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1. Introduction

The Casas-Alvero conjecture affirms that if a complex polynomial P of
degree n > 1 shares roots with all its derivatives, P (k), k = 1, 2, . . . , n − 1,
then there exist two complex numbers, a and b 6= 0, such that P (z) = b(z −
a)n. Notice that, in principle, the common root between P and each P (k)

might depend on k. Casas-Alvero arrived to this problem at the turn of this
century, when he was working in his paper [1] trying to obtain an irreducibility
criterion for two variable power series with complex coefficients. See [2] for
an explanation of the problem in his own words.

Although several authors have got partial answers, to the best of our knowl-
edge the conjecture remains open. For n ≤ 4 the conjecture is a simple con-
sequence of the wonderful Gauss-Lucas Theorem ([6]). In 2006 it was proved
in [5], by using Maple, that it is true for n ≤ 8. Afterwards in [6, 7] it was
proved that it holds when n is pm, 2pm, 3pm or 4pm, for some prime number
p and m ∈ N. The first cases left open are those where n = 24, 28 or 30. See
again [6] for a very interesting survey or [3, 8] for some recent contributions
on this question.

Adding the hypotheses that P is a real polynomial and all its n roots,
taking into account their multiplicities, are real, the conjecture has a real
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counterpart, that also remains open. It says that P (x) = b(x − a)n for some
real numbers a and b 6= 0. For this real case, the conjecture can be proved
easily for n ≤ 4, simply by using Rolle’s Theorem. This tool does not suffice
for n ≥ 5, see for instance [4] for more details, or next section.

Also in the real case, in [6] it is proved that if the condition for one of
the derivatives of P is removed, then there exist polynomials satisfying the
remaining n−2 conditions, different from b(x−a)n. The construction of some
of these polynomials presented in that paper is very nice and is a consequence
of the Brouwer’s fixed point Theorem in a suitable context.

Finally, it is known that if the conjecture holds in C, then it is true over
all fields of characteristic 0. On the other hand, it is not true over all fields
of characteristic p, see again [7]. For instance, consider P (x) = x2(x2 + 1) in
characteristic 5 with roots 0, 0, 2 and 3. Then P ′(x) = 2x(2x2 + 1), P ′′(x) =
12x2 + 2 = 2(x2 + 1) and P ′′′(x) = 4x and all them share roots with P .

The aim of this note is to present two natural extensions of the real Casas-
Alvero conjecture to smooth functions and show that none of them holds.

Question 1. Fix 1 < n ∈ N. Let F be a class Cn real function such
that F (n)(x) 6= 0 for all x ∈ R, and has n real zeroes, taking into account
their multiplicities. Assume that F shares zeroes with all its derivatives, F (k),
k = 1, 2, . . . , n − 1. Is it true that F (x) = b(f(x))n for some 0 6= b ∈ R and
some f , a class Cn real function, that has exactly one simple zero?

Notice that one of the hypotheses of the real Casas-Alvero conjecture can
be reformulated as follows: The polynomial F shares roots with all its deriva-
tives but one, precisely the one corresponding to its degree. Trivially, this is
so, because all the derivatives of order higher than n are identically zero. The
second question that we consider is:

Question 2. Fix 1 < n ∈ N. Let F be a real analytic function that shares
zeroes with all its derivatives but one, say F (n). Is it true that F (x) = b(f(x))n

for some 0 6= b ∈ R and some real analytic function f , that has exactly one
simple zero?

Theorem A. (i) The answer to the Question 1 is “yes” for n ≤ 4 and
“no” for n = 5.

(ii) The answer to the Question 2 is already “no” for n = 2.

Our result reinforces the intuitive idea that Casas-Alvero conjecture is
mainly a question related with the rigid structure of the polynomials.
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2. Proof of Theorem A

(i) The answer to Question 1 is “yes” for n = 2, 3, 4 because the proof of
the real Casas-Alvero conjecture for the same values of n, based on the Rolle’s
Theorem and given in [4], does not uses at all that P is a polynomial. Let us
adapt it to our setting. Since F (n) does not vanish we know that F has exactly
n real zeroes, taking into account their multiplicites. Moreover we know that
F has to have at least a double zero, that without loss of generality can be
taken as 0. Next we can do a case by case study to discard all situations
except that F has only a zero and it is of multiplicity n. For the sake of
brevity, we give all the details only in the most difficult case, n = 4.

