

EXTRACTA MATHEMATICAE Vol. **35**, Num. 2 (2020), 197–204

On angular localization of spectra of perturbed operators

 $\mathrm{M.I.}~\mathrm{Gil'}$

Department of Mathematics, Ben Gurion University of the Negev P.O. Box 653, Beer-Sheva 84105, Israel

gilmi@bezeqint.net

Received June 29, 2020 Accepted September 17, 2020 Presented by Manuel González

Abstract: Let A and \tilde{A} be bounded operators in a Hilbert space. We consider the following problem: let the spectrum of A lie in some angular sector. In what sector the spectrum of \tilde{A} lies if A and \tilde{A} are "close"? Applications of the obtained results to integral operators are also discussed.

 ${\it Key\ words:\ Operators,\ spectrum,\ angular\ location,\ perturbations,\ integral\ operator.}$

AMS Subject Class. (2010): 47A10, 47A55, 47B10.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{H} be a complex separable Hilbert space with a scalar product (.,.), the norm $\|.\| = \sqrt{(.,.)}$ and unit operator I. By $\mathcal{B}(\mathcal{H})$ we denote the set of bounded operators in \mathcal{H} . For an $A \in \mathcal{B}(\mathcal{H})$, A^* is the adjoint operator, $\|A\|$ is the operator norm and $\sigma(A)$ is the spectrum.

We consider the following problem: let A and A be "close" operators and $\sigma(A)$ lie in some angular sector. In what sector $\sigma(\tilde{A})$ lies?

Not too much works are devoted to the angular localizations of spectra. The papers [5, 6, 7, 8] should be mentioned. In particular, in the papers by E.I. Jury, N.K. Bose and B.D.O. Anderson [5, 6] it is shown that the test to determine whether all eigenvalues of a complex matrix of order n lie in a certain sector can be replaced by an equivalent test to find whether all eigenvalues of a real matrix of order 4n lie in the left half plane. The results from [5] have been applied by G.H. Hostetter [4] to obtain an improved test for the zeros of a polynomial in a sector. In [7] M.G. Krein announces two theorems concerning the angular localization of the spectrum of a multiplicative operator integral. In the paper [8] G.V. Rozenblyum studies the asymptotic behavior of the distribution functions of eigenvalues that appear in a fixed angular region of the complex plane for operators that are close to normal. As applications, he calculates the asymptotic behavior of the spectrum of two classes of oper-

ators: elliptic pseudo-differential operators acting on the sections of a vector bundle over a manifold with a boundary, and operators of elliptic boundary value problems for pseudo-differential operators. It should be noted that in the just pointed papers the perturbations of an operator whose spectrum lie in a given sector are not considered. Below we give bounds for the spectral sector of a perturbed operator.

Without loss of the generality it is assumed that

$$\beta(A) := \inf \operatorname{Re} \sigma(A) > 0. \tag{1.1}$$

If this condition does not hold, instead of A we can consider perturbations of the operator $A_1 = A + Ic$ with a constant $c > |\beta(A)|$.

For a $Y \in \mathcal{B}(\mathcal{H})$ we write Y > 0 if Y is positive definite, i.e., $\inf_{x \in \mathcal{H}, ||x||=1} (Yx, x) > 0$. Let Y > 0. Define the angular Y-characteristic $\tau(A, Y)$ of A by

$$\cos \tau(A, Y) := \inf_{x \in \mathcal{H}, \|x\|=1} \frac{\operatorname{Re}(YAx, x)}{|(YAx, x)|}.$$

The set

$$S(A,Y) := \{ z \in \mathbb{C} : |\arg z| \le \tau(A,Y) \}$$

will be called the Y-spectral sector of A.

LEMMA 1.1. For an $A \in \mathcal{B}(\mathcal{H})$, let condition (1.1) hold and Y be a positive definite operator, such that $(YA)^* + YA > 0$. Then $\sigma(A)$ lies in the Y-spectral sector of A.

Proof. Take a ray $z = re^{it}$ $(0 < r < \infty)$ intersecting $\sigma(A)$, and take the point $z_0 = r_0 e^{it}$ on it with the maximum modulus. By the theorem on the boundary point of the spectrum [1, Section I.4.3, p. 28] there exists a normed sequence $\{x_n\}$, such that $Ax_n - z_0x_n \to 0$, $(n \to \infty)$. Hence,

$$\frac{\operatorname{Re}(YAx_n, x_n)}{|(YAx_n, x_n)|} = \frac{\operatorname{Re} r_0 e^{it}(Yx_n, x_n)}{r_0|(Yx_n, x_n)|} + \epsilon_n = \cos t + \epsilon_n$$

with $\epsilon_n \to 0$ as $n \to \infty$. So z_0 is in S(A, Y). This proves the lemma.

