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Abstract : We define and discuss for a closed linear relation in a Hilbert space the notions of
essential g-ascent (resp. g-descent) and g-ascent (resp. g-descent) spectrums. We improve in
the Hilbert space case some results given by E. Chafai in a Banach space [Acta Mathematica
Sinica, 34 B, 1212-1224, 2014] and several results related to the ascent (resp. essential ascent)
spectrum for a bounded linear operator on a Banach space [Studia Math, 187, 59-73, 2008]
are extended to closed linear relations on Hilbert spaces. We prove also a decomposition
theorem for closed linear relations with finite essential g-ascent or g-descent.
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1. Introduction and terminology

Let H be a complex Hilbert space. A multivalued linear operator T :
H −→ H or simply a linear relation is a mapping from a subspace D(T ) ⊆ H,
called the domain of T, into the collection of nonempty subsets of H such that
T (λx+µy) = λT (x)+µT (y) for all nonzero scalars λ, µ and x, y ∈ D(T ). We
denote by LR(H) the class of linear relations on H. If T maps the points of its
domain to singletons, then T is said to be a single valued linear operator or
simply an operator. The graph G(T ) of T ∈ LR(H) is defined by :

G(T ) = {(x, y) ∈ H× H : x ∈ D(T ), y ∈ Tx}.

We say that T is closed if its graph is a closed subspace of H×H. The class of
such linear relations will be denoted by CR(H). A linear relation T ∈ LR(H)
is said to be continuous if for each open set Ω ⊆ Im(T ), T−1(Ω) is an open
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set in D(T ). Continuous everywhere defined linear relations are referred to as
bounded relations. The kernel of a linear relation T is the subspace ker(T ) :=
T−1(0). The subspace Im(T ) := T (D(T )) is called the range of T. The nullity
and the defect of a linear relation T ∈ LR(H) are defined by α(T ) = dim ker(T )
and β(T ) = dimH/Im(T ), respectively.

Recall that T ∈ CR(H) is said to be upper semi-Fredholm if T has closed
range and α(T ) < +∞, and T is said to be lower semi-Fredholm if β(T ) <
+∞. If T is upper or lower semi-Fredholm we say that T is semi-Fredholm, and
we denote by Φ±(H) the class of all semi-Fredholm relations. For T ∈ Φ±(H)
we define the index of T by

ind(T ) = α(T )− β(T ).

A linear relation is Fredholm if max{α(T ), β(T )} < +∞. We denote by
Φ(H) (respectively, Φ+(H), Φ−(H)) the class of all Fredholm (respectively,
upper semi-Fredholm, lower semi-Fredholm) relations. The linear relation
T ∈ CR(H) is called regular if Im(T ) is closed and ker(T ) ⊆ Im(Tn), for every
n ∈ N (see [1]).

Recall that the resolvent set of T ∈ LR(H) is defined (see, [4, Chapter VI])
by

ϱ(T ) = {λ ∈ C : λI − T is injective, open and has dense range}

and the spectrum of T is the set σ(T ) = C\ϱ(T ). It is clear from the closed
graph theorem for a linear relation that if T is a closed linear relation then
ϱ(T ) = {λ ∈ C : λI − T is bijective}. We say that T ∈ LR(H) has a trivial
singular chain manifold if Rc(T ) = {0} where

Rc(T ) =
[ ∞∪
i=1

ker(T i)
]
∩
[ ∞∪
i=1

T i(0)
]
.

Let λ ∈ C, by [10, Lemma 7.1], we know that Rc(T ) = {0} if and only if
Rc(λI − T ) = {0}. It is easy to see that Rc(T ) = {0} when ϱ(T ) ̸= ∅.

For two subspaces M and N of H, we recall that dimM/M∩N = dim(M+
N)/N and (N+W) ∩M = N ∩M+W whenever W is a subspace of M.

Following [3], the ascent and the descent of T ∈ LR(H) are respectively
defined by

a(T ) = inf{k ∈ N : ker(T k+1) = ker(T k)},

d(T ) = inf{k ∈ N : Im(T k+1) = Im(T k)},
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whenever these minima exist. If no such numbers exist the ascent and descent
of T are defined to be +∞.

For T ∈ LR(H) and n ∈ N, we define the following quantities :

αn(T ) = dim ker(Tn+1)/ker(Tn),
βn(T ) = dim Im(Tn)/Im(Tn+1).

Let us recall from [9, Lemma 3.2] and [10, Lemma 4.1], the following properties

αn(T ) = dim[Im(Tn) ∩ ker(T )]/[Tn(0) ∩ ker(T )] (1.1)

and
βn(T ) = dimD(Tn)/[Im(T ) + ker(Tn)] ∩ D(Tn)

= dim[Im(T ) +D(Tn)]/[Im(T ) + ker(Tn)].
(1.2)

In [6], we show that (βn(T ))n≥0 and (αn(T ))n≥0 are decreasing sequences.
Recall that for T ∈ LR(H), the essential ascent, ae(T ), and the essential
descent, de(T ), are defined by ([3])

ae(T ) = inf{n ∈ N : αn(T ) < +∞},

de(T ) = inf{n ∈ N : βn(T ) < +∞},

where the infimum over the empty set is taken to be infinite.

For T ∈ LR(H) we consider the two decreasing sequences

α̃n(T ) = dim Im(Tn) ∩ ker(T ), β̃n(T ) = dimH/[Im(T ) + ker(Tn)], n ∈ N.

Remark 1.1. From the equalities (1.1) and (1.2), we see that αn(T ) ≤
α̃n(T ) and βn(T ) ≤ β̃n(T ), for all n ∈ N. Observe that ker(T ) ∩ T j(0) ⊆
Rc(T ), for all j ∈ N. Thus, by equality (1.1) (resp. (1.2)), it follows that if
Rc(T ) = {0} (resp. D(T i) + Im(T ) = H, for all i ∈ N), so αn(T ) = α̃n(T )
(resp. βn(T ) = β̃n(T )), for all n ∈ N.

The above remark leads to the introduction of a new concept of g-ascent
(resp. essential g-ascent, g-descent, essential g-descent) for a linear relation.

Definition 1.2. Let T ∈ LR(H).

(i) The g-ascent, ã(T ), of T is defined by

ã(T ) = inf{n ∈ N : α̃n(T ) = 0}.
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(ii) The essential g-ascent, ãe(T ), of T is defined as

ãe(T ) = inf{n ∈ N : α̃n(T ) < +∞}.

(iii) The g-descent, d̃(T ), of T is defined by

d̃(T ) = inf{n ∈ N : β̃n(T ) = 0}.

(iv) The essential g-descent, d̃e(T ), of T is defined by

d̃e(T ) = inf{n ∈ N : β̃n(T ) < +∞},

where as usual the infimum over the empty set is taken to be +∞.

It is clear that a(T ) ≤ ã(T ) and ae(T ) ≤ ãe(T ) (resp. d(T ) ≤ d̃(T ) and
de(T ) ≤ d̃e(T )), and equality holds when Rc(T ) = {0} (resp. D(T i)+Im(T ) =
H, for all i ∈ N).

The notion of ascent (resp. descent, essential ascent, essential descent)
of a linear operator was studied in several papers (see for examples [2, 5]).
In recent years some work has been devoted to extend these concepts to the
case of linear relations, (see [3, 6, 10]). In [3], many basic results related
to the ascent (resp. descent, essential ascent, essential descent) spectrum of
linear operators have been extended to linear relations (usually with additional
conditions). In this context, we prove that the results in [3] related to the
spectral mapping theorem of ascent and essential ascent (resp. descent and
essential descent) spectrums of a closed linear relation everywhere defined
such that ϱ(T ) ̸= ∅ (resp. dimT (0) < +∞) remain valid when T ∈ Υ(H)
(see page 142) (resp. T ∈ LR(H)) and without the assumption that ϱ(T ) ̸= ∅
(resp. dimT (0) < +∞) and D(T ) = H. In [2], the ascent spectrum and the
essential ascent spectrum of a bounded operator acting in Banach spaces are
introduced and studied. In this paper, we extend in the Hilbert space case
these notions to multivalued linear operators. However, the techniques used
in this work are different from those used in [2, 3, 5]. Our approach here is
based in the concept of range subspaces of Hilbert spaces (see, [7]).

The paper is organized as follows. In the next section, we first established
some algebraic lemmas that will be used throughout this work. In Sections 3,
4 and 5, we are interested in the spectral theory of closed linear relations in
Hilbert spaces having a finite essential g-ascent or finite essential g-descent.
For example, in Theorem 3.4, we show that a closed linear relation with finite
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essential g-ascent is stable under perturbations of the form λI, where λ ∈ C.
In Theorem 3.8, we study the spectrum boundary points of a closed linear
relation with finite essential g-ascent. In Theorem 4.12 and Theorem 5.4,
we prove, under some conditions, that the essential g-ascent spectrum and
essential g-descent spectrum satisfy the polynomial version of the spectral
mapping theorem for a closed linear relation. Finally, in Section 6, we prove
that if T ∈ CR(H), then there exists n ∈ N such that ãe(T ) ≤ n and Im(T ) +
ker(Tn) is closed (resp. d̃e(T ) ≤ n and Im(Tn) ∩ ker(T ) is closed) if and only
if there exist d ∈ N and two closed subspaces M and N such that :

(i) H = Mu N;

(ii) Im(T d) ⊆ M, T (M) ⊆ M, N ⊆ ker(T d) and, if d > 0, N ̸⊂ ker(T d−1);

(iii) G(T ) = [G(T ) ∩ (M×M)]u [G(T ) ∩ (N× N)];

(iv) the restriction of T to M is both upper semi-Fredholm (resp. lower
semi-Fredholm) and regular relation;

(v) if A ∈ LR(N) such that its graph is the subspace G(T ) ∩ (N × N), then
A is a bounded operator everywhere defined and G(Ad) = N× {0}.

2. Algebraic preliminaries

Throughout this paper the symbol u denotes the topological direct sum
of closed subspaces in H, i.e., X0 = X1 u X2 if the linear space X0 = X1 + X2

is closed and X1 ∩ X2 = {0}.

Next we give an example of quantities introduced below.

Example 2.1.

(i) Let M be a subspace of H and define the linear relation T in H by :

D(T ) = M and T (x) = M, ∀ x ∈ M.

