(U) \otimes F$ if and only if $T_f \in \mathcal{F}(\mathcal{G}_w(U); F)$,
- (b) $f \in \mathcal{H}^{c}_{w}(U; F)$ if and only if $T_{f} \in \mathcal{K}(\mathcal{G}_{w}(U); F)$.

Proof. (a) Note that for $(g_i)_{i=1}^n \subset \mathcal{H}_w(U)$ and $(y_i)_{i=1}^n \subset F$,

$$f(x) = \sum_{i=1}^{n} g_i(x) y_i \quad \Leftrightarrow \quad T_f(\delta_x) = \sum_{i=1}^{n} \langle \delta_x, g_i \rangle y_i$$

for each $x \in U$. As $\mathcal{G}_w(U)^* = \mathcal{H}_w(U)$ and $\overline{span}\{\delta_x : x \in U\} = \mathcal{G}_w(U)$, the result follows.

(b) By Remark 3.2, $B_{\mathcal{G}_w(U)} = \overline{\Gamma}(w\Delta_w)(U)$, the result follows from

$$(wf)(U) = T_f((w\Delta_w)(U)) \subset T_f(\overline{\Gamma}(w\Delta_w)(U)) = \overline{\Gamma}((wf)(U)).$$

PROPOSITION 5.2. Let w be a weight on an open subset U of a Banach space E. Then $\overline{\mathcal{F}(\mathcal{G}_w(U);F)}^{\|\cdot\|} = \mathcal{K}(\mathcal{G}_w(U);F)$ if and only if $\overline{\mathcal{H}_w(U)\otimes F}^{\|\cdot\|_w} = \mathcal{H}^c_w(U;F)$ for each Banach space F.

Proof. Assume that $\overline{\mathcal{F}(\mathcal{G}_w(U);F)}^{\|\cdot\|} = \mathcal{K}(\mathcal{G}_w(U);F)$. Consider $f \in \mathcal{H}^c_w(U;F)$. Then $T_f \in \mathcal{K}(\mathcal{G}_w(U);F)$ by Proposition 5.1(b). Hence there exists a net $(T_\alpha) \subset \mathcal{F}(\mathcal{G}_w(U);F)$ such that $T_\alpha \xrightarrow{\|\cdot\|} T_f$. Now, corresponding to each α , we have $f_\alpha \in \mathcal{H}_w(U) \otimes F$ such that $T_{f_\alpha} = T_\alpha$ by Proposition 5.1(a). Apply Theorem 3.1 to get $f_\alpha \xrightarrow{\|\cdot\|w} f$, thereby proving $\overline{\mathcal{H}_w(U) \otimes F}^{\|\cdot\|w} = \mathcal{H}_w(U;F)$. Conversely, for $T \in \mathcal{K}(\mathcal{G}_w(U);F)$, there exists $f \in \mathcal{H}^c_w(U;F)$ such that $T = T_f$ by Proposition 5.1(b). Then there exists a net $\{f_\alpha\} \subset \mathcal{H}_w(U) \otimes F$ such that $f_\alpha \xrightarrow{\|\cdot\|w} f$. Thus $(T_{f_\alpha}) \subset \mathcal{F}(\mathcal{G}_w(U);F)$ by Proposition 5.1(a) and $T_\alpha \xrightarrow{\|\cdot\|} T_f = T$ by Proposition 3.1. ■ PROPOSITION 5.3. Let w be a weight on an open subset U of a Banach space E. Then $\overline{\mathcal{F}(\mathcal{G}_w(U); F)}^{\tau_c} = \mathcal{L}(\mathcal{G}_w(U); F)$ if and only if $\overline{\mathcal{H}_w(U) \otimes F}^{\tau_{\mathcal{M}}} = \mathcal{H}_w(U; F)$ for each Banach space F.

Proof. The proof follows analogously by using Theorem 4.7 and Proposition 5.1(b).

Characterizing the approximation property for the space E, we have

THEOREM 5.4. Let E be a Banach space. Then for each Banach space F, the following are equivalent:

- (i) E has the approximation property.
- (ii) $\overline{\mathcal{H}_w(V) \otimes E}^{\tau_{\mathcal{M}}} = \mathcal{H}_w(V; E)$, for each open subset V of F and weight w on V.
- (iii) $\overline{\mathcal{H}_w(V) \otimes E}^{\|\cdot\|_w} = \mathcal{H}_w^c(V; E)$, for each open subset V of F and weight w on V.

