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Introduction

Semirings and semimodules have many applications in different branches
of mathematics (see [7], [8] and [9]). Semiring is a generalization of ring and
bounded distributive lattice. We recall here some definitions:

A semiring is a nonempty set S with two binary operations addition (+)
and multiplication (·) such that the following conditions hold:

1) (S,+) is a commutative monoid with identity element 0;

2) (S, .) is a monoid with identity element 1 ̸= 0;

3) 0a = 0 = a0 for all a ∈ S;

4) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for every a, b, c ∈ S.

The semiring S is commutative if the monoid (S, .) is commutative. All
semirings in this paper are commutative. An ideal I of a semiring S is a
nonempty subset of S such that a + b ∈ I and sa ∈ I for all a, b ∈ I and
s ∈ S. An ideal I is subtractive if a+ b ∈ I and b ∈ I imply that a ∈ I for all
a, b ∈ S. A semiring is entire if ab = 0 implies that a = 0 or b = 0. Further, an
element a of a semiring S is multiplicatively cancellable (abbreviated as MC)
if ab = ac implies that b = c. If every nonzero element of S is multiplicatively
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cancellable we say that the semiring S is a semidomain. An element a of
a semiring S is multiplicatively idempotent if a2 = a. Let I×(S) denote
the set of all multiplicatively idempotent elements of S. We say that S is
multiplicatively idempotent, if I×(S) = S.

Let S be a semiring. An S-semimodule is an additive abelian monoid
(M,+) with additive identity 0M and a function S×M → M ((s,m) 7→ sm),
called scalar multiplication, such that the following conditions hold for all
s, s′ ∈ S and all m,m′ ∈ M :

1) (ss′)m = s(s′m);

2) s(m+m′) = sm+ sm′;

3) (s+ s′)m = sm+ s′m;

4) 1m = m;

5) s0M = 0M = 0m;

A subset N of an S-semimodule M is a subsemimodule of M if N is closed
under addition and scalar multiplication.

We say that a subsemimodule N of an S-semimodule M is subtractive if
m+m′ ∈ N and m ∈ N imply that m′ ∈ N for all m,m′ ∈ M . Let M and M ′

be S-semimodules. Then a function α from M to M ′ is an S-homomorphism
if α(m + m′) = α(m) + α(m′) for all m,m′ ∈ M and α(sm) = s(α(m)) for
all m ∈ M and s ∈ S. The kernel of α is ker(α) = α−1{0}. Then ker(α)
is a subtractive S-semimodule of M . The set α(M) = {α(m) | m ∈ M}
is a subsemimodule of M ′. An S-homomorphism α : M → M ′ is an S-
monomorphism if αβ = αβ′ implies β = β′ for all S-semimodule K and
all S-homomorphisms β, β′ : K → M . If α is an S-monomorphism, then
ker(α) = 0. But the converse need not be true. For example, let S be an
entire semiring and b ∈ S such that it is not multiplicatively cancellative.
Thus there exists a ̸= a′ ∈ S such that ab = a′b. Define a map ϕ : S → Sb
by s 7→ sb. Then ϕ is an S-homomorphism with ker(ϕ) = 0. But ϕ is not
injective, since ϕ(a) = ϕ(a′). An S-homomorphism α : M → M ′ is surjective
if α(M) = M ′.

Let S be a semiring and M an S-semimodule. For any x ∈ M , we de-
fine c(x) = ∩{I | I is an ideal of S and x ∈ IM}. Then c is a function
from M to the set of ideals of S and it is called the content function. An S-
semimodule M is called a content semimodule if for every x ∈ M , x ∈ c(x)M .
In this paper, we study content semimodules and extend some results of [14]
to semimodules over semirings. In Section 1, we recall some properties of
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content semimodules from [12] and we show that projective semimodules are
content semimodules. We study normally flat content semimodules in Sec-
tion 2. In Section 3, we characterize content S-semimodules over discrete
valuation semirings. In Section 4, we investigate some properties of faithful
multiplication content semimodules, as a generalization of faithful multipli-
cation modules. In the last section, we prove that if every subsemimodule
of a content S-semimodule is a content S-semimodule with restricted content
function, then S is a multiplicatively regular semiring. We also characterize
content semimodules over Boolean algebras.

1. Content semimodules

The concepts of content modules and content algebras were introduced in
[14]. The concept of content semimodules is studied in [12].

Let S be a semiring and M an S-semimodule. For any x ∈ M , we define
the content of x by,

cS,M (x) = ∩
{
I | I is an ideal of S and x ∈ IM

}
.