Clearly we have

ker(Tn) = Im(Tn) = M, ∀ n ≥ 1. (1)

• Case 1 : if dimM = +∞, from (1), we have

a(T ) = ae(T ) = 1 < ã(T ) = ãe(T ) = +∞.
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• Case 2 : if 0 < dimM < +∞, by (1), we deduce that

ae(T ) = ãe(T ) = 0 < a(T ) = 1 < ã(T ) = +∞.

• Case 3 : if 0 < dimH/M < +∞, from (1), we obtain

d̃e(T ) = de(T ) = 0 < d(T ) = 1 < d̃(T ) = +∞.

• Case 4 : if dimH/M = +∞, it follows from (1) that

d(T ) = de(T ) = 1 < d̃e(T ) = d̃(T ) = +∞.

(ii) Let M and N be a pair of closed subspaces of H such that H = M u N
and {0}  N  H. Let P be the linear projection with domain H, range
N and kernel M and let L = P−1, then

D(L) = N and L(x) = x+M, ∀ x ∈ N.

Since (I − L)x = M, with x ∈ N, it follows that ker[(I − L)n] = N and
Im[(I − L)n] = M, for all n ≥ 1. Thus

ãe(I − L) = ae(I − L) ≤ a(I − L) = ã(I − L) = 1,

d̃e(I − L) = de(I − L) ≤ d(I − L) = d̃(I − L) = 1.

In particular, if dimN < +∞, then ãe(I−L) = ae(I−L) = d̃e(I−L) =
de(I − L) = 0.

In this section, we prove some algebraic results of the theory of linear
relations which are used to prove the main results in this work.

For T ∈ LR(H), we consider the sequence

Sn(T ) = dim[Im(Tn) ∩ ker(T )]/[Im(Tn+1) ∩ ker(T )],

n ∈ N. From [10, Lemma 4.2], we get

Sn(T ) = dim[Im(T ) + ker(Tn+1)]/[Im(T ) + ker(Tn)], ∀ n ∈ N.

The degree of stable iteration, p(T ), of T is defined by

p(T ) = inf{n ∈ N : Sm(T ) = 0, ∀m ≥ n},

where the infimum over the empty set is taken to be infinite.

The following lemma helps to characterize the relationship between the
degree of stable iteration and both the finite essential ascent and essential
g-ascent of linear relations.
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Lemma 2.2. Let T ∈ LR(H).

(i) If ae(T ) < +∞, then

p(T ) ≤ inf{n ∈ N : αn(T ) = αi(T ), ∀ i ≥ n} < +∞.

(ii) If ãe(T ) < +∞ (resp. ã(T ) < +∞), then

p(T ) = inf{n ∈ N : α̃n(T ) = α̃m(T ), ∀ m ≥ n} < +∞

and ãe(T ) ≤ p(T ) (resp. ã(T ) = p(T )).

Proof. (i) If ae(T ) < +∞, then αn(T ) < +∞, for every n ≥ ae(T ). So,
there exists m ≥ ae(T ) such that αn(T ) = αm(T ), for all n ≥ m. Now by
[6, equality (16)], we get Sn(T ) = 0, for all n ≥ m, and this proves that
p(T ) ≤ m.

(ii) By [6, equality (18)], we can prove this assertion similarly as in (i), which
completes the proof.

Remark 2.3. Let T ∈ LR(H) such that ae(T ) < +∞ (resp. a(T ) < +∞).
We note that ae(T ) ≤ p(T ) (resp. a(T ) = p(T )) in general is not true.
Indeed, let T be defined as in Case 1 of Example 2.1, then p(T ) = 0 <
ae(T ) = a(T ) = 1.

The next lemma exhibits some useful entirely algebraic properties of the
degree of stable iteration of linear relations.

Lemma 2.4. Let T ∈ LR(H).

(i) If de(T ) < +∞, then

p(T ) ≤ m = inf{n ∈ N : βn(T ) = βi(T ), ∀ i ≥ n} < +∞.

(ii) If d̃e(T ) < +∞ (resp. d̃(T ) < +∞), then

p(T ) = inf{n ∈ N : β̃n(T ) = β̃m(T ), ∀ m ≥ n} < +∞

and d̃e(T ) ≤ p(T ) (resp. d̃(T ) = p(T )).
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Proof. Since

ker(Tn) + Im(T ) ⊆ ker(Tn+1) + Im(T ) ⊆ D(Tn+1) + Im(T ) ⊆ D(Tn) + Im(T ),

we deduce that

βn(T ) = dim[D(Tn) + Im(T )]/[D(Tn+1) + Im(T )] + βn+1(T ) + Sn(T ). (1)

But, since
Im(T ) + ker(Tn) ⊆ Im(T ) + ker(Tn+1) ⊆ H,

it follows that
β̃n(T ) = Sn(T ) + β̃n+1(T ). (2)

Finally, the assertions (i) and (ii) follow from (1) and (2). The proof is there-
fore complete.

Remark 2.5. Let T ∈ LR(H) such that de(T ) < +∞ (resp. d(T ) < +∞).
We note that de(T ) ≤ p(T ) (resp. d(T ) = p(T )) in general is not true.
Indeed, let T be defined as in Case 4 of Example 2.1, then p(T ) = 0 <
de(T ) = d(T ) = 1.

3. Essential g-ascent spectrum and g-ascent spectrum of a
closed relation

This section contains the main results of this work, in which we generalize
some results of [2, Section 2] and our results of [5, Section 3] to the case of a
closed linear relation in a Hilbert space H.

Throughout the remainder of the paper, for T ∈ LR(H) and λ ∈ C, we
denote by Tλ the relation λI − T. The ascent resolvent set of T ∈ CR(H) is
the set

ϱasc(T ) = {λ ∈ C : a(Tλ) < +∞ and Im(Tλ) + ker[(Tλ)
a(Tλ)] is closed}

and its ascent spectrum

σasc(T ) = C\ϱasc(T ).

The essential ascent resolvent and the essential ascent spectrum of T ∈ CR(H)
are defined respectively by

ϱeasc(T ) = {λ ∈ C : ae(Tλ) < +∞ and Im(Tλ) + ker[(Tλ)
ae (Tλ)] is closed}
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and
σe
asc(T ) = C\ϱeasc(T ).

The g-ascent resolvent set of T ∈ CR(H) is the set

ϱgasc(T ) = {λ ∈ C : ã(Tλ) < +∞ and Im(Tλ) + ker[(Tλ)
ã(Tλ)] is closed}

and its g-ascent spectrum

σg
asc(T ) = C\ϱgasc(T ).

The essential g-ascent resolvent and the essential g-ascent spectrum of T ∈
CR(H) are defined respectively by

ϱe, gasc(T ) = {λ ∈ C : ãe(Tλ) < +∞ and Im(Tλ) + ker[(Tλ)
ãe (Tλ)] is closed}

and
σe, g
asc(T ) = C\ϱe, gasc(T ).

From [6, Lemma 2.9], we deduce easily the following

ϱ(T ) ⊆ ϱgasc(T ) ⊆ ϱasc(T ) ⊆ ϱeasc(T ),

ϱ(T ) ⊆ ϱgasc(T ) ⊆ ϱe, gasc(T ) ⊆ ϱeasc(T ).

Let us recall the following definition.

Definition 3.1. ([7], Definition 3.3, Definition 4.1)

(i) A subspace M of a Hilbert space H is said to be a range subspace of H
if there exist a Hilbert space N and a bounded operator T from N to H
such that M = Im(T ). In particular, a closed subspace of a Hilbert space
H is a range subspace of H.

(ii) An operator or a relation T ∈ LR(H) is said to be a range space operator
or range space relation if its graph G(T ) is a range subspace of H× H.

It is clear that a closed relation in a Hilbert space H is a range space relation
in H. Our approach here is based in the concept of range subspaces of Hilbert
spaces (see, [7]).

We have the following lemma, which will be needed in the sequel.
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Lemma 3.2. Let T ∈ CR(H).

(i) If ae(T ) < +∞, T k(0) and Im(T ) + ker(T ae(T )) are closed for all k ∈ N,
then

a) Im(Tn)+ker(Tm) is closed, for all m+n ≥ p(T ). In particular Im(Tn)
is closed for all n ≥ p(T ).

b) Im(Tn) + ker(Tm) is closed, for all n ∈ N and m ≥ ae(T ).

(ii) If ãe(T ) < +∞ and Im(T ) + ker(T ãe(T )) is closed, then

a) Tn(0) is closed, for all n ∈ N, and so from [6, Lemma 2.9] and (i),
Im(Tn) + ker(Tm) is closed, for all m + n ≥ p(T ) (resp. n ∈ N and
m ≥ ae(T )),

b) ker(Tn) and Im(T ae(T )+n) are closed, for all n ∈ N.

Proof. (i) From [6, equality (17)], we have Im(Tn) + ker(Tm) is closed for
all n, m ∈ N such that m+n ≥ p(T ). In particular Im(Tn)+ ker(T p(T )+ae (T ))
is closed for every n ∈ N, so by [6, Lemma 2.9], Im(Tn) + ker(Tm) is closed,
for all n ∈ N and m ≥ ae(T ).

(ii) From [6, Lemma 2.10], it follows that Tn(0) and Im(T ae (T )+n) are closed,
for all n ∈ N.
Let S = T|Im(T p(T )) be the restriction of T to Im(T p(T )). Now, let n ∈ N, by
Lemma 2.2, we have ãe(T ) ≤ p(T ), this implies that

dim ker(Tn) ∩ Im(T p(T )) = α(Sn) ≤ nα(S) = n α̃p(T )(T ) < +∞

(see [9, Lemma 5.1]) and as Im(T p(T ))+ker(Tn) is closed, so by [7, Propositions
3.9, 3.10, 4.8, Lemma 4.2], ker(Tn) is closed, for all n ∈ N. This completes the
proof of the lemma.

For T ∈ LR(H) and k ∈ N, T̃k denotes the following linear relation :

T̃k : D(T )/ker(T k) ⊆ H/ker(T k) −→ H/ker(T k)

x 7−→ Tx := {z : z ∈ Tx}.

We will prove first that the linear relation T̃k is well-defined. To do this, let
us choose x1, x2 ∈ D(T ) such that x1−x2 ∈ ker(T k). So, 0 ∈ T k(x1−x2), and
therefore there exists x ∈ T (x1 − x2) = Tx1 − Tx2, such that 0 ∈ T k−1(x).
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From this, we get x ∈ ker(T k−1) and 0 ∈ Tx1 − Tx2. Let y ∈ T (x1), since
T (x1) = y + T (0) then

0 ∈ y + T (0)− Tx2 = y − Tx2.