Proof. (i) \Rightarrow (ii): Assume that *E* has the approximation property. Then by Theorem 2.4, $\overline{\mathcal{F}(\mathcal{G}_w(U); E)}^{\tau_c} = L(\mathcal{G}_w(U); E)$. Thus $\overline{\mathcal{H}_w(V) \otimes E}^{\tau_{\mathcal{M}}} = \mathcal{H}_w(V; E)$ by Proposition 5.3.

(ii) \Rightarrow (i): We claim that $\overline{\mathcal{F}(F;E)}^{\tau_c} = L(F;E)$ for each Banach space F. Let $A \in \mathcal{L}(F;E)$. Applying Proposition 3.4, there exist operators $S \in \mathcal{L}(F;\mathcal{G}_w(U_F))$ and $T \in \mathcal{L}(\mathcal{G}_w(U_F);F)$ such that $T \circ S(y) = y, y \in F$. Since $\overline{\mathcal{G}_w(U_F)^* \otimes E}^{\tau_{\mathcal{M}}} = \mathcal{H}_w(U_F;E)$ by (ii), in view of Proposition 5.3 there exists a net $(A_\alpha) \subset \mathcal{F}(\mathcal{G}_w(U_F);E)$ such that $A_\alpha \xrightarrow{\tau_c} A \circ T$. Thus $A_\alpha \circ S \xrightarrow{\tau_c} A \circ T \circ S = A$. As $A_\alpha \circ S \subset \mathcal{F}(F;E)$, our claim holds and (i) follows by Theorem 2.4.

(i) \Rightarrow (iii): Again using Theorem 2.4, $\overline{\mathcal{F}(\mathcal{G}_w(U); E)}^{\|\cdot\|} = \mathcal{K}(\mathcal{G}_w(U); E)$ by (i). Therefore $\overline{\mathcal{H}_w(U) \otimes F}^{\|\cdot\|_w} = \mathcal{H}^c_w(U; F)$ by Proposition 5.2.

(iii) \Rightarrow (i): Let $A \in \mathcal{K}(F; E)$ and T, S be the operators as above. Then $A \circ T \in \mathcal{K}(\mathcal{G}_w(U_F); E)$. By hypothesis and Proposition 5.2, there exists a sequence $(A_n) \subset \mathcal{F}(\mathcal{G}_w(U_F); E)$ such that $A_n \xrightarrow{\parallel \cdot \parallel} A \circ T$. Thus $A_n \circ S \xrightarrow{\parallel \cdot \parallel} A$ and we have, $\overline{\mathcal{F}(F; E)}^{\parallel \cdot \parallel} = \mathcal{K}(F; E)$. This proves (i).

Next, we characterize the approximation property for the weighted space $\mathcal{H}_w(U)$.

THEOREM 5.5. For an open subset U of a Banach space E, $\mathcal{H}_w(U)$ has the approximation property if and only if $\mathcal{H}_w(U) \otimes F$ is $\|\cdot\|_w$ -dense in $\mathcal{H}_w^c(U; F)$ for each Banach space F.

Proof. By Proposition 2.5, $\mathcal{G}_w(U)^*$ has the approximation property if and only if $\mathcal{F}(\mathcal{G}_w(U); F)$ is $\|\cdot\|$ -dense in $\mathcal{K}(\mathcal{G}_w(U); F)$ for each Banach space F. As $\mathcal{H}_w(U) = \mathcal{G}_w(U)^*$, the result follows by Proposition 5.2.

We now cite the following known result, cf. [18]; along with the proof for convenience.

PROPOSITION 5.6. If a Banach space E has the approximation property, then for every Banach space F and $m \in \mathbb{N}$, $\overline{\mathcal{P}_f(^mE;F)}^{\tau_c} = \mathcal{P}(^mE;F)$.