Therefore cS,M is a function from M to the set of ideals of S which is called
the content function. If N is any non-empty subset of M , we define cS,M (N)
to be the ideal

∑
x∈N cS,M (x). Whenever there is no fear of ambiguity, either

or both of the subscripts S and M will be omitted.

Definition 1. Let S be a semiring. An S-semimodule M will be called
a content S-semimodule if for every x ∈ M , x ∈ c(x)M .

Example 2. Let S be a multiplicatively idempotent semiring, J an ideal
of S and x ∈ J . It is clear that (x) ⊆ c(x) = ∩{I | I ⊆ S, x ∈ IJ}. Thus
(x)J ⊆ c(x)J . But x = x2 ∈ (x)J and hence x ∈ c(x)J . Therefore J is a
content S-semimodule.

Now, we recall next results from [12], which will be used repeatedly.

Theorem 3. Let M be an S-semimodule. Then the following statements
are equivalent:

1) M is a content S-semimodule.

2) For every set of ideals {Ii} of S, (∩Ii)M = ∩(IiM).

3) For every set of finitely generated ideals {Ii} of S, (∩Ii)M = ∩(IiM).
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4) There exists a function f from M to the set of ideals of S such that for
every x ∈ M and every ideal I of S, x ∈ IM if and only if f(x) ⊆ I.

Moreover, if M is a content S-semimodule and x ∈ M , then c(x) is a finitely
generated ideal.

Theorem 4. Let M be a content S-semimodule, and N a subsemimodule
of M . Then the following statements are equivalent:

1) IM ∩N = IN for every ideal I of S.

2) For every x ∈ N , x ∈ cM (x)N .

3) N is a content S-semimodule and cM restricted to N is cN .

We know that every free module and every projective module as a direct
summand of a free module, are content modules by [14, Corollary 1.4]. More-
over every free semimodule is a content semimodule by [12, Corollary 26].
But not all projective semimodules are direct summands of free semimodules
(cf. [3, Example 2.3]). We can prove that every projective semimodule is a
content semimodule as follows:

Theorem 5. Any projective semimodule is a content semimodule.

Proof. Let S be a semiring andM a projective S-semimodule. Then by [18,
Theorem 3.4.12], there exist {mi}i∈I ⊆ M and {fi}i∈I ⊆ HomS(M,S) such
that for any x ∈ M , fi(x) = 0 for almost all i ∈ I, and x =

∑
i fi(x)mi. Sup-

pose that x ∈ M . Then x =
∑n

i=1 fi(x)mi and hence x ∈ (f1(x), . . . , fn(x))M .
Thus c(x) ⊆ (f1(x), . . . , fn(x)). Now assume that x ∈ IM for some ideal I
of S. Then there exist m ∈ N, r1, . . . , rm ∈ I and x1, . . . , xm ∈ M such
that x =

∑m
i=1 rixi. For each 1 ≤ j ≤ n, fj(x) =

∑m
i=1 rifj(xi), and hence

fj(x) ∈ (r1, . . . , rm). Therefore (f1(x), . . . , fn(x)) ⊆ (r1, . . . , rm) ⊆ I. This
implies (f1(x), . . . , fn(x)) ⊆ c(x), by definition of content function. Therefore
(f1(x), . . . , fn(x)) = c(x), and x ∈ (f1(x), . . . , fn(x))M = c(x)M .

Let M be an S-semimodule, N a subsemimodule of M and I an ideal of
S. Put

(N :M I) = {x | x ∈ M and Ix ⊆ N}.

Then (N :M I) is a subsemimodule of M .

Theorem 6. Let M be a content S-semimodule, and let s ∈ S. Then the
following statements are equivalent:
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1) s(c(x)) = c(sx) for all x ∈ M .

2) (I :S s)M = (IM :M s) for every ideal I of S.

Proof. (1) ⇒ (2): The proof is similar to [14, Theorem 1.5].

(2) ⇒ (1): Let x ∈ M . Then x ∈ c(x)M since M is a content S-semimodule.
Thus, sx ∈ sc(x)M . This implies that c(sx) ⊆ sc(x). Now by (2),
(c(sx) :S s)M = (c(sx)M :M s). On the other hand, since M is a content
semimodule, sx ∈ c(sx)M . This implies x ∈ (c(sx)M :M s) = (c(sx) :S s)M .
So c(x) ⊆ (c(sx) : s) and hence sc(x) ⊆ c(sx).