Assume, to arrive to a contradiction, that n = 4, F is under the hypotheses
of Question 1 and x = 0 is not a zero of multiplicity four. Notice that by Rolle’s
theorem, for k = 1, 2, 3, each F (k) has exactly 4−k zeroes, taking into account
their multiplicities. Moreover, the only zero of F ′′′ must be one of the zeroes
of F .

If F ′′(0) = 0 and F ′′′(0) 6= 0 then F has only another zero at x = a
and, without loss of generality, we can assume that a > 0. Applying three
times Rolle’s theorem we get that F ′′′(b) = 0 for some b ∈ (0, a) which is a
contradiction with the hypotheses. If F ′′(0) 6= 0 then F has two more zeroes
counting multiplicities. There are three possibilities. The first one is that there
is a > 0 such that F (a) = F ′(a) = 0. In this case, applying two times Rolle’s
theorem we obtain that there exist b, c ∈ (0, a) with F ′′(b) = F ′′(c) = 0 and
they are the only zeroes of F ′′. This fact gives again a contradiction because
none of them is a zero of F . The second one is that there exist a1, a2 ∈ R
with 0 ∈ (a1, a2) such that F (a1) = F (a2) = 0. Also in this case, by applying
two times Rolle’s theorem we obtain that there exist b, c ∈ (a1, a2) such that
0 ∈ (b, c) and F ′′(b) = F ′′(c) = 0 giving us the desired contradiction. Lastly,
assume that the other two zeroes of F are a1 and a2, with 0 < a1 < a2. By
Rolle’s Theorem the zeroes of F ′ are 0, b1 and b2 and satisfy 0 < b1 < a1 <
b2 < a2. Then, since F ′′ has to have two zeroes, say c1, c2, and they satisfy
0 < c1 < b1 < c2 < b2, the hypotheses force that c2 = a1. Hence the zero of
F ′′′ has to be between c1 and c2 = a1, that is in particular in (0, a1), interval
that contains no zero of F , arriving once more to the desired contradiction.

In short, we have proved for n ≤ 4, that F (x) = xnG(x), for some class
Cn function G, that does not vanish. Hence

F (x) = sign(G(0))

(
x n

√
G(x)

sign(G(0))

)n

= b(f(x))n,
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where f has only one zero, x = 0, that is simple, as we wanted to prove.
To find a map F for which the answer to Question 1 is “no” we consider

n = 5 and a configuration of zeroes of F and its derivatives proposed in
[4] as the simplest one, compatible with the hypotheses of the Casas-Alvero
conjecture and Rolle’s Theorem. Specifically, we will search for a function
F , of class at least C5, with the five zeroes 0, 0, 1, c, d, to be fixed, satisfying
0 < 1 < c < d, and moreover

F ′(0) = 0, F ′′(1) = 0, F ′′′(c) = 0, F (4)(1) = 0, (2.1)

and such that F (5) does not vanish. Notice that F ′(0) = 0 is not a new
restriction.

We start assuming that F (5)(x) = r − sin(x), for some r > 1 to be deter-
mined. By imposing that conditions (2.1) hold, together with F (0) = 0, we
get that

F (x) =

∫ x

0

∫ u

0

∫ w

1

∫ z

c

∫ y

1

(
r − sin(t)

)
dtdy dz dw du.

Some straightforward computations give that

F (x) =
r

120
x5 − r + cos(1)

12
x4 +

2rc− 2 sin(c) + 2 cos(1)c− rc2

12
x3

+
6 sin(c) + 2r + 9 cos(1)− 6rc+ 3rc2 − 6 cos(1)c

12
x2 − 1 + cos(x).

Imposing now that F (1) = 0 we obtain that

r =
5
(
8 cos(1)c− 41 cos(1)− 8 sin(c) + 24

)
4(5c2 − 10c+ 4)

= R(c).

Next we have to impose that F (c) = 0. By replacing the above expression of
r in F we obtain that

F (c) =
G(c)

96(5c2 − 10c+ 4)
,

where

G(c) =− c2
(
12 c4 − 369 c3 + 1437 c2 − 1708 c+ 532

)
cos (1)

− 8 c2 (c− 1) (c− 2)2 sin (c) +
(
480 c2 − 960 c+ 384

)
cos (c)

− 24 (c− 1)
(
9 c4 − 36 c3 + 24 c2 + 24 c− 16

)
.
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A carefully study shows thatG has exactly one real zero c1 ∈ (17/10, 19/10)
= I, with c1 ≈ 1.79343096. To prove its existence it suffices to show that

G

(
17

10

)
=− 99211099

500000
cos (1)− 18207

12500
sin

(
17

10

)
+

696

5
cos

(
17

10

)
+

1583211

12500
> 0,

G

(
19

10

)
=− 180110481

500000
cos (1)− 3249

12500
sin

(
19

10

)
+

1464

5
cos

(
19

10

)
+

3616677

12500
< 0.