Proof. Let $P \in \mathcal{P}(^{m}E; F)$. Then for a compact subset K of E and $\epsilon > 0$, there exists a $\delta > 0$ such that $||P(x) - P(y)|| < \epsilon$ whenever $x \in K$ and $y \in E$ with $||y - x|| < \delta$. Since E has the approximation property, there is a $T \in \mathcal{F}(E; E)$ such that $\sup_{x \in K} ||T(x) - x|| < \delta$. Thus, $\sup_{x \in K} ||P \circ T(x) - P(x)|| < \epsilon$.

Making use of the above proposition, we finally prove

THEOREM 5.7. Let E be a Banach space and w be a radial weight on a balanced open subset U of E such that $H_w(U)$ contains all the polynomials. Then the following assertions are equivalent:

- (i) E has the approximation property.
- (ii) $\overline{\mathcal{P}_f(E;F)}^{\tau_{\mathcal{M}}} = \mathcal{H}_w(U;F)$ for each Banach space F.
- (iii) $\overline{\mathcal{H}_w(U) \otimes F}^{\tau_{\mathcal{M}}} = \mathcal{H}_w(U; F)$ for each Banach space F.
- (iv) $\mathcal{G}_w(U)$ has the approximation property.

Proof. (i) \Rightarrow (ii): Let p be a $\tau_{\mathcal{M}}$ continuous semi-norm on $\mathcal{H}_w(U; F)$. Then for $f \in \mathcal{H}_w(U; F)$, there exists $P \in \mathcal{P}(E; F)$ such that $p(f - P) < \frac{\epsilon}{2}$ by Proposition 4.6. Let $P = P_0 + P_1 + \cdots + P_k$, $P_m \in \mathcal{P}(^mE; F)$, $0 \le m \le k$. Then by using Proposition 5.6 and Proposition 4.5, there exist Q_m in $\mathcal{P}_f(^mE; F)$, $0 \le m \le k$ such that

$$p(P_m - Q_m) < \frac{\epsilon}{2(k+1)}.$$

Write $Q = Q_0 + Q_1 + \dots + Q_k$. Clearly $Q \in \mathcal{P}_f(E; F)$ and $p(f - Q) < \epsilon$.

(ii) \Rightarrow (iii): It suffices to prove that $\mathcal{P}_f(E; F) \subset \mathcal{H}_w(U) \otimes F$. Consider $P \in \mathcal{P}_f(E; F)$. Then there exist $\phi_j \in E^*$ and $y_j \in F$, $1 \leq j \leq k$ such that

$$P = \sum_{j=1}^{k} \phi_j^m \otimes y_j \,.$$

Now, $\phi_j^m \in \mathcal{H}_w(U)$ for each $1 \leq j \leq k$ as w is bounded. Thus $P \in \mathcal{H}_w(U) \otimes F$. (iii) \Rightarrow (iv): Note that $\Delta_w \in \overline{\mathcal{H}_w(U)} \otimes \mathcal{G}_w(U)^{\tau_{\mathcal{M}}}$ by taking $F = \mathcal{G}_w(U)$ in (iii). Now $\overline{\mathcal{H}_w(U)} \otimes \mathcal{G}_w(U)^{\tau_{\mathcal{M}}}$ can be identified with $\overline{\mathcal{F}(\mathcal{G}_w(U);\mathcal{G}_w(U))}^{\tau_c}$ via the map Ψ by Proposition 5.1(a) and Theorem 4.7. Since $T_{\Delta_w} \circ \Delta_w = \Delta_w$, we get $\Psi(\Delta_w) = I$, the identity map on $\mathcal{G}_w(U)$. Thus $I \in \overline{\mathcal{F}(\mathcal{G}_w(U);\mathcal{G}_w(U))}^{\tau_c}$. (iv) \Rightarrow (i) follows from Proposition 2.6 and Proposition 3.6.

Acknowledgements

The second author acknowledges the Council of Scientific and Industrial Research INDIA for a Research Fellowship.