Definition 7. Let S be a semidomain. An S-semimodule M is said to
be torsionfree if for any 0 ̸= a ∈ S, multiplication by a on M is injective, i.e.,
if ax = ay for some x, y ∈ M , then x = y.

Now we give the following theorem for content torsionfree semimodules
over a semidomain.

Theorem 8. Let S be a semidomain and M a content torsionfree S-
semimodule. Then for every s ∈ S and x ∈ M , s(c(x)) = c(sx).

Proof. Since M is a content S-semimodule, x ∈ c(x)M . Therefore sx ∈
sc(x)M , which implies c(sx) ⊆ sc(x). Now sx ∈ sM , implies that c(sx) ⊆
(s). Therefore c(sx) = (s)J , where J = (c(sx) : s). Since M is a content
semimodule, sx ∈ c(sx)M = sJM . Therefore sx = sz, for some element
z ∈ JM . Then x = z, since M is torsionfree. Thus x ∈ JM and hence
c(x) ⊆ J . Therefore sc(x) ⊆ sJ = c(sx).

Theorem 9. Let S be a semiring such that any 0 ̸= s ∈ S is in at most
finitely many ideals, and let M be an S-semimodule such that for all ideals
I, J of S, (I ∩ J)M = IM ∩ JM . Then M is a content semimodule if and
only if ∩(IiM) = 0, whenever {Ii} is an infinite set of ideals of S.

Proof. Let M be a content S-semimodule and let {Ii} be an infinite set
of ideals of S. Then by Theorem 3, ∩(IiM) = (∩Ii)M = 0. Conversely,
let {Ii}i∈I be a set of ideals of S. If I is finite, then ∩(IiM) = (∩Ii)M by
assumption. Now if I is infinite, then ∩(IiM) = (∩Ii)M = 0. Therefore M is
a content S-semimodule.



244 r. razavi nazari, sh. ghalandarzadeh

2. Normally flat semimodules and content semimodules

In this section, we investigate normally flat content semimodules. The
concept of normally flat semimodules was introduced in [2]. Let us recall
some definitions.

Let M and N be two S-semimodules. An S-balanced map g : M×N → G,
where G is an Abelian monoid, is a bilinear map such that g(ms, n) = g(m, sn)
for all m ∈ M , s ∈ S and n ∈ N .

A commutative monoid M ⊗S N together with an S-balanced map τ :
M ×N → M ⊗S N is called a tensor product of M and N over S if for every
Abelian monoid G with an S-balanced map β : M × N → G, there exists a
unique morphism of monoids γ : M ⊗S N → G that γ ◦ τ = β. For more
details on tensor product of semimodules see [10], [1] and [15].

Definition 10. Assume that M is an S-semimodule. We say that a sub-
semimodule N ≤S M is a normal subsemimodule, and write N ≤n

S M , if
the embedding N ↪→ M is a normal monomorphism, that is, N = ker(f)
for some S-homomorphism f : M → L and some S-semimodule L. Note
that N ≤n

S M if and only if N = N , the normal closure of N , defined by
N := {m ∈ M | m + n1 = n2 for some n1, n2 ∈ N}. Therefore N ≤n

S M if
and only if N is a subtractive subsemimodule of M .

Definition 11. Let F and M be S-semimodules. We say that F is nor-
mally flat with respect to M (or normally M -flat) if N ⊗S F ≤n

N M ⊗S F for
every N ≤n

S M . We say that F is normally flat, if F is normally M -flat for
every S-semimodule M .

Assume that R is a domain. It is well known that if M is a flat R-module,
thenM is torsionfree [4, Chapter I, §2.5, Proposition 3]. We have the following
result for normally flat semimodules.

Theorem 12. Let S be a semidomain such that every principal ideal of
S is subtractive and let M be a normally flat S-semimodule. Then M is a
torsionfree S-semimodule.

Proof. Let 0 ̸= a ∈ S. We should show that for all x, y ∈ M , ax = ay
implies x = y. Define a map f : S → S by f : s 7→ as. If as = as′ for some
s, s′ ∈ S, then s = s′ since a is an MC element. Therefore f is an injective
S-homomorphism. Moreover, f(S) = Sa is a subtractive subsemimodule of S.
Since M is normally flat, f̄ : S⊗S M → S⊗S M where f̄ : s⊗m 7→ as⊗m, is
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injective. But S⊗S M
θ∼= M by [15, Theorem 7.6]. Thus θ ◦ f̄ ◦ θ−1 : m 7→ am

is injective.