Hence, T (x1) ⊆ T (x2) and by interchanging x1 and x2, we deduce that
T (x1) = T (x2).

Let M be a closed subspace of H, then H/M is a Hilbert space with the
inner product

< · , · >M : H/M× H/M −→ R
(x , y) 7−→ < P (x) , P (y) >,

where P is the orthogonal projection onto M⊥ and < · , · > is the standard
inner product on H. Note, the Hilbert space topology of (H/M, < · , · >M)
coincides with the quotient topology of H/M :

∥x∥ =
√

< x, x >M =
√

< P (x), P (x) > = dist(x, M),

where dist(x, M) denotes, as usual, the distance of x toM. Now, let T ∈ CR(H)
such that ãe(T ) < +∞ and Im(T ) + ker(T ãe (T )) is closed. From Lemma 3.2,
it follows easily that H/ker(Tn) is a Hilbert space, for all n ∈ N.

In [2, Lemma 2.1], it was established that if T is a bounded operator and
T admits a finite essential g-ascent such that Im(T ) + ker(T ãe (T )) is closed,
then T̃j is both regular and upper semi-Fredholm operator, for all j ≥ p(T ),

where T̃j is the operator induced by T on H/ker(T j). In [5, Lemma 3.4], this
result was extended to the case of unbounded closed operators, and in the
following lemma, we prove that this result remains valid even in the context
of closed linear relations.

Lemma 3.3. Let T ∈ CR(H) such that ãe(T ) < +∞ and j ≥ p(T ). If
Im(T ) + ker(T ãe(T )) is closed, then

T̃ : D(T )/ker(T j) ⊆ H/ker(T j) −→ H/ker(T j)

x 7−→ Tx := {y : y ∈ Tx}

is both regular and upper semi-Fredholm relation.

Proof. First, recall that from Lemma 3.2, we have ker(Tn) is closed for
all n ∈ N, and in particular, H/ker(T j) is a Hilbert space. Now, we will
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show that ker(T̃ ) = ker(T j+1)/ker(T j). To do this let x ∈ ker(T j+1), so
y ∈ Tx and 0 ∈ T jy for some y ∈ H. Since 0H/ker(T j) = y ∈ Tx, it fol-

lows that ker(T j+1)/ker(T j) ⊆ ker(T̃ ). In order to prove the converse in-
clusion, assume that x ∈ ker(T̃ ). From 0 ∈ Tx, we deduce that T (x) ∩
ker(T j) ̸= ∅, which shows that x ∈ T−1(ker(T j)) = ker(T j+1). Consequently
ker(T̃ ) ⊆ ker(T j+1)/ker(T j). Moreover, it is clear that Im(T̃ ) = [Im(T ) +
ker(T j)]/ker(T j), so from Lemma 3.2, we get Im(T̃ ) is closed. Let π be the
natural quotient map with domain H×H and null space ker(T j)×ker(T j), then
G(T̃ ) = π(G(T )). From [7, Corollary 4.9], we know that there exist a Hilbert
space Z and a bounded operator θ from Z to H× H such that Im(θ) = G(T ).
This implies that πθ(Z) = G(T̃ ). Therefore T̃ is a range space relation.

On the other hand, we have α(T̃ ) = αj(T ) < +∞ and Im(T̃ ) is closed.

So from [7, Lemma 4.6], T̃ is closed, and hence T̃ is upper semi-Fredholm.
Furthermore, by [7, Lemma 2.5], it follows that ker(T j+1) ⊆ Im(Tn)+ker(T j),
for all n ∈ N. Consequently, ker(T̃ ) ⊆ Im(T̃n), for all n ∈ N, and the proof is
therefore complete.

Now, we are ready to state our main result of this section, which is an
extension of [2, Theorem 2.3] and [5, Theorem 3.8] to closed multivalued
linear operators.

Theorem 3.4. Let T ∈ CR(H) such that ãe(T ) < +∞ and Im(T ) +
ker(T ãe(T )) is closed. Then there is ε > 0 such that for every 0 < |λ| < ε, we
have :

(i) Tλ is both regular and upper semi-Fredholm,

(ii) αp(T )(T ) ≤ α(Tλ) ≤ (p(T ) + 1) α̃p(T )(T ),

(iii) β(Tλ) = dimH/[Im(T ) + ker(T p(T ))].

Proof. Let k = p(T ) and let T̃k be the relation induced by T on H/ker(T k).

First, from Lemma 3.3, T̃k is both regular and upper semi-Fredholm relation.
Using [1, Theorems 23, 25], we deduce that there exists ε > 0, such that

λI−T̃k is both regular and upper semi-Fredholm relation for every 0 < |λ| < ε.
Furthermore, by [4, Corollary V.15.7] and [1, Theorem 27], we have

α(T̃k) = α(λI − T̃k), β(T̃k) = β(λI − T̃k), ∀ λ ∈ C, 0 < |λ| < ε. (1)

We prove first that

ker(λI − T̃k) = [ker(λI − T ) + ker(T k)]/ker(T k), (2)
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Im[(λI − T̃k)
n] = Im[(λI − T )n]/ker(T k), ∀ n ∈ N. (3)

If x ∈ ker(λI − T̃k), then (λI − T )(0) = (λI − T )(x), and so T (0)+ ker(T k) =
(λI−T )x+ker(T k). It is clear that x ∈ D(T i), for all i ∈ N and T (0)+T−k(0) =
(λI−T )x+T−k(0). From [8, Corollary 2.1] and [4, Corollary I.2.10], we obtain
T k+1(0) + T k(0) = (λI − T )T kx + T k(0). Since T k(0) ⊆ T k+1(0) = (λI −
T )T k(0) (see [8, Theorem 3.6 ]), it follows that (λI−T )T kx = (λI−T )T k(0),
which implies that x ∈ ker[(λI − T )T k] and x ∈ ker[(λI − T )T k]/ker(T k).

Consequently ker(λI − T̃k) ⊆ ker[(λI − T )T k]/ker(T k). To prove the converse
inclusion, let x ∈ ker[(λI − T )T k]/ker(T k), so 0 ∈ T k(λI − T )x. This implies
that there exists z ∈ H such that z ∈ (λI − T )x and 0 ∈ T kz. Hence 0 = z ∈
(λI − T )x, and x ∈ ker(λI − T̃k). Now from [8, Theorem 3.4], we obtain

ker(λI − T̃k) = [ker(λI − T ) + ker(T k)]/ker(T k).

Since ker(T k) ⊆ Im[(λI − T )n], it follows that

Im[(λI − T̃k)
n] = [Im[(λI − T )n] + ker(T k)]/ker(T k) = Im[(λI − T )n]/ker(T k).

(i) Let S = T|Im(Tk) be the restriction of T to Im(T k). By (1) and (2), we
obtain

dim ker(λI − T )/ker(λI − T ) ∩ ker(T k) =dim[ker(λI − T )

+ ker(T k)]/ker(T k)

=α(T̃k) < +∞

(4)

and
dim ker(λI − T ) ∩ ker(T k) ≤ dim Im(T k) ∩ ker(T k)

= α(Sk)
≤ kα(S) = k α̃k(T ) < +∞

(5)

(see [9, Lemma 5.1]). In particular, this proves that α(λI − T ) < +∞. From

(3), we infer that Im(λI − T ) is closed. Finally, since λI − T̃k is regular, by
(2) and (3), we deduce that λI − T is regular.

(ii) From (4) and (5), we get

αk(T ) = α(T̃k) ≤ α(λI − T ) = αk(T ) + dim ker(λI − T ) ∩ ker(T k)
≤ α̃k(T ) + k α̃k(T ) ≤ (k + 1) α̃k(T ).

Assertion (iii) follows from (1) and (3), which completes the proof.
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The following theorem is a simple consequence of Theorem 3.4.

Theorem 3.5. Let T ∈ CR(H) such that ã(T ) < +∞ and Im(T ) +
ker(T ã(T )) is closed. Then there is ε > 0 such that for every 0 < |λ| < ε,
we have

(i) Tλ is injective with closed range,

(ii) β(Tλ) = dimH/[Im(T ) + ker(T p(T ))].

Corollary 3.6. Let T ∈ CR(H), then σg
asc(T ) and σe, g

asc(T ) are closed.

For T ∈ CR(H), we consider the set :

E(T ) = {λ ∈ σ(T ) : λ an isolated point, ã(Tλ) < +∞,

d̃(Tλ) = m < +∞ and Im[(Tλ)
m] is closed}.

The following lemma is the key to prove Theorem 3.8.

Lemma 3.7. Let T ∈ CR(H), then

E(T ) = {λ ∈ σ(T ) : ã(Tλ) < +∞ and d̃(Tλ) < +∞}.

Proof. Assume that T has finite g-ascent and g-descent. First, by Lemma
2.2 and Lemma 2.4, we note that ã(T ) = d̃(T ) = p(T ). Let m = d̃(T ),

S = T|Im(Tm) be the restriction of T to Im(Tm) and T̃m be the relation induced
by T on H/ker(Tm), then by [9, Lemma 5.1],

dim Im(Tm) ∩ ker(T k) = α(Sk) ≤ k α(S) = kα̃m(T ) = 0

and

dimH/[Im(T k) + ker(Tm)] = β(T̃m
k
) ≤ k β(T̃m) = k β̃m(T ) = 0,

for all k ∈ N. Therefore

Im(Tm) ∩ ker(T k) = {0} and Im(T k) + ker(Tm) = H, ∀ k ≥ 0. (1)

Using now the equality (1) for k = m and [7, Propositions 3.10 and 4.8,
Lemma 4.2], we get Im(Tm) is closed. From (1) and Theorem 3.5, we deduce
that there exists ε > 0 such that λI − T is bijective, for every 0 < |λ| < ε.
Consequently if 0 ∈ σ(T ), then 0 is an isolated point of σ(T ). This completes
the proof of Lemma 3.7.
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The following theorem is an extension of [2, Theorem 2.7] and [5, Theorem
3.10], to case of closed linear relations.

Theorem 3.8. Let T ∈ CR(H), then

ϱe, gasc(T ) ∩ ∂σ(T ) = ϱgasc(T ) ∩ ∂σ(T )

= ϱeasc(T ) ∩ ∂σ(T ) = ϱasc(T ) ∩ ∂σ(T ) = E(T ).

Proof. By arguing as in the proof of [5, Theorem 3.10], with Theorem 3.4
and Lemma 3.7, we get the result.

As an immediate consequence of Theorem 3.8, we have the following result.