References

- J. A. BARROSO, "Introduction to Holomorphy", North-Holland Mathematics Studies, 106, North-Holland, Amsterdam, 1985.
- [2] M. J. BELTRAN, Linearization of weighted (LB)-spaces of entire functions on Banach spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. RACSAM 106 (2) (2012), 275–286.
- [3] K. D. BIERSTEDT, J. BONET, A. GALBIS, Weighted spaces of holomorphic functions on Balanced domains, *Michigan Math. J.* 40 (2) (1993), 271–297.
- [4] K. D. BIERSTEDT, R. G. MIESE, W. H. SUMMERS, A projective description of weighted inductive limits, *Trans. Amer. Math. Soc.* 272 (1) (1982), 107-160.
- [5] K. D. BIERSTEDT, W. H. SUMMERS, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1) (1993), 70-79.
- [6] C. BOYD, S. DINEEN, P. RUEDA, Weakly uniformly continuous holomorphic functions and the approximation property, *Indag. Math. (N.S.)* 12 (2) (2001), 147-156.
- [7] E. ÇALIŞKAN, Bounded holomorphic mappings and the compact approximation property in Banach spaces, Port. Math. (N.S.) 61 (1) (2004), 25-33.
- [8] E. ÇALIŞKAN, Approximation of holomorphic mappings on infinite dimensional spaces, *Rev. Mat. Complut.* 17 (2) (2004), 411–434.
- [9] S. DINEEN, "Complex Analysis in Locally Convex Spaces", North-Holland Mathematics Studies, 57, North-Holland, Amsterdam, 1981.

- [10] S. DINEEN, "Complex Analysis on Infinite Dimensional Spaces", Springer Monographs in Mathematics, Springer-Verlag, London, 1999.
- [11] P. GALINDO, D. GARCÍA, M. MAESTRE, Holomorphic mappings of bounded type, J. Math. Anal. Appl. 166 (1) (1992), 236-246.
- [12] D. GARCÍA, M. MAESTRE, P. RUEDA, Weighted spaces of holomorphic functions on Banach spaces, *Studia Math.* 138 (1) (2000),1-24.
- [13] A. GROTHENDIECK, "Produits Tensoriels Topologiques et Espaces Nucléaires", Mem. Amer. Math. Soc., 16, 1955.
- [14] J. HORVATH, "Topological Vector Spaces and Distributions", Addison-Wesley, London, 1966.
- [15] E. JORDA, "Weighted Vector-Valued Holomorphic Functions on Banach Spaces", Abstr. Appl. Anal., Vol. 2013, Article ID 501592, Hindawi Publishing Corporation, 2013.
- [16] J. LINDENSTRAUSS, L. TZAFRIRI, "Classical Banach Spaces I", Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer-Verlag, Berlin, 1977.
- [17] P. MAZET, "Analytic Sets in Locally Convex Spaces", North-Holland Mathematics Studies, 89, North-Holland, Amsterdam, 1984.
- [18] J. MUJICA, Linearization of bounded holomorphic mappings on Banach spaces, Trans. Amer. Math. Soc. 324 (2) (1991), 867–887.
- [19] J. MUJICA, "Complex Analysis in Banach Spaces", North-Holland Mathematics Studies, 120, North-Holland, Amsterdam, 1986.
- [20] J. MUJICA, Linearization of holomorphic mappings of bounded type, in "Progress in Functional Analysis (Peñíscola, 1990)", K.D. Biersted et al.(eds.), North-Holland Math. Stud., 170, North-Holland, Amsterdam, 1992, 149-162.
- [21] J. MUJICA, L. NACHBIN, Linearization of holomorphic mappings on locally convex spaces, J. Math. Pures. Appl. 71 (6) (1992), 543-560.
- [22] L. NACHBIN, "Topology on Spaces of Holomorphic Mappings", Ergebnisse der Mathematik und ihrer Grenzgebiete, 47 Springer-Verlag, New York, 1969.
- [23] K. F. NG, On a theorem of Dixmier, Math. Scand. 29 (1971), 279–280.
- [24] L. A. RUBEL, A. L. SHIELDS, The second duals of certain spaces of analtic functions, J. Austral. Math. Soc. 11 (1970), 276–280.
- [25] P. RUEDA, On the Banach Dieudonne theorem for spaces of holomorphic functions, Quaestiones Math. 19 (1-2) (1996), 341-352.
- [26] R. RYAN, "Applications of Topological Tensor Products to Infinite Dimensional Holomorphy", Ph.D. Thesis, Trinity College, Dublin, 1980.
- [27] M. VALDIVIA, Interpolation in certain function spaces, Proc. Roy. Irish Acad. Sect. A 80 (2) (1980), 173–189.
- [28] A. ZYGMUND, "Trignometrical Series", Dover, New York, 1955.