In [14, Corollary 1.6], it is proved that a content module is a flat module
if and only if for every s ∈ S and x ∈ M , s(c(x)) = c(sx). Now from
Theorem 12, we have the following result.

Corollary 13. Let S be a semidomain such that every principal ideal
of S is subtractive and let M be a content normally flat S-semimodule. Then
for every s ∈ S and x ∈ M , s(c(x)) = c(sx).

Proof. By Theorem 12, M is a torsionfree S-semimodule. Thus by Theo-
rem 8, for every s ∈ S and x ∈ M , s(c(x)) = c(sx).

Theorem 14. Let S be a semiring and M a content S-semimodule such
that for every s ∈ S and every ideal I of S, (I :S s)M = (IM :M s). Then
(I :S J)M = (IM :M J) for every pair of ideals I, J of S.

Proof. Since M is a content S-semimodule, by Theorem 3, (I : J)M =
(∩s∈J(I : s))M = ∩s∈J(I : s)M . But ∩s∈J(I : s)M = ∩s∈J(IM : s) = (IM :
J).

Corollary 15. Assume that S is a semidomain such that every principal
ideal of S is subtractive and let M be a content normally flat S-semimodule.
Then (I :S J)M = (IM :M J) for every pair of ideals I, J of S.

Proof. By Theorem 13, for every s ∈ S and x ∈ M , s(c(x)) = c(sx) and
by Theorem 6, (I :S s)M = (IM :M s) for every ideal I of S and s ∈ S. Thus
by Theorem 14, (I :S J)M = (IM :M J).

3. Content semimodules over discrete valuation semirings

Discrete valuation semiring was introduced and studied in [13]. Simi-
lar to [14, Proposition 2.1], we will obtain a characterization of content S-
semimodules over a discrete valuation semiring. First, we recall some defini-
tions and results from [13].

Let (M,+, 0, <) be a totally ordered commutative monoid (abbreviated
as tomonoid) with no greatest element and let +∞ be an element such that
+∞ /∈ M . Put M∞ = M ∪ {+∞}. Now set m < +∞ for all m ∈ M and
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m + (+∞) = (+∞) + m = +∞ for all m ∈ M∞. Then M∞ is a tomonoid
with the greatest element +∞.

Definition 16. A map v : S → M∞ is an M -valuation on S if the fol-
lowing properties hold:

1) S is a semiring and M∞ is a tomonoid with the greatest element +∞,
which has been obtained from the tomonoidM with no greatest element,

2) v(xy) = v(x) + v(y) for all x, y ∈ S,

3) v(x+ y) ≥ min{v(x), v(y)}, whenever x, y ∈ S,

4) v(1) = 0 and v(0) = +∞.

If in the above M = Z, we will say that v is a discrete valuation on S.

Definition 17. Let S be a semiring. If there exists an M -valuation v on
S, then it is obvious that Sv = {s ∈ S | v(s) ≥ 0} is a subsemiring of S. In
this case we say that “Sv is a V -semiring with respect to the triple (S, v,M)”.

An element s of a semiring S is a unit if there exists an element s′ of S
such that ss′ = 1. We say that S is a semifield if every nonzero element of S
is a unit.

Definition 18. A semiring S is called discrete valuation semiring, if S =
Kv is a V -semiring with respect to the triple (K, v,Z), where K is a semifield
and v is surjective.

A semiring S is called a local semiring if it has a unique maximal ideal.
Note that by [13, Theorem 3.6] every discrete valuation semiring is a local
semiring.

Theorem 19. Let (S,m) be a discrete valuation semiring and let M be
an S-semimodule. Then M is a content S-semimodule if and only if ∩{miM |
i = 1, 2, · · · } = 0.

Proof. LetM be a content S-semimodule. By [13, Theorem 3.6], ∩∞
i=1m

i =
0. Thus by Theorem 3, ∩∞

i=1(m
iM) = (∩∞

i=1m
i)M = 0.