Corollary 3.9. Let T ∈ CR(H) such that ϱ(T ) ̸= ∅. Then the following
assertions are equivalent :

(i) σasc(T ) = ∅;

(ii) σe
asc(T ) = ∅;

(iii) ∂σ(T ) ⊆ ϱasc(T );

(iv) ∂σ(T ) ⊆ ϱeasc(T );

(v) σ(T ) = E(T ).

Remark 3.10. We note that Corollary 3.9 in general is not true if ϱ(T ) = ∅.
Indeed, let M ̸= {0} be a closed subspace of H and let T : H −→ H be the
linear relation defined by Tx = M for all x ∈ H. It is clear that T ∈ CR(H).
For each λ ∈ C and for each n ∈ N\{0}, we have

(Tλ)
nx = λnx+M, ∀x ∈ H.

Since

ker[(Tλ)
n] =

{
H if λ = 0
M if λ ̸= 0

̸= {0} and Im[(Tλ)
n] =

{
H if λ ̸= 0
M if λ = 0,

it follows that a(Tλ) = 1 and Im(Tλ) + ker(Tλ) = H, for all λ ∈ C. This
implies that ϱ(T ) = ∅ and ϱasc(T ) = C. Hence, ϱeasc(T ) = C and T satisfies
the conditions (i)-(iv) of Corollary 3.9. Since E(T ) consists of isolated points
of σ(T ), we deduce that E(T ) = ∅, and thus T does not satisfy the condition
(v).
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4. Spectral mapping theorems of g-ascent and essential
g-ascent spectrums

We start this section with the following proposition.

Proposition 4.1. Let T ∈ CR(H) be everywhere defined and suppose
that T k(0) is closed for all k ∈ N. If n = ae(T ) (resp. a(T ), ãe(T ), ã(T )) is
finite, then Im(T ) + ker(Tn) is closed if and only if Im(Tn+1) is closed.

Proof. First, from [7, Lemma 4.6, Corollary 4.9], we get T k ∈ CR(H), for
all k ∈ N. Put n = ae(T ) (resp. a(T ), ãe(T ), ã(T )). If Im(T ) + ker(Tn) is
closed, by [6, Lemma 2.9] and Lemma 3.2, we get Im(Tn+1)+ker(Tn) is closed
and by [9, Lemma 3.2], we have

dim[Im(Tn+1) ∩ ker(Tn)]/[Tn+1(0) ∩ ker(Tn)]

= dim ker(T 2n+1)/ker(Tn+1) =
n∑

i=1

αn+i(T ) ≤ nαn+1(T ) < +∞.

Then from [7, Propositions 3.9, 3.10, 4.8, Lemma 4.2], it follows that Im(Tn+1)
is closed. Now, suppose that Im(Tn+1) is closed, from [3, Lemma 2.4], we
obtain

Im(T ) + ker(Tn) = T−n[Im(Tn+1)]

is closed, which completes the proof.

Corollary 4.2. Let T ∈ CR(H) be everywhere defined and suppose that
Tn(0) is closed for all n ∈ N. Then

(i) ϱgasc(T ) = {λ ∈ C : ã(Tλ) < +∞ and Im[(Tλ)
ã(Tλ)+1] is closed},

(ii) ϱe, gasc(T ) = {λ ∈ C : ãe(Tλ) < +∞ and Im[(Tλ)
ãe(Tλ)+1] is closed},

(iii) ϱasc(T ) = {λ ∈ C : a(Tλ) < +∞ and Im[(Tλ)
a(Tλ)+1] is closed},

(iv) ϱeasc(T ) = {λ ∈ C : ae(Tλ) < +∞ and Im[(Tλ)
ae(Tλ)+1] is closed}.

Let T ∈ LR(H), for every non-constant polynomial P =
n∏

i=1
(λi−X)αi , with

coefficients in C, we can associate the linear relation P (T ) ∈ LR(H) defined
by :

P (T ) :=
n∏

i=1

(λiI − T )αi .
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Remark 4.3. Let T ∈ CR(H) be everywhere defined such that ϱ(T ) ̸= ∅. If
P is a non-constant complex polynomial, from Corollary 4.2 and [3, Theorem
4.7], it follows that

σasc(P (T )) = P (σasc(T )) and σe
asc(P (T )) = P (σe

asc(T )).

For T ∈ LR(H), we remark that

d(T−1) = inf{n ∈ N : D(Tn) = D(Tn+1)},

where as usual the infimum over the empty set is taken to be +∞. Hence, if
d(T−1) < +∞ then

D(T d(T−1)) = D(T d(T−1)+n) ⊆ D(Tn), ∀ n ∈ N.

Example 4.4. Let H be a separable Hilbert space and let K ∈ LR(H).
Consider the linear relation T :

⊕∞
i=0 H −→

⊕∞
i=0H defined by T (h0 ⊕ h1 ⊕

h2 ⊕ . . .) = K(h1)⊕ h2 ⊕ h3 ⊕ . . . . Clearly,

Im(T 2) = Im(T ) and D(T k) = H⊕
i=k⊕
i=1

D(K)⊕
∞⊕

i=k+1

H, ∀k ≥ 1.

Hence, if D(K)  H then d(T−1) = +∞, and, if D(K) = H then d(T−1) = 0.
Let S = T−1, so if Im(K)  H then d(S−1) = d(T ) = 1, and, d(S−1) = 0
when Im(K) = H.

Let us assume that T is a range space relation (see, Definition 3.1) such
that q = d(T−1). It is clear that if P = (λ1−X)α1(λ2−X)α2 · · · (λm−X)αm is
a complex polynomial then P (T ) is a range space relation (see, [7, Propositions
4.7, 4.8]) and j = d(P (T )−1) ≤ q according to [8, Theorem 3.2]. Furthermore,
if P is a non-constant polynomial then D([P (T )]j) = D(T q).

Let us assume that P is a non-constant complex polynomial and T (0) ⊆
D(T q), then for all n ≥ q and m ∈ N, we have Im

(
[P (T )]n

)
⊆ D(Tm). Indeed,

we prove by induction that Tn(0) ⊆ D(T q). The cases n = 0, 1 are obvious.
Suppose that Tn(0) ⊆ D(T q), then

Tn+1(0) = T
(
Tn(0)

)
⊆ T

(
D(T q+1)

)
= TT−1(D(T q))
= D(T q) ∩ Im(T ) + T (0) ⊆ D(T q).

This implies that Tn(0) ⊆ D(T q) for all n ∈ N, and consequently Tn(0) ⊆
D(Tm) for all n, m ∈ N. Finally, by [10, Lemma 4.1], we get Im

(
[P (T )]n

)
⊆

D(T q) ⊆ D(Tm), for every n ≥ q and m ∈ N.
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In the following, we define

Υ(H) =
{
T ∈ LR(H) : T is a range space relation, q = d(T−1) < +∞,

T (0) ⊆ D(T q), Tn(0), D(Tn+2) and Im(Tλ) +D(T q) are closed,

∀ λ ∈ C, ∀n ∈ N
}
.

Clearly, Υ(H) ̸= ∅, because T ∈ Υ(H), when T is a closed linear relation
everywhere defined such that Tn(0) is closed for all n ∈ N.

For family of vectors (xi)i∈I in H, we denote by Vect(xi, i ∈ I), the vector
subspace generated by (xi)i∈I .

Example 4.5.

(i) Let H be a separable Hilbert space and let K ∈ CR(H) such that D(K)  
H is closed. Let H =

⊕3
i=0 H and consider the linear relation T : H −→

H defined by T (h0 ⊕ h1 ⊕ h2 ⊕ h3) = K(h1) ⊕ h2 ⊕ h3 ⊕ h3. Clearly,
Tn(0⊕ 0⊕ 0⊕ 0) = K(0)⊕ 0⊕ 0⊕ 0 is closed for all n ≥ 1 and

D(T k) =


H⊕D(K)⊕ H⊕ H if k = 1

H⊕D(K)⊕D(K)⊕ H if k = 2
H⊕D(K)⊕D(K)⊕D(K) if k ≥ 3

is closed. Hence d(T−1) = 3 and T (0 ⊕ 0 ⊕ 0 ⊕ 0) ⊆ D(T 3). It is not
difficult to see that

Im(Tλ) +D(T 3) =

{
H⊕ H⊕ H⊕D(K) if λ = 1
H⊕ H⊕ H⊕ H if λ ̸= 1

is closed. Since T ∈ CR(H), it follows that T ∈ Υ(H). Assume that
K(0)  H and let S = T−1. It is easy to see that

Tn(h0 ⊕ h1 ⊕ h2 ⊕ h3) = K(h3)⊕ h3 ⊕ h3 ⊕ h3, ∀h0 ∈ H,

∀ h1, h2, h3 ∈ D(K),

for all n ≥ 3. Therefore d(S−1) = d(T ) ≤ 3. Let h ∈ H\K(0) and
ξ = h⊕ 0⊕ 0⊕ 0, then ξ ∈ S(0) = ker(T ) = H⊕ ker(K)⊕{0}⊕ {0} and
ξ ̸∈ D(S3) = Im(T 3). Consequently, S ̸∈ Υ(H).

(ii) Let H be a separable Hilbert space and (en)n∈N be an orthonormal basis
of H. Define the following operators T and L in H by

D(T ) = D(L) = Vect(en : n ≥ 2), T (en) = en+1



essential g-ascent and g-descent of a closed relation 143

and L(en) = en−1, for all n ≥ 2. It is clear that D(T k) = D(T ) and
D(Lk) = Vect(en : n ≥ 1 + k), for all k ≥ 1 and hence d(T−1) = 1 and
d(L−1) = +∞ (L ̸∈ Υ(H)). Since T ∈ CR(H), Im(Tλ) ⊆ D(T ) for all
λ ∈ C and D(T ) is closed, then T ∈ Υ(H).

(iii) Let T be defined as in (ii) and k ≥ 2. Now, we define the following
relation S := Im(T k) + T (i.e., S(x) = {y + z : y ∈ Im(T k), z ∈ T (x)},
for all x ∈ D(T )). Since S(0) = Im(T k) is closed (because β(T ) = 3),
T is a closed operator and D(S) = D(T ) is closed, then

∥QSS(x)∥ = ∥Tx∥ ≤ ∥Tx∥ ≤ ∥T∥ ∥x∥, for all x ∈ D(S).

This proves that QSS is closed and by [4, Proposition II.5.3], we get
that S ∈ CR(H). It is clear that

Sj =

{
Im(T k) + T j if j < k

Im(T k) if j ≥ k.