By using Taylor’s formula we know that for any c > 0, S−(c) < sin(c) < S+(c)
and C−(c) < cos(c) < C+(c) where

S±(c) = c− c3

3!
+
c5

5!
− c7

7!
+
c9

9!
± c11

11!

and

C±(c) = 1− c2

2!
+
c4

4!
− c6

6!
+
c8

8!
± c10

10!
.

Hence we can replace the values of the trigonometric functions in G by rational
numbers to have upper or lower bounds of this function evaluated at 1, 17/10
or 19/10. For instance,

0.5403023 ≈ 1960649

3628800
= C−(1) < cos(1) < C+(1) =

280093

518400
≈ 0.5403028.

We obtain that

G

(
17

10

)
>− 99211099

500000
C+ (1)− 18207

12500
S+

(
17

10

)
+

696

5
C−

(
17

10

)
+

1583211

12500
=

3444600099561969856969

49896000000000000000000
> 0

and

G

(
19

10

)
<− 180110481

500000
C− (1)− 3249

12500
S−
(

19

10

)
+

1464

5
C+

(
19

10

)
+

3616677

12500
= − 1689627895469649855823

16632000000000000000000
< 0.
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To show the uniqueness of the zero in I, we will prove that G is strictly
decreasing in this interval. It holds that

G′(c) = T (c) cos (1) + U(c) sin (c) + V (c cos (c) +W (c),

with

T (c) =− c
(
72 c4 − 1845 c3 + 5748 c2 − 5124 c+ 1064

)
,

U(c) =− 8
(
5 c2 − 10 c+ 4

) (
c2 − 2 c+ 12

)
,

V (c) =− 8 (c− 1)
(
c4 − 4 c3 + 4 c2 − 120

)
,

W (c) =− 120(9c4 − 36c3 + 36c2 − 8).

By computing the Sturm sequences of T,U and V we can prove that T (c) < 0,
U(c) < 0 and V (c) > 0 for all c ∈ I. Hence, for c ∈ I,

G′(c) < T (c)C−(c) + U(c)S−(c) + V (c)C+(c) +W (c) = Q(c),

where

Q(c) =
72469

64800
c− 669211

43200
c2 +

18852329

302400
c3 − 8854991

80640
c4

+
4732471

50400
c5 − 532

15
c6 +

8

7
c7 +

191

70
c8

− 797

1890
c9 − 34

405
c10 +

1651

103950
c11 +

3533

2494800
c12

− 193

623700
c13 +

1

142560
c14 − 1

831600
c15.

The Sturm sequence of Q shows that it has no zeroes in I. Moreover, it is
negative in this interval, and as a consequence, G′ is also negative, as we
wanted to prove.

We fix c = c1. Then, r = R(c1) and F is also totally fixed. Moreover, by
using the same techniques we get that r = R(c1) > R(19/10) > 1 and as a
consequence F (5) does not vanish. In fact, r = R(c1) ≈ 1.04591089. Finally,
F has one more real zero d ∈ (33/10, 34/10). In fact, d ≈ 3.32178369. This F
gives our desired example, see Figure 1.

(ii) Consider F (x) = 4x2 + π2(cos(x)− 1) that has a double zero at 0 and
also vanishes at ±π/2. Moreover, F ′(x) = 8x − π2 sin(x) vanishes at x = 0,
F ′′(x) = 8 − π2 cos(x) has no common zeroes with F and, for any k > 1,
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|F (2k)(x)| = π2| cos(x)| vanishes at x = π/2 and |F (2k−1)(x)| = π2| sin(x)|
vanishes at x = 0.

A similar example for n = 3 is F (x) = 4x3 − 6πx2 + π3(1 − cos(x)), that
vanishes at 0, π (double zeroes) and π/2.

Figure 1: Plot of a map F for which the answer
to Question 1 for n = 5 is “no”.
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