Now let 0 ̸= x ∈ M . Since every ideal of S is of the form mi(i ∈ N) [13,
Lemma 3.3], c(x) = ∩{mi | x ∈ miM}. But ∩{miM | i = 1, 2, · · · } = 0. So
there exists a positive integer n such that x ∈ mnM and x /∈ miM for all
i > n. Therefore c(x) = mn. Hence x ∈ c(x)M .
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We know that free semimodules, and more generally, projective semimod-
ules are examples of normally flat semimodules (see [1]), and in Section 1 we
proved that these semimodules are content semimodules. Now, we give an
example of a content semimodule which is not normally flat. First, we recall
the following definition:

Let M be an S-semimodule and N a subsemimodule of M . Then we can
define a congruence relation on M as follows: m ≡N n iff m + a = n + b for
some a, b ∈ N . The set of equivalence classes is an S-semimodule and denoted
by M/N . The equivalence class of m ∈ M is denoted by m/N .

Example 20. Let S = (N ∪ {+∞},min,+,+∞, 0). Then S is a semido-
main.

Let J = S\{1S} = {−∞}∪{1, 2, · · · }. We show that J is a principal ideal
of S. If x, y ∈ J and s ∈ S, then x ⊕ y = min{x, y} ∈ J and 0 ̸= s + x =

s⊙ x ∈ J . Now let 0S ̸= a ∈ J . Then a = 1+
a· · · +1 = 1⊙ a· · · ⊙1 = 1a ∈ (1).

Therefore J = (1) and J is the unique maximal ideal of S.
If I is an ideal of S, then I is a power of J . Let I be an ideal of S,

0S ̸= n ∈ I the smallest element in I and 0S ̸= x ̸= n ∈ I. Then x ≥ n and
hence x− n ∈ S. Thus x = x− n+ n = (x− n)⊙ n ∈ (n). Therefore I = (n).
Moreover, n = 1 + · · · + 1 = 1 ⊙ · · · ⊙ 1 = 1n and hence I = (n) = (1n) =
(1)n = Jn. Thus S is a discrete valuation semiring by [13, Theorem 3.6].

Now let I = (n) be an ideal of S and x, y ∈ S such that x + y, y ∈ I. If
y ≥ x, then x + y = min{y, x} = x ∈ I. If x ≥ y, then x − y ∈ S and so
x = x−y+y = x−y⊙y ∈ I. Therefore I is subtractive. This implies S/I ̸= 0.
Now consider the S-semimodule M = S/J2. Since J2M = 0, ∩{J iM | i =
1, 2, · · · } = 0. Thus by Theorem 19, M is a content S-semimodule. Note
that S is a semidomain such that every ideal of S is subtractive and M is not
torsionfree. Thus from Theorem 12, M is not a normally flat S-semimodule.

4. Multiplication semimodules and content semimodules

In this section we study the relation between multiplication semimodules
and content semimodules and give some results about multiplication semi-
modules. It is known that every faithful multiplication module is a content
module. Here we investigate faithful multiplication content semimodules and
extend some results of [6] to semimodules.

If N and L are subsemimodules of an S-semimodule M , we set (N : L) =
{s ∈ S | sL ⊆ N}. Then (N : L) is an ideal of S.
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Definition 21. Let S be a semiring and M an S-semimodule. Then M
is called a multiplication semimodule if for each subsemimodule N of M there
exists an ideal I of S such that N = IM .

In this situation we can prove that N = (N : M)M . Cyclic semimodules
are examples of multiplication semimodules [19, Example 2].

Theorem 22. Suppose that M is a content S-semimodule and for any
subsemimodule N of M and ideal I of S such that N ⊂ IM there exists an
ideal J of S such that J ⊂ I and N ⊆ JM . Then M is a multiplication
S-semimodule.

Proof. The proof is similar to [6, Theorem 1.6].

We recall the following results from [16].
Let M be an S-semimodule and P a maximal ideal of S. We say that M

is P -cyclic if there exist m ∈ M , t ∈ S and q ∈ P such that t + q = 1 and
tM ⊆ Sm.

Theorem 23. Let M be an S-semimodule. If M is a multiplication semi-
module, then for every maximal ideal P of S either M = {m ∈ M | m =
qm for some q ∈ P} or M is P -cyclic [16, Theorem 1.6].

Definition 24. An element m of an S-semimodule M is cancellable if
m+m′ = m+m′′ implies that m′ = m′′. The S-semimodule M is cancellative
if every element of M is cancellable.

A semiring S is yoked if for all a, b ∈ S, there exists an element t of S such
that a + t = b or b + t = a. Now, we give the following theorem for yoked
semirings.

Theorem 25. Let S be a yoked semiring such that every maximal ideal
of S is subtractive and let M be a cancellative faithful multiplication S-
semimodule. Then M is a content S-semimodule.