For all j ≥ 1, we have D(Sj) = D(T ) and Sj(0) = Im(T k) are closed in
H, and from this we get that d(S−1) = 1 and S(0) ⊆ D(S). Moreover,
for all λ ∈ C, we see that

Im(Sλ) +D(S) = Im(Tλ) + Im(T k) +D(T ) = D(T )

is closed. Now, we can conclude that S ∈ Υ(H).

(iv) Let T be defined as in Example 2.1, where M is a closed subspace of H
and M  H. It is easy to see that G(T ) = M×M and

Tn(0) = D(Tn) = Im(Tλ) = M, ∀ n ≥ 1, λ ∈ C.

From this it follows that T ∈ Υ(H).

(v) Let L be defined as in Example 2.1. It is not difficult to see that L is a
closed relation,

d(L−1) = 1, D(Ln) = N is closed, D(Ln)+Im(Lλ) = H, ∀n ≥ 1, λ ∈ C.

But L(0) = M ̸⊂ D(L), so that L ̸∈ Υ(H).
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Let us show that if T ∈ Υ(H) and P = (λ1−X)α1(λ2−X)α2 · · · (λm−X)αm

is a non-constant complex polynomial, then A = P (T ) ∈ Υ(H). Put q =
d(T−1) and define the following relation

T : D(T ) ⊆ H/D(T q) −→ H/D(T q)

x 7−→ Tx.

Note that the linear relation T is well-defined. Indeed, since T (0) ⊆ D(T q),

T (D(T q)) = T (D(T q+1)) = TT−1(D(T q))

= D(T q) ∩ Im(T ) + T (0) ⊆ D(T q),

which implies that if x1, x2 ∈ D(T ) such that x1 = x2, then Tx1 = Tx2. We
remark also that T (0) = T (0) = 0 and thus T is an unbounded operator.
Now, let λ ∈ C and x ∈ ker(λI − T ), then Tλx = Tλ(0) = 0, which implies
that Tλx ⊆ D(T q) and x ∈ D(T q+1) = D(T q). Consequently, x = 0, and thus
ker(λI − T ) = {0}.

On the other hand, it is clear that Im(λI −T ) =
(
Im(Tλ)+D(T q)

)
/D(T q)

is closed. As in the proof of Lemma 3.3, we obtain λI − T is a range space
operator. Now, applying [7, Lemma 4.6], we get λI − T is a closed operator,
and thus λI −T ∈ Φ+(H/D(T q)). Recall that, if S, L ∈ CR(H) are two opera-
tors such that L ∈ Φ+(H) and Im(S) is closed, then LS ∈ CR(H) and Im(LS)
is closed. Since, for every i, j ∈ {1, 2, · · · ,m}, λiI − T ∈ Φ+(H/D(T q)) and
Im(λjI − T ) is closed, we deduce that (λiI − T )(λjI − T ) ∈ CR(H/D(T q))
and Im[(λiI −T )(λjI −T )] is closed. Consequently, from ker

(
(λiI −T )(λjI −

T )
)
= {0}, it follows that (λiI − T )(λjI − T ) ∈ Φ+(H/D(T q)). Therefore

Im(P (T )) =
(
Im(P (T )) + D(T q)

)
/D(T q) is closed, and finally we obtain

Im(A) +D(Ad(A−1)) = Im
(
P (T )

)
+D(T q) is closed.

Now, let λ ∈ C and put Q = λ−P = a
m∏
i=1

(µi−X)βi . Arguing in the same

way as previous, we can conclude that Im(Aλ) + D(Ad(A−1)) is closed. Let

k =
m∑
i=0

αi and n ∈ N, by [8, Theorems 3.2, 3.6], we get An(0) = T k n(0) and

D(An+2) = D(T (n+2)k) are closed, and A(0) ⊆ D(T q) = D(Ad(A−1)). This
proves that, A ∈ Υ(H).

The aim of this section is to establish the spectral mapping theorem of g-
ascent and essential g-ascent spectrums of a closed linear relation T ∈ Υ(H).
First, we have the following remark.
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Remark 4.6. (i) If T ∈ Υ(H), then P (T ) ∈ CR(H), for any complex
polynomial P of degree n ≥ min{d(T−1), 2}. Indeed, we haveD[P (T )] =
D(Tn) and P (T )(0) = Tn(0) are closed, and P (T ) is a range space
relation. So, by [7, Lemma 4.6], it follows that P (T ) ∈ CR(H).

(ii) Let T ∈ Υ(H) such that D(T ) is closed or T be a closed relation. By
(i) and [7, Lemma 4.6], we deduce that P (T ) ∈ CR(H), for any complex
polynomial P.

The next lemma is used to prove Lemma 4.8.

Lemma 4.7. Let T ∈ LR(H), P =
m∑
i=0

aiX
i = α

m∏
i=1

(λi − X) and Q =

n∑
i=0

biX
i = β

n∏
i=1

(λi −X) be non-constants complex polynomials. Then

(i) P (T ) =
m∑
i=0

aiT
i,

(ii) P (T ) +Q(T ) = (P +Q)(T ) + T s − T s, where s = max{n, m}.

Proof. It is easy to see that if ξ ∈ C and i, j ∈ N such that j ≤ i, then

ξT j(x) + T i(0) = T j(ξx) + T i(0), ∀ x ∈ D(T j). (1)

It follows from this that for all µ ∈ C\{0},

ξT j(x) + µT i(x) = T j(ξx) + µT i(x), ∀ x ∈ D(T i). (2)

(i) We will prove that P (T ) =
m∑
i=0

aiT
i and am = (−1)mα. By [4, Proposition

I.4.2], we know that if R, S, L ∈ LR(H) such that D[L(R+S)] = D(LR+LS),
then L(R+ S) = LR+ LS. So by [8, Theorem 3.2] and (2), we get

(λ1I − T )(λ2I − T )x = (λ1I − T )(λ2x)− (λ1I − T )Tx
= λ1λ2x− T (λ2x)− T (λ1x) + T 2(x)
= λ1λ2x− T [(λ2 + λ1)x] + T 2(x)
= λ1λ2x− (λ2 + λ1)T (x) + T 2(x), ∀ x ∈ D(T 2).

Suppose that

α(λ1I − T )(λ2I − T ) · · · (λm−1I − T ) =
m−2∑
i=0

αiT
i + α (−1)m−1Tm−1
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and let us show that

α(λ1I − T )(λ2I − T ) · · · (λmI − T ) =
m−1∑
i=0

γiT
i + α (−1)mTm.

By [8, Corollary 2.1] and (2), we obtain

P (T )x = α(λ1I − T )(λ2I − T ) · · · (λmI − T )x

= (λmI − T )[α(λ1I − T )(λ2I − T ) · · · (λm−1I − T )]x

= (λmI − T )
(m−2∑

i=0

αiT
i + α (−1)m−1Tm−1

)
x

= (λmI − T )
(m−2∑

i=0

T i(αix) + α (−1)m−1Tm−1x
)

=

m−2∑
i=0

T i(λmI − T )(αix) + α (−1)m−1Tm−1(λmI − T )x

=
m−2∑
i=0

T i(λmαix)−
m−2∑
i=0

T i+1(αix)

+ α (−1)m−1Tm−1(λmx) + α (−1)mTmx

=

m−2∑
i=0

T i(λmαix)−
m−1∑
i=1

T i(αi−1x)

+ α (−1)m−1Tm−1(λmx) + α (−1)mTmx

So,

P (T )x = λmα0x+
m−2∑
i=1

T i[(λmαi − αi−1)x]

+ Tm−1[(α (−1)m−1λm − αm−2)x] + α (−1)mTmx

= λmα0︸ ︷︷ ︸
γ0

x+
m−2∑
i=1

(λmαi − αi−1)︸ ︷︷ ︸
γi

T i(x)

+ (α (−1)m−1λm − αm−2)︸ ︷︷ ︸
γm−1

Tm−1(x) + α (−1)mTmx

=
m−1∑
i=0

γiT
ix+ α (−1)mTmx, ∀ x ∈ D(Tm).
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This shows that P =
m−1∑
i=0

γiX
i + α (−1)mXm and hence ai = γi, for all

i = 1, · · · , m− 1 and am = α (−1)m.

(ii) Assume that m ≤ n, from (i) and (1), we see that

[P (T ) +Q(T )](x) = [P (T ) +Q(T )](x) + [P (T ) +Q(T )](0)

=
m∑
i=0

aiT
ix+

n∑
i=0

biT
ix+ Tn(0)

=
m∑
i=0

(aiT
ix+ biT

ix) +
n∑

i=m+1
biT

ix+ Tn(0)

=
m∑
i=0

[T i(aix) + T i(bix)] +
n∑

i=m+1
biT

i(x) + Tn(0)

=
m∑
i=0

T i[(ai + bi)x] +
n∑

i=m+1
biT

i(x) + Tn(0)

=
m∑
i=0

(ai + bi)T
i(x) +

n∑
i=m+1

biT
i(x) + Tn(0)

=
n∑

i=0
ωiT

i(x) + Tn(0), ∀ x ∈ D(Tn),

Since P +Q =
n∑

i=0
ωiX

i, then

P (T ) +Q(T ) = (P +Q)(T ) + Tn − Tn.

This completes the proof.

The following result is an improvement of [5, Lemma 4.4] to closed linear
relations.

Lemma 4.8. Let T ∈ LR(H) and let P and Q be two relatively prime
complex polynomials. If A = P (T ) and B = Q(T ), then

(i) Im(AnBn) = Im(An) ∩ Im(Bn), for all n ∈ N,

(ii) ker(AnBn) = ker(An) + ker(Bn), for all n ∈ N,

(iii) ker(An) ⊆ Im(Bm) and ker(Bn) ⊆ Im(Am), for all n, m ∈ N,

(iv) ãe(AB) = max{ãe(A), ãe(B)} and ã(AB) = max{ã(A), ã(B)}.
In addition, assume that T ∈ Υ(H),
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(v) if max{ãe(A), ãe(B)} < +∞, then Im(A) + ker(Aãe(A)) and Im(B) +
ker(Bãe(B)) are both closed if and only if Im(AB) + ker[(AB)ãe(AB)] is
closed,

(vi) if max{ã(A), ã(B)} < +∞, then Im(A) + ker(Aã(A)) and Im(B) +
ker(Bã(B)) are both closed if and only if Im(AB) + ker[(AB)ã(AB)] is
closed.