EXAMPLE 1.2. Let $A = A^* > 0$. Then condition (1.1) holds. For any Y > 0 commuting with A (for example Y = I) we have $(YA)^* + YA = 2YA$ and $\operatorname{Re}(YAx, x) = |(YAx, x)|$. Thus $\cos \tau(A, Y) = 1$ and $S(A, Y) = \{z \in \mathbb{C} : \arg z = 0\}$.

So Lemma 1.1 is sharp.

Remark 1.3. Suppose A has a bounded inverse. Recall that the quantity dev(A) defined by

$$\cos \operatorname{dev}(A) := \inf_{x \in \mathcal{H}, x \neq 0} \frac{\operatorname{Re}(Ax, x)}{\|Ax\| \|x\|}$$

is called the angular deviation of A, cf. [1, Chapter 1, Exercise 32]. For example, for a positive definite operator A one has

$$\cos \operatorname{dev}(A) = \frac{2\sqrt{\lambda_M \lambda_m}}{\lambda_M + \lambda_m},$$

where λ_m and λ_M are the minimum and maximum of the spectrum of A, respectively (see [1, Chapter 1, Exercise 33]). Besides, in Exercise 32 it is pointed that the spectrum of A lies in the sector $|\arg z| \leq \operatorname{dev}(A)$. Since $|(Ax, x)| \leq ||Ax|| ||x||$, Lemma 1.1 refines the just pointed assertion.

2. The main result

Let A be a bounded linear operator in \mathcal{H} , whose spectrum lies in the open right half-plane. Then by the Lyapunov theorem, cf. [1, Theorem I.5.1], there exists a positive definite operator $X \in \mathcal{B}(\mathcal{H})$ solving the Lyapunov equation

$$2 \operatorname{Re}(AX) = XA + A^*X = 2I.$$
 (2.1)

So $\operatorname{Re}(XAx, x) = ((XA + A^*X)x, x)/2 = (x, x) \ (x \in \mathcal{H})$ and

$$\cos \tau(A, X) = \inf_{x \in \mathcal{H}, \|x\|=1} \frac{(x, x)}{|(XAx, x)|} = \frac{1}{\sup_{x \in \mathcal{H}, \|x\|=1} |(XAx, x)|} \ge \frac{1}{\|AX\|}.$$

Put

$$J(A) = 2 \int_0^\infty \|e^{-At}\|^2 dt.$$

Now we are in a position to formulate our main result.

THEOREM 2.1. Let $A, A \in \mathcal{B}(\mathcal{H})$, condition (1.1) hold and X be a solution of (2.1). Then with the notation $q = ||A - \tilde{A}||$ one has

$$\cos\tau(\tilde{A}, X) \ge \cos\tau(A, X) \frac{(1 - qJ(A))}{(1 + qJ(A))},$$

provided

$$qJ(A) < 1.$$

The proof of this theorem is based on the following lemma.

LEMMA 2.2. Let $A, \tilde{A} \in \mathcal{B}(\mathcal{H})$, condition (1.1) hold and X be a solution of (2.1). If, in addition,

$$q\|X\| < 1, \tag{2.2}$$

then

$$\cos \tau(\tilde{A}, X) \ge \cos \tau(A, X) \frac{(1 - ||X||q)}{(1 + ||X||q)}$$

Proof. Put $E = \tilde{A} - A$. Then q = ||E|| and due to (2.1), with $x \in \mathcal{H}$, ||x|| = 1, we obtain

$$Re(X(A+E)x, x) \ge Re(XAx, x) - |(XEx, x)|$$

= $(x, x) - |(XEx, x)|$
 $\ge (x, x) - ||X|| ||E|| ||x||^2 = 1 - ||X||q.$ (2.3)

In addition,

$$\begin{aligned} |(X(A+E)x,x)| &\leq |(XAx,x)| + ||X|| ||E|| ||x||^2 \\ &= |(XAx,x)| \left(1 + \frac{||X||q}{|(XAx,x)|}\right) \quad (||x|| = 1). \end{aligned}$$

But

$$|(XAx, x)| \ge |\operatorname{Re}(XAx, x)| = \operatorname{Re}(XAx, x) = (x, x) = 1.$$

Hence

$$|(X(A+E)x,x)| \le |(XAx,x)| \left(1 + \frac{||X||q}{\operatorname{Re}(XAx,x)}\right) \le |(XAx,x)|(1+||X||q).$$

Now (2.3) yields.

$$\frac{\operatorname{Re}(X\tilde{A}x,x)}{|(X\tilde{A}x,x)|} \ge \frac{(1-||X||q)}{|(XAx,x)|(1+||X||q)} \quad (||x||=1),$$

provided (2.2) holds. Since

$$\cos\tau(\tilde{A},X) = \inf_{x\in\mathcal{B}, \|x\|=1} \frac{\operatorname{Re}(X\tilde{A}x,x)}{|(X\tilde{A}x,x)|},$$

we arrive at the required result.