Proof. Let {Iλ}(λ ∈ Λ) be any non-empty collection of ideals of S. Put
I = ∩λ∈ΛIλ. Clearly IM ⊆ ∩λ∈Λ(IλM). Let x ∈ ∩λ∈Λ(IλM) and let K =
{r ∈ S | rx ∈ IM}. If K ̸= S, then there exists a maximal ideal Q of S such
that K ⊆ Q. Suppose that M = {m ∈ M | m = pm for some p ∈ Q}. Then
x = px for some p ∈ Q. Since S is a yoked semiring, there exists t ∈ S such
that t + p = 1 or 1 + t = p. Suppose that t + p = 1. Then px + tx = x.
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Since M is a cancellative S-semimodule, tx = 0 and hence t ∈ K ⊆ Q which
is a contradiction. Now suppose that 1 + t = p. Then x + tx = px. Since
M is a cancellative semimodule, tx = 0 and hence t ∈ K ⊆ Q. On the other
hand, since Q is a subtractive ideal, 1 ∈ Q which is a contradiction. Therefore
by Theorem 23, M is Q-cyclic. Hence there exist m ∈ M , t ∈ S and q ∈ Q
such that t + q = 1 and tM ⊆ Sm. Then tx ∈ ∩λ∈Λ(Iλm). Thus for each
λ ∈ Λ, there exists aλ ∈ Iλ such that tx = aλm. Choose α ∈ Λ. Then
aαm = aλm for each λ ∈ Λ. Since S is a yoked semiring, there exists rλ ∈ S
such that aα + rλ = aλ or aλ + rλ = aα. Suppose that aα + rλ = aλ. Then
aαm+ rλm = aλm and hence rλm = 0. Thus trλM ⊆ rλ(Sm) = 0. Since M
is a faithful semimodule, trλ = 0. But taα + trλ = taλ and hence taα = taλ.
Now suppose that aλ + rλ = aα. A similar argument shows that taα = taλ.
Thus in any case taα ∈ Iλ for each λ ∈ Λ and hence taα ∈ I. Therefore
t2x = taαm ∈ IM . This implies that t2 ∈ K ⊆ Q which is a contradiction.
Therefore K = S and hence x ∈ IM .

We call an S-semimodule M multiplicatively cancellative (abbreviated as
MC) if for any s, s′ ∈ S and 0 ̸= m ∈ M , sm = s′m implies s = s′ [5].

Theorem 26. Let M be an MC multiplication S-semimodule. Then M
is a content S-semimodule.

Proof. By [16, Theorem 2.9], M is a projective S-semimodule and by
Corollary 5, M is a content S-semimodule.

Now, by using [16, Corollary 2.10], we get the following result.

Corollary 27. Let S be a yoked entire semiring and M a cancellative
faithful multiplication S-semimodule. Then M is a content S-semimodule.

We say that a subsemimodule E of an S-semimodule M is an essential
subsemimodule, if for any nonzero subsemimodule N ⊆ M , E ∩ N ̸= 0 [11].
Let S be a semiring and M a faithful multiplication content S-semimodule.
Then similar to [6, Theorem 2.13] we can prove that a subsemimodule N of
M is essential if and only if there exists an essential ideal E of S such that
N = EM .

Assume that M is an S-semimodule. We define the socle of M , denoted
by Soc(M), to be Soc(M) =

∩
{N | N ⊆e M} (see also [11]). Now if M is

a faithful multiplication content S-semimodule, then similar to [6, Corollary
2.14], we conclude that Soc(M) = Soc(S)M .
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An S-semimodule M is called finitely cogenerated if for every set A of
subsemimodules ofM ,

∩
A = 0 if and only if

∩
F = 0 for some finite set F ⊆ A

[11]. The semiring S is called finitely cogenerated if it is finitely cogenerated
as an S-semimodule. Let S be a semiring and M a faithful multiplication
content S-semimodule. Then with a similar proof for [6, Corollary 1.8], we
can show that, M is finitely cogenerated if and only if S is finitely cogenerated.

Assume that M is an S-semimodule. Now we give some properties of the
ideal c(M).

Theorem 28. (see [14, Corollary 1.6]) Let M be a content S-semimodule.
Then c(M) = S iff mM ̸= M for every maximal ideal m of S.

Proof. (⇒) Let c(M) = S and m a maximal ideal of S such that mM = M .
If x ∈ M = mM , then c(x) ⊆ m. Hence c(M) ⊆ m which is a contradiction.