Proof. The proof is trivial when P or Q is a constant polynomial. Assume
that P and Q are non-constants polynomials. So, P = (λ1 − X)α1(λ2 −
X)α2 · · · (λm −X)αm and Q = (µ1 −X)β1(µ2 −X)β2 · · · (µs −X)βs . First, it
is clear that the assertions (i) and (ii) follow immediately from [8, Theorems
3.3, 3.4].

(iii) By [10, Lemma 7.2], we know that ker[(λiI − T )αi ] ⊆ Im[(µjI − T )βj ], so
from [8, Theorems 3.3, 3.4], ker(An) ⊆ Im(Bm), for all n, m ∈ N.

(iv) Let n ∈ N, we have

Im(AnBn) ∩ ker(AB) = Im(An) ∩ Im(Bn) ∩ [ker(A) + ker(B)]
= Im(An) ∩ [ker(A) + Im(Bn) ∩ ker(B)]
= [Im(An) ∩ ker(A)] + [Im(Bn) ∩ ker(B)].

Therefore
α̃n(AB) = 0 ⇐⇒ max{α̃n(B), α̃n(A)} = 0,

α̃n(AB) < +∞ ⇐⇒ max{α̃n(B), α̃n(A)} < +∞.

(v) Let n ∈ N\{0}. Since Pn and Qn are relatively prime, we know that there

exist two polynomials Pn = a
p∏

i=1
(νi − X)ri and Qn = b

r∏
i=1

(ωi − X)ji such

that PnPn +QnQn = 1. Let pn (resp. k) be the degree of Pn (resp. P ) and
α(n) = nk + pn. Then, the degree of PnPn (resp. QnQn) is α(n) and by [8,
Theorem 3.2], we get

D[AnPn(T ) +BnQn(T )] = D[AnPn(T )] ∩ D[BnQn(T )] = D(Tα(n)).

Now, by Lemma 4.7, we obtain

AnPn(T )x+BnQn(T )x = x+ Tα(n)(0), ∀ x ∈ D(Tα(n)). (1)

If n ≥ q = d(T−1), then α(n) ≥ q, and by (1), it is clear that

D(T q) = D(Tα(n)) ⊆ Im(An) + Im(Bn).
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Since Im(An) ⊆ D(T q) and Im(Bn) ⊆ D(T q), for every j ∈ N, it follows that

D(T q) = Im(An) + Im(Bn) = [ker(Aj) + Im(An)] + [Im(Bn) + ker(Bj)] (2)

and

ker(AjBj) + Im(AnBn) = ker(Aj) + ker(Bj) + Im(An) ∩ Im(Bn)
= [ker(Aj) + Im(An)] ∩ Im(Bn) + ker(Bj)
= [ker(Aj) + Im(An)] ∩ [Im(Bn) + ker(Bj)].

(3)

From [7, Propositions 3.9, 3.10, 4.8, Lemma 4.2] and by using (2) and (3), we
get

ker(AjBj) + Im(AnBn) is closed ⇔
{

ker(Aj) + Im(An),
ker(Bj) + Im(Bn)

are both closed.(4)

Let n > q = d(T−1) and

j = ãe(A) + ãe(B) + ãe(AB) + p(A) + p(B) + p(AB).

Let us assume that Im(AB) + ker(AjBj) is closed. Since the degree of PQ is
greater than or equal to two, then from Remark 4.6, AB ∈ CR(H). It follows
from [6, Lemma 2.9] and Lemma 3.2 that Im(AnBn) + ker(AjBj) is closed.
Let us assume that N = Im(AnBn)+ker(AjBj) is closed. As D(Bn−1An−1) =
D(T q) is closed and Im(Bn−1An−1) ⊆ D(T q),

S : D(T q) −→ D(T q)
x 7−→ Bn−1An−1x

is well-defined. From [7, Lemmas 4.6, 4.10, Proposition 4.8], it follows that
S ∈ CR(D(T q)). Because D(S) = D(T q) is closed and S(0) ⊆ N ⊆ D(T q), by
[3, Lemma 2.4],(

Im(AB) + ker[(AB)j+n−1]
)
∩ D(T q) = S−1(N) is closed.

Since

(Im(AB) + ker[(AB)j+n−1]) +D(T q) = Im(AB) +D[(AB)d(A
−1B−1)]

is closed, from [7, Propositions 3.9, 3.10, 4.8, Lemma 4.2], it follows that
Im(AB) + ker[(AB)j+n−1] is closed. Now, by [6, Lemma 2.9], Im(AB) +
ker[(AB)j ] is closed, and thus

Im(AB) + ker(AjBj) is closed ⇐⇒ Im(AnBn) + ker(AjBj) is closed. (5)
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Arguing in the same way as previous, we can conclude that

Im(A) + ker(Aj) is closed ⇐⇒ Im(An) + ker(Aj) is closed,
Im(B) + ker(Bj) is closed ⇐⇒ Im(Bn) + ker(Bj) is closed.

(6)

Finally, it follows from (4), (5), (6) and [6, Lemma 2.9] that Im(A)+ker(Aãe (A))
and Im(B)+ker(Bãe (B)) are both closed if and only if Im(AB)+ker[(AB)ãe (AB)]
is closed.

(vi) Finally, by [6, Lemma 2.9] and the assertion (v), we see that the following
assertions are equivalent :

a) Im(A) + ker(Aã(A)) is closed and Im(B) + ker(Bã(B)) is closed,

b) Im(A) + ker(Aãe (A)) is closed and Im(B) + ker(Bãe (B)) is closed,

c) Im(AB) + ker[(AB)ãe (AB)] is closed,

d) Im(AB) + ker[(AB)ã(AB)] is closed.

The proof is complete.

Theorem 4.9. Let T ∈ Υ(H) be a closed linear relation. If A and B are
defined as in Lemma 4.8, then

0 ∈ ϱe, gasc(AB) ⇐⇒ 0 ∈ ϱe, gasc(A) ∩ ϱe, gasc(B)

and
0 ∈ ϱgasc(AB) ⇐⇒ 0 ∈ ϱgasc(A) ∩ ϱgasc(B).

Proof. This is an obvious consequence of Remark 4.6 and Lemma 4.8.

Theorem 4.10. Let T ∈ Υ(H) be a closed linear relation and m ∈ N\{0}.
Then

0 ∈ ϱe, gasc(T ) ⇐⇒ 0 ∈ ϱe, gasc(T
m)

and
0 ∈ ϱgasc(T ) ⇐⇒ 0 ∈ ϱgasc(T

m).

Proof. First, since T ∈ Υ(H) is closed, we obtain Tm is closed (see Remark
4.6). Let n, m ∈ N\{0} and S = T|Im(Tmn) be the restriction of T to Im(Tmn).
From [9, Lemma 5.1], it follows that,

α̃nm(T ) ≤ α̃n(T
m) = α(Sm) ≤ mα(S) = mα̃nm(T ),
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and this proves that ãe(T ) < +∞ if and only if ãe(T
m) < +∞. Now, put k =

max{p(Tm), p(T )} < +∞, then by Lemma 2.2, k ≥ max{ãe(T ), ãe(T
m)}.

Let n > d(T−1), as in the proof of Lemma 4.8 and according to
[6, Lemma 2.9] and Lemma 3.2, we deduce that

Im(Tm) + ker(Tmk) is closed =⇒ Im(Tmn) + ker(Tmk) is closed,
=⇒ Im(T ) + ker(Tmk) is closed.

Hence, from [6, Lemma 2.9] and Lemma 3.2,

Im(T ) + ker(T ãe (T )) is closed ⇐⇒ Im(T ) + ker(Tmk) is closed,
⇐⇒ Im(Tm) + ker(Tmk) is closed,

⇐⇒ Im(Tm) + ker[(Tm)ãe (Tm)] is closed.

This gives
0 ∈ ϱe, gasc(T ) ⇐⇒ 0 ∈ ϱe, gasc(T

m).

Furthermore, for every m ∈ N\{0}, ã(T ) < +∞ if and only if ã(Tm) < +∞.
So that

Im(T ) + ker(T ã(T )) is closed ⇐⇒ Im(T ) + ker(T ãe (T )) is closed,

⇐⇒ Im(Tm) + ker(Tm ãe (Tm)) is closed,

⇐⇒ Im(Tm) + ker(Tm ã(Tm)) is closed.

Consequently,
0 ∈ ϱgasc(T ) ⇐⇒ 0 ∈ ϱgasc(T

m),

which completes the proof.

Corollary 4.11. Let T ∈ Υ(H) be a closed linear relation and let P =
(λ1 − X)m1(λ2 − X)m2 · · · (λn − X)mn be a complex polynomial such that
mi ̸= 0 for every i = 1, 2, · · · , n. Then

0 ∈ ϱe, gasc(P (T )) ⇐⇒ λi ∈ ϱe, gasc(T ), ∀ 1 ≤ i ≤ n

and
0 ∈ ϱgasc(P (T )) ⇐⇒ λi ∈ ϱgasc(T ), ∀ 1 ≤ i ≤ n.

Proof. First, since T ∈ Υ(H) is closed, P (T ) is closed (see Remark 4.6).
Now, from Theorem 4.9 and Theorem 4.10, we deduce

0 ∈ ϱe, gasc(P (T )) ⇐⇒ 0 ∈
∩

1≤i≤n
ϱe, gasc[(λiI − T )mi ],

⇐⇒ 0 ∈
∩

1≤i≤n
ϱe, gasc(λiI − T ),

⇐⇒ λi ∈ ϱe, gasc(T ), ∀ 1 ≤ i ≤ n.
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In the same way, we prove that

0 ∈ ϱgasc(P (T )) ⇐⇒ λi ∈ ϱgasc(T ), ∀ 1 ≤ i ≤ n,

and the proof is therefore complete.

The following extends [3, Theorem 4.7], we do not require that the relation
T be everywhere defined and ϱ(T ) ̸= ∅.

Theorem 4.12. Let T ∈ Υ(H) be a closed linear relation and P = (λ1 −
X)m1(λ2 −X)m2 · · · (λn −X)mn be a complex polynomial such that mi ̸= 0
for all i = 1, 2, · · · , n. Then

P (σe, g
asc(T )) = σe, g

asc(P (T )) and P (σg
asc(T )) = σg

asc(P (T )).