(⇐) Let m be a maximal ideal of S and mM ̸= M . Then there exists
x ∈ M\mM . Thus c(x) * m since x ∈ c(x)M . Therefore c(M) * m. Since
for all maximal ideal m of S, c(M) * m, we have c(M) = S.

Let S be a semiring and M an S-semimodule. Put A = {I ⊆ S|M = IM}
and τ(M) = ∩I∈AI. Then τ(M) is an ideal of S.

Theorem 29. Let M be a content S-semimodule. Then c(M) = τ(M).

Proof. If x ∈ M , then x ∈ c(x)M ⊆ c(M)M . Therefore c(M)M = M
and hence τ(M) ⊆ c(M). Now let I be an ideal of S such that M = IM .
Then for each x ∈ M = IM , c(x) ⊆ I and hence c(M) ⊆ I. Therefore
c(M) ⊆ τ(M).

Theorem 30. Let M be a faithful multiplication content S-semimodule
and I = τ(M). Then:

1) m ∈ Im for each m ∈ M ;

2) I2 = I;

3) ann(I) = 0.

Proof. The proof is similar to [6, Lemma 3.2].
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5. Regular semirings and content semimodules

An element a of a semiring S is multiplicatively regular if there exists an
element x of S such that axa = a. A semiring S is multiplicatively regular if
every element of S is multiplicatively regular. Bounded distributive lattices,
and in particular, Boolean algebras are multiplicatively regular semirings.

Example 31. Let S be a semifield and A a nonempty set. Suppose that
f ∈ SA. Define a map g : A → S by g(a) = f(a)−1 if f(a) ̸= 0, and g(a) = 0 if
f(a) = 0. Then f = fgf . Therefore SA is a multiplicatively regular semiring.

Theorem 32. Let S be a multiplicatively regular semiring. Then every
ideal of S is generated by idempotents.

Proof. Let I be an ideal of S and x ∈ I. Then x = x2s for some s ∈ S.
Thus xs ∈ I×(S) and (x) = (xs). Therefore I =

∑
x∈I Sx is generated by

idempotents.

In [14], it is shown that a ring R is regular if and only if every submodule
of a content R-module is a content module with restricted content function.
We can extend this result to multiplicatively regular semirings as follows:

Theorem 33. Assume that S is a semiring. If every subsemimodule of
a content S-semimodule is a content S-semimodule with restricted content
function, then S is a multiplicatively regular semiring.

Proof. By [17, Proposition 1], it is sufficient to show that every principal
ideal of S is generated by an idempotent. Suppose that a ∈ S. Then by
Theorem 4, (a)S ∩ (a) = (a2). Thus there exists r ∈ S such that a = ra2.
Hence ar ∈ I×(S) and (a) = (ar).

Let S be a semiring. An element a of S is complemented if there exists
an element c of S such that ac = 0 and a + c = 1. Let comp(S) denote the
set of all complemented elements of S. Note that comp(S) ⊆ I×(S). Since if
a ∈ comp(S), then a = a1 = a(a+ c) = a2 + ac = a2.

Theorem 34. Let S be a semiring such that comp(S) = I×(S). Let
I = (e, f) be an ideal of S such that e, f ∈ I×(S). Then I = (g) for some
g ∈ I×(S).
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Proof. Since e, f ∈ comp(S), there exist elements x, y ∈ I×(S) such that
x+ e = 1, y + f = 1, xe = 0 and yf = 0. Then 1 = xy + ye + xf + fe. Put
g = ye+xf+fe ∈ I. Then 1 = xy+g and g2 = g. Moreover e = exy+eg = eg
and f = fxy + fg = fg. Therefore I = (e, f) ⊆ (g) ⊆ I. Hence I = (g).

Example 35. Let S be a semiring such that I×(S) = {0, 1}. Let A be a
nonempty set and f ∈ I×(SA). Then for each a ∈ A, f(a) ∈ I×(S) = {0, 1}.
Define a map g : A → S by g(a) = 1 if f(a) = 0, and g(a) = 0 if f(a) = 1.
Then f + g = 1SA , and fg = 0. Thus f ∈ comp(SA). Therefore SA is a
semiring such that comp(SA) = I×(SA).

Theorem 36. Let S be a semiring. If every finitely generated ideal in
S is generated by an idempotent, then every subsemimodule of a content
S-semimodule is a content S-semimodule with restricted content function.

Proof. Let M be a content S-semimodule and N ⊆ M . By Theorem 4,
we should show that for every x ∈ N , x ∈ cM (x)N . Let x ∈ N . Then x ∈
cM (x)M . Since M is a content S-semimodule, cM (x) is a finitely generated
ideal. Hence there exists an element e ∈ I×(S) such that cM (x) = (e). Thus
x ∈ (e)M and hence there exists m ∈ M such that x = em = e2m = ex.
Therefore x ∈ cM (x)N .

Here we study content semimodules over Boolean algebras (see [14, section
4]). Note that, by Theorem 34, every finitely generated ideal of a Boolean
algebra is generated by an idempotent.

Lemma 37. Let S be a semiring and M an S-semimodule. If every finitely
generated ideal of S is generated by an idempotent then for all ideals I, J ⊆ S,
(I ∩ J)M = IM ∩ JM .

Proof. It is clear that (I ∩J)M ⊆ IM ∩JM . Suppose that x ∈ IM ∩JM .
Then x =

∑m
i=1 rimi =

∑n
j=1 sjm

′
j , where mi,m

′
j ∈ M , ri ∈ I and sj ∈ J for

all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Put I ′ = (r1, . . . , rm), J ′ = (s1, . . . , sn). Then there exist e, u ∈ I×(S) such
that I ′ = (e) ⊆ I and J ′ = (u) ⊆ J . Then for each i, 1 ≤ i ≤ m, there exists
ui ∈ S such that ri = eui. Moreover, for each j, 1 ≤ j ≤ n, there exists tj ∈ S
such that sj = utj . Hence x =

∑m
i=1 rimi =

∑m
i=1 euimi = e

∑m
i=1 euimi =

ex. Similarly x =
∑n

j=1 sjm
′
j =

∑m
j=1 utjm

′
j = u

∑m
j=1 utjm

′
j = ux. Thus

x = ex = eux. Therefore x ∈ (I ∩ J)M .



content semimodules 253

Lemma 38. Let S be a Boolean algebra and M an S-semimodule. Then
for all s ∈ S, (0 :S s)M = (0 :M s).

Proof. Clearly, (0 :S s)M ⊆ (0 :M s). Let x ∈ M such that sx = 0. Since
S is a Boolean algebra, there exists an element t ∈ S such that t+ s = 1 and
ts = 0. Thus x = tx ∈ (0 :S s)M . Therefore (0 :S s)M = (0 :M s).

Lemma 39. Let S be a Boolean algebra, M an S-semimodule and x ∈ M .
Then c(x) = ann(ann(x)).

Proof. Let I be a finitely generated ideal of S such that x ∈ IM . Then
annI ⊆ ann(x) and hence ann(ann(x)) ⊆ ann(ann(I)). But ann(ann(I)) =
I and so ann(ann(x)) ⊆ I. By Theorem 3, ann(ann(x)) ⊆ c(x).

Conversely, let s ∈ S such that sx = 0. Then x ∈ (0 :M s) = (0 :S s)M
by Theorem 38. Thus c(x) ⊆ (0 :S s) and hence c(x) ⊆

∩
s∈ann(x)(0 :S s) =

ann(ann(x)).

In the following theorem we characterize content S-semimodules over Bool-
ean algebras.

Theorem 40. Let S be a Boolean algebra andM an S-semimodule. Then
M is a content S-semimodule if and only if for all x ∈ M , ann(x) is a finitely
generated ideal.

Proof. Suppose that M is a content S-semimodule and x ∈ M . Then
c(x) = ann(ann(x)) is a finitely generated ideal. Thus there exists e ∈ S such
that ann(ann(x)) = (e). Moreover there exists u ∈ S such that ue = 0 and
u+ e = 1. We show that ann(x) = (u). Since M is a content S-semimodule,
x ∈ c(x)M = (e)M . Thus there exists z ∈ M such that x = ez. Hence
ux = uez = 0. Therefore u ∈ ann(x) and hence (u) ⊆ ann(x).

For the reverse inclusion, let r ∈ ann(x). Then r = ur + er = ur. Thus
r ∈ (u) and hence ann(x) ⊆ (u).

Now suppose that x ∈ M and ann(x) is a finitely generated ideal. Note
that by Lemma 37, (I∩J)M = IM∩JM for all ideals I, J ⊆ S. Let ann(x) =
(s1, . . . , sn). Then x ∈

∩n
i=1(0 :M si) =

∩n
i=1(0 :S si)M = (

∩n
i=1(0 :S si))M =

(ann(ann(x)))M . Thus by Theorem 39, x ∈ c(x)M and hence M is a content
S-semimodule.
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