Proof. First note, by Remark 4.6, P (T ) is a closed linear relation. Now,
from Corollary 4.11, it follows that

λ ∈ P (σe, g
asc(T )) ⇐⇒ λ = P (µ), where µ ∈ σe, g

asc(T ),
⇐⇒ λ− P (Z) = (µ− Z)kQ(Z), where Q(µ) ̸= 0,
⇐⇒ λ ∈ σe, g

asc(P (T )).

The second equality, can be proved in the same way as the first one. This
finishes the proof of the theorem.

Example 4.13.

(i) Let T as in (i) of Example 4.5, we have T ∈ Υ(H) is a closed linear
relation and D(T )  H. Hence, if P is a non-constant complex polyno-
mial, by [3, Theorem 4.7], it is not possible to deduce that P (σg

asc(T )) =
σg
asc(P (T )) or P (σe, g

asc(T )) = σe, g
asc(P (T )). However, from Theorem 4.12,

we can do this.

(ii) Let B = (e1, e2, e3) be a basis of C3. Consider the linear relation :

T
( 3∑

i=1

αi ei

)
= Vect(e1, e2) + α3 e3, ∀ α1, α2, α3 ∈ C.

Clearly, T ∈ Υ(H), because T is a closed linear relation everywhere
defined and Tn(0) is closed for all n ∈ N. For all λ ∈ C, we note that 0 ∈
(λI − T )(e1) = Vect(e1, e2), this implies that ϱ(T ) = ∅. Hence, if P is a
non-constant complex polynomial, by [3, Theorem 4.7], it is not possible
to deduce that P (σg

asc(T )) = σg
asc(P (T )) or P (σe, g

asc(T )) = σe, g
asc(P (T )).

However, from Theorem 4.12, we can do this.
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Remark 4.14. We note that Theorem 4.12 is false in general without the
assumption that P is a non-constant polynomial, even if T is a bounded linear
operator. For example, if H is a separable Hilbert space and (en)n∈N is an
orthonormal basis of H, we define the following bounded operator on H,

T
( +∞∑

n=0

xnen

)
=

+∞∑
n=0

xn
n+ 1

en.

Since ker(T ) = {0} (which gives ae(T ) = 0) and Im(T ) is not closed in H, it
follows that 0 ∈ σe

asc(T ) ⊆ σasc(T ). Put P = c ∈ C, since σe
asc(T ) and σasc(T )

are non-empty sets, it follows that

P (σe
asc(T )) = P (σasc(T )) = {c}.

However, ϱasc(P (T )) = ϱasc(cI) = C. Indeed, C\{c} = ϱ(cI) ⊆ ϱasc(cI), and
cI − cI is the zero operator on H with ascent is equal to 1 and kernel is equal
to H. Hence

σe
asc(P (T )) = σasc(P (T )) = ∅.

5. A spectral mapping theorems for essential g-descent and
g-descent spectrums

We start this section with the following definitions. The descent and the
essential descent resolvent sets of T ∈ LR(H) are respectively defined by

ϱdes(T ) = {λ ∈ C : d(Tλ) < +∞} and ϱedes(T ) = {λ ∈ C : de(Tλ) < +∞}.

The descent and the essential descent spectrums of T are respectively
σdes(T ) := C\ϱdes(T ) and σe

des(T ) := C\ϱedes(T ).
The g-descent resolvent set and the essential g-descent resolvent set of

T ∈ LR(H) are respectively defined by

ϱgdes(T ) = {λ ∈ C : d̃(Tλ) < +∞} and ϱe, gdes(T ) = {λ ∈ C : d̃e(Tλ) < +∞}.

The g-descent and the essential g-descent spectrums of T are respectively
σg
des(T ) := C\ϱ

g
des(T ) and σe, g

des(T ) := C\ϱ
e, g
des(T ). Evidently

ϱ(T ) ⊆ ϱgdes(T ) ⊆ ϱdes(T ) ⊆ ϱedes(T ), ϱ(T ) ⊆ ϱgdes(T ) ⊆ ϱe, gdes(T ) ⊆ ϱedes(T ).

This section will be devoted to study the spectral mapping theorems of
the g-descent and the essential g-descent spectrums of linear relations. The
following lemmas will be used to prove the main result of this section.
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Lemma 5.1. Let T ∈ LR(H), P and Q are relatively prime complex poly-
nomials. Let n ∈ N\{0}, A = P (T ) and B = Q(T ). Then

(i) d̃e(AB) = max{d̃e(A), d̃e(B)} and d̃(AB) = max{d̃(A), d̃(B)},

(ii) T possess a finite g-descent (resp. essential g-descent) if and only if the
same holds for Tn.

Proof. (i) Let n ∈ N, from Lemma 4.8, we have

ker(AnBn) + Im(AB) = ker(An) + ker(Bn) + Im(A) ∩ Im(B),

=
(
ker(An) + Im(A)

)
∩ Im(B) + ker(Bn),

=
(
ker(An) + Im(A)

)
∩
(
Im(B) + ker(Bn)

)
.

Therefore ker(AnBn) + Im(AB) ⊆ ker(An) + Im(A) ⊆ H, and consequently,

β̃n(AB) = β̃n(A) + dim
(
ker(An) + Im(A)

)
/
(
[ker(An) + Im(A)]

∩ [Im(B) + ker(Bn)]
)
,

max{β̃n(A), β̃n(B)} ≤ β̃n(AB) ≤ β̃n(A) + β̃n(B).

(ii) Let m ∈ N and S be the relation induced by T on H/ker(Tnm). Thus from
[9, Lemma 5.1], we obtain

β̃nm(T ) = β(S) ≤ β(Sn) = β̃m(Tn) ≤ nβ(S) = n β̃nm(T ).

This completes the proof.

Lemma 5.2. Let T ∈ LR(H) and m ∈ N\{0}. Assume that A and B are
defined as in Lemma 5.1. Then

(i) 0 ∈ ϱe, gdes(T ) if and only if 0 ∈ ϱe, gdes(T
m),

(ii) 0 ∈ ϱgdes(T ) if and only if 0 ∈ ϱgdes(T
m),

(iii) 0 ∈ ϱe, gdes(AB) if and only if 0 ∈ ϱe, gdes(A) ∩ ϱe, gdes(B),

(iv) 0 ∈ ϱgdes(AB) if and only if 0 ∈ ϱgdes(A) ∩ ϱgdes(B).

Proof. It is an obvious consequence of Lemma 5.1.
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Corollary 5.3. Let T ∈ LR(H) and let P = (λ1 − X)m1(λ2 − X)m2

· · · (λn − X)mn be a complex polynomial such that mi ̸= 0 for every i =
1, 2, · · · , n. Then

0 ∈ ϱe, gdes(P (T )) ⇐⇒ λi ∈ ϱe, gdes(T ), ∀ 1 ≤ i ≤ n

and

0 ∈ ϱgdes(P (T )) ⇐⇒ λi ∈ ϱgdes(T ), ∀ 1 ≤ i ≤ n.

Proof. From Lemma 5.2, it follows that

0 ∈ ϱe, gdes(P (T )) ⇐⇒ 0 ∈
∩

1≤i≤n
ϱe, gdes[(λiI − T )mi ],

⇐⇒ 0 ∈
∩

1≤i≤n
ϱe, gdes(λiI − T ),

⇐⇒ λi ∈ ϱe, gdes(T ), ∀ 1 ≤ i ≤ n.

In the same way, we obtain

0 ∈ ϱgdes(P (T )) ⇐⇒ λi ∈ ϱgdes(T ), ∀ 1 ≤ i ≤ n.

The proof is complete.

First note, that the results of this section are true for Banach spaces.
Hence, the following extends [3, Theorem 3.4], we do not require that the
relation T be everywhere defined and dimT (0) < +∞.

Theorem 5.4. Let T ∈ LR(H) and P = (λ1 − X)α1 · · · (λm − X)αm

be a complex polynomial such that αi ̸= 0 for all i = 1, 2, · · · ,m. Then

P (σe, g
des(T )) = σe, g

des(P (T )) and P (σg
des(T )) = σg

des(P (T )).

Proof. From Corollary 5.3, it follows that

λ ∈ P (σe, g
des(T )) ⇐⇒ λ = P (µ), where µ ∈ σe, g

des(T ),
⇐⇒ λ− P (Z) = (µ− Z)kQ(Z), where Q(µ) ̸= 0,
⇐⇒ λ ∈ σe, g

des(P (T )).

The second equality, can be proved in the same way as the first one. This
finishes the proof of the theorem.
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Example 5.5. Let T and K as in (i) of Example 4.5 (resp. suppose that
dimK(0) = +∞ and we replace the condition D(K)  H by D(K) ⊆ H), we
have T ∈ Υ(H) is a closed linear relation and D(T )  H (resp. dimT (0) =
+∞). Hence, if P is a non-constant complex polynomial, by [3, Theorem 3.4],
it is not possible to deduce that P (σg

des(T )) = σg
des(P (T )) (resp. P (σe, g

des(T )) =
σe, g
des(P (T ))). However, from Theorem 5.4, we can do this.

Remark 5.6. We note that Theorem 5.4 is false in general without the
assumption that P is a non-constant polynomial, even if T is a bounded
linear operator. For example, let T be defined as in Remark 4.14. Since
ker(T ) = {0} and Im(T ) is not closed, then β̃n(T ) = β(T ) = +∞, for all
n ∈ N, and thus 0 ∈ σe, g

des(T ) ⊆ σg
des(T ). Put P = c ∈ C. Since σe, g

des(T ) and
σg
des(T ) are non-empty sets, it follows that

P (σe, g
des(T )) = P (σg

des(T )) = {c}.

However, ϱgdes(P (T )) = ϱgdes(cI) = C. Indeed, C\{c} = ϱ(cI) ⊆ ϱgdes(cI), and
cI − cI is the zero operator with g-descent is equal to 1. Therefore

σg
des(P (T )) = σe, g

des(P (T )) = ∅.

6. Decomposition theorems

First observe that if T ∈ LR(H) is a range space relation such that ãe(T ) <
+∞ and Im(T )+ker(T ãe (T )) is closed in H, then T is a quasi-Fredholm relation
(see, [7, Definition 5.1]). In the following, we prove a decomposition theorem
of linear relations with finite essential g-ascent such that Im(T ) + ker(T ãe (T ))
is closed in H.

Theorem 6.1. Let T ∈ CR(H). Then there exists n ∈ N such that ãe(T ) ≤
n and Im(T ) + ker(Tn) is closed in H if and only if there exist d ∈ N and two
closed subspaces M and N such that :

(i) H = Mu N;

(ii) Im(T d) ⊆ M, T (M) ⊆ M, N ⊆ ker(T d) and, if d > 0, N ̸⊂ ker(T d−1);

(iii) G(T ) = [G(T ) ∩ (M×M)]u [G(T ) ∩ (N× N)];

(iv) the restriction of T to M is both upper semi-Fredholm and regular rela-
tion;
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(v) A ∈ LR(N) such that its graph is the subspace G(T ) ∩ (N× N), then A
is a bounded operator everywhere defined and G(Ad) = N× {0}.

Proof. ” =⇒ ” First, the assertions (i)-(iii) and (v) follow from [7, Theo-
rem 5.2], and by the same theorem we know that S = T|M the restriction of
T to M is regular. Let m = max{d, n}, since S is regular and Im(Tm) ⊆ M,
it follows that

ker(T ) ∩ Im(Tm) = ker(S) ∩ Im(Sm) = ker(S),

and hence α(S) = α̃m(T ) < +∞. Therefore S ∈ Φ+(M).

” ⇐= ” Let S = T|M be the restriction of T to M and A ∈ LR(N) such that
G(A) = G(T ) ∩ (N× N), so

ker(T ) ∩ Im(T d) = ker(S) ∩ Im(Sd) = ker(S) and α̃d(T ) < +∞.

This implies that ãe(T ) ≤ d. By [7, Theorem 6.4], Im(T ) + ker(T d) is closed
and from [6, Lemma 2.9], it follows that Im(T ) + ker(Tn) is closed for all
n ≥ ãe(T ), which completes the proof.

Now from [6, Lemma 2.9], we know that if ã(T ) = n < +∞ and Im(T ) +
ker(Tn) is closed, then ãe(T ) ≤ n and Im(T ) + ker(Tn) is closed. So, as a
consequence of Theorem 6.1, we obtain the following theorem.

Theorem 6.2. Let T ∈ CR(H). Then there exists n ∈ N such that ã(T ) =
n < +∞ and Im(T ) + ker(Tn) is closed if and only if there exist d ∈ N and
two closed subspaces M and N such that :

(i) H = Mu N,

(ii) T (M ∩ D(T )) ⊆ M, Im(T d) ⊆ M, N ⊆ ker(T d) and, if d > 0, N ̸⊂
ker(T d−1),

(iii) G(T ) = [G(T ) ∩ (M×M)]u [G(T ) ∩ (N× N)],

(iv) the restriction of T to M is injective with closed range,

(v) if A ∈ LR(N) such that its graph is the subspace G(T ) ∩ (N× N), then
A is a bounded operator everywhere defined and G(Ad) = N× {0}.

The following lemma will be needed in the proof of Theorem 6.4.
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Lemma 6.3. Let T ∈ CR(H) such that de(T ) < +∞. The following state-
ments are equivalent :

(i) Im(Tn) ∩ ker(T ) is closed for some n ≥ de(T ),

(ii) Im(Tn) ∩ ker(T ) is closed for all n ≥ de(T ).

Proof. It is clear that only the implication ”(i) =⇒ (ii)” needs to prove.
Let n0 ≥ de(T ) such that Im(Tn0) ∩ ker(T ) is closed. First, we prove that
Im(Tn0+1) ∩ ker(T ) is closed. By the equality (1) in the proof of Lemma 2.4,
we get

βn0(T ) ≥ Sn0(T ) = dim
(
Im(Tn0) ∩ ker(T )

)
/
(
Im(Tn0+1) ∩ ker(T )

)
,

and hence from [7, Propositions 3.9, 3.10 and 4.8, Lemma 4.2], Im(Tn0+1) ∩
ker(T ) is closed. Now if n0 > de(T ), then n0 − 1 ≥ de(T ) and so
dim

(
Im(Tn0−1) ∩ ker(T )

)
/
(
Im(Tn0) ∩ ker(T )

)
< +∞. Therefore Im(Tn0−1) ∩

ker(T ) is also closed. This completes the proof.

In the following result, we prove a decomposition theorem for T ∈ CR(H),
with n = d̃e(T ) < +∞ and Im(Tn) ∩ ker(T ) is closed in H.

Theorem 6.4. Let T ∈ CR(H). Then d̃e(T ) ≤ n and Im(Tn) ∩ ker(T ) is
closed for some n ∈ N if and only if there exist d ∈ N and two closed subspaces
M and N such that :

(i) H = Mu N,

(ii) T (M ∩ D(T )) ⊆ M, Im(T d) ⊆ M, N ⊆ ker(T d) and, if d > 0, N ̸⊂
ker(T d−1),

(iii) G(T ) = [G(T ) ∩ (M×M)]u [G(T ) ∩ (N× N)],

(iv) the restriction of T to M is both lower semi-Fredholm and regular rela-
tion,

(v) if A ∈ LR(N) such that its graph is the subspace G(T ) ∩ (N× N), then
A is a bounded operator everywhere defined and G(Ad) = N× {0}.

Proof. ” =⇒ ” First, from Lemma 2.4, we have d̃e(T ) ≤ p(T ) < +∞
and β̃p(T )(T ) is finite, which implies that Im(T ) + ker(T p(T )) is closed in H.
Moreover, by Lemma 6.3, T is a quasi-Fredholm relation and so from [7,
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Theorem 5.2], it follows that there exist d ∈ N and two closed subspaces M
and N such that H = MuN, T (M∩D(T )) ⊆ M, N ⊆ ker(T d) ⊆ D(T ), if d > 0,
N ̸⊂ ker(T d−1) and the restriction of T to M, S = T|M, is regular. Now, let
m = max{d, n}, then Im(T ) + ker(Tm) = Im(S)uN (see the equality (6.7) in
the proof of [7, Theorem 6.4]). This implies that

dimM/Im(S) = dim[Mu N]/[Im(S)u N] = β̃m(T ) < +∞

and consequently S ∈ Φ−(M).

” ⇐= ” Let S = T|M be the restriction of T to M and A ∈ LR(N) such that
G(A) = G(T ) ∩ (N× N), so that

Im(T ) + ker(T d) = Im(S)u N, ker(T ) ∩ Im(T d) = ker(S) ∩ Im(Sd) = ker(S).

This implies that β̃d(T ) ≤ β(S) < +∞ and ker(T ) ∩ Im(T d) is closed. This
completes the proof of the theorem.

Now from Lemma 6.3, we know that if d̃(T ) = n < +∞ and Im(Tn) ∩
ker(T ) is closed, then d̃e(T ) ≤ n and Im(Tn)∩ ker(T ) is closed. Therefore, we
can prove the following theorem similarly as Theorem 6.4.

Theorem 6.5. Let T ∈ CR(H). Then d̃(T ) ≤ n and Im(Tn) ∩ ker(T ) is
closed for some n ∈ N if and only if there exist d ∈ N and two closed subspaces
M and N such that :

(i) H = Mu N,

(ii) T (M ∩ D(T )) ⊆ M, Im(T d) ⊆ M, N ⊆ ker(T d) and, if d > 0, N ̸⊂
ker(T d−1),

(iii) G(T ) = [G(T ) ∩ (M×M)]u [G(T ) ∩ (N× N)],

(iv) the restriction of T to M is surjective,

(v) if A ∈ LR(N) such that its graph is the subspace G(T ) ∩ (N× N), then
A is a bounded operator everywhere defined and G(Ad) = N× {0}.

Remark 6.6. Let T ∈ CR(H) such that max{ã(T ), d̃(T )} ≤ m, for some
m ∈ N. It is clear that S = T|Im(Tm), the restriction of T to Im(Tm) is bijective,
H = Im(Tm) + ker(Tm) and Im(Tm) ∩ ker(Tm) = {0} (see the equality (1) in
the proof of Lemma 3.7), so from [7, Propositions 3.10, 4.8, Lemma 4.2], it
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follows that Im(Tm) and ker(Tm) are both closed. Let A ∈ LR(ker(T
m)) such

that G(A) = G(T ) ∩ (ker(Tm) × ker(Tm)). First note that A(0) ⊆ ker(Tm) ∩
Im(Tm) = {0} and G(A) is closed, which implies that A is a closed operator.
Since

D(A) = {x ∈ ker(Tm) : Ax ̸= ∅}
= {x ∈ ker(Tm) : Tx ̸= ∅ in ker(Tm)}
= {x ∈ ker(Tm) : ∃ y ∈ Tx and y ∈ ker(Tm)}
= {x ∈ ker(Tm) : ∃ y ∈ Tx and 0 ∈ Tm(y)}
= {x ∈ ker(Tm) : 0 ∈ Tm+1(x)}
= {x ∈ ker(Tm) : x ∈ ker(Tm+1)}
= ker(Tm),

then A is a bounded operator everywhere defined. But Am(ker(Tm)) ⊆
ker(Tm) ∩ Im(Tm) = {0}, so G(Am) = G(Tm) ∩ (ker(Tm) × ker(Tm)) =
ker(Tm)×{0}. Now, we will show that G(T ) = [G(T )∩ (Im(Tm)× Im(Tm))]u
[G(T ) ∩ (ker(Tm) × ker(Tm))]. Let (x, y) ∈ G(T ), then x = x1 + x2 with
x1 ∈ Im(Tm) and x2 ∈ ker(Tm). Therefore, there exist y1 ∈ T (x1) ⊆ Im(Tm)
and y2 ∈ T (x2) such that y = y1 + y2. Clearly,

y2 ∈ T (x2) ⊆ T
(
ker(Tm)

)
= T

(
ker(Tm+1)

)
= TT−1

(
ker(Tm)

)
= ker(Tm) ∩ Im(T ) + T (0) ⊆ ker(Tm) + T (0)

and hence y2 = y′2 + y′′2 , for some y′2 ∈ ker(Tm) and y′′2 ∈ T (0). We have,

y1 + y′′2 ∈ T (x1) + T (0) = T (x1) ⊆ Im(Tm)

and y′2 = y2 − y′′2 ∈ T (x2) + T (0) = T (x2), so

(x, y) = (x1, y1 + y′′2) + (x2, y
′
2) ∈ [G(T ) ∩ (Im(Tm)× Im(Tm))]

u [G(T ) ∩ (ker(Tm)× ker(Tm))].

This implies that

G(T ) = [G(T ) ∩ (Im(Tm)× Im(Tm))]u [G(T ) ∩ (ker(Tm)× ker(Tm))].

Finally, if we put M = Im(Tm) and N = ker(Tm), then M and N satisfy the
conditions (i)-(v) of Theorems 6.2 and 6.5.
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