Proof of Theorem 2.1 Note that X is representable as

$$X = 2\int_0^\infty e^{-A^*t} e^{-At} dt$$

[1, Section 1.5]. Hence, we easily have $||X|| \leq J(A)$. Now the latter lemma proves the theorem.

3. Operators with Hilbert-Schmidt Hermitian components

In this section we obtain an estimate for J(A) $(A \in \mathcal{B}(\mathcal{H}))$ assuming that $A \in \mathcal{B}(\mathcal{H})$ and

$$A_I := (A - A^*)/i$$
 is a Hilbert-Schmidt operator, (3.1)

i.e., $N_2(A_I) := (\operatorname{trace}(A_I^2))^{1/2} < \infty$. Numerous integral operators satisfy this condition. Introduce the quantity (the departure from normality)

$$g_I(A) := \left[2N_2^2(A_I) - 2\sum_{k=1}^{\infty} |\operatorname{Im} \lambda_k(A)|^2 \right]^{1/2} \le \sqrt{2}N_2(A_I),$$

where $\lambda_k(A)$ (k = 1, 2, ...) are the eigenvalues of A taken with their multiplicities and ordered as $|\operatorname{Im} \lambda_{k+1}(A)| \leq |\operatorname{Im} \lambda_k(A)|$. If A is normal, then $g_I(A) = 0$, cf. [2, Lemma 9.3].

LEMMA 3.1. Let conditions (1.1) and (3.1) hold. Then $J(A) \leq \hat{J}(A)$, where

$$\hat{J}(A) := \sum_{j,k=0}^{\infty} \frac{g_I^{j+k}(A)(k+j)!}{2^{j+k}\beta^{j+k+1}(A)(j!\ k!)^{3/2}}.$$

Proof. By [2, Theorem 10.1] we have

$$\|e^{-At}\| \le \exp\left[-\beta(A)t\right] \sum_{k=0}^{\infty} \frac{g_I^k(A)t^k}{(k!)^{3/2}} \quad (t \ge 0).$$

Then

$$\begin{split} J(A) &\leq 2 \int_0^\infty \exp[-2\beta(A)t] \left(\sum_{k=0}^\infty \frac{g_I^k(A)t^k}{(k!)^{3/2}}\right)^2 dt \\ &= 2 \int_0^\infty \exp[-2\beta(A)t] \left(\sum_{j,k=0}^\infty \frac{g_I^{k+j}(A)t^{k+j}}{(j!k!)^{3/2}}\right) dt \\ &= \sum_{j,k=0}^\infty \frac{2(k+j)!g_I^{j+k}(A)}{(2\beta(A))^{j+k+1}(j!\ k!)^{3/2}}, \end{split}$$

as claimed.

If A is normal, then $g_I(A) = 0$ and with $0^0 = 1$ we have $\hat{J}(A) = \frac{1}{\beta(A)}$. The latter lemma and Theorem 2.1 imply

COROLLARY 3.2. Let $A, \tilde{A} \in \mathcal{B}(\mathcal{H})$ and let the conditions (1.1), (3.1) and $q\hat{J}(A) < 1$ hold. Then

$$\cos \tau(\tilde{A}, X) \ge \frac{(1 - q\hat{J}(A))}{(1 + q\hat{J}(A))} \cos \tau(A, X).$$

4. INTEGRAL OPERATORS

As usually $L^2 = L^2(0,1)$ is the space of scalar-valued functions h defined on [0,1] and equipped with the norm

$$||h|| = \left[\int_0^1 |h(x)|^2 dx\right]^{1/2}.$$

Consider in $L^2(0,1)$ the operator \tilde{A} defined by

$$(\tilde{A}h)(x) = a(x)h(x) + \int_0^1 k(x,s)h(s)ds \quad (h \in L^2, x \in [0,1]),$$
(4.1)

where a(x) is a real bounded measurable function with

$$a_0 := \inf a(x) > 0, \tag{4.2}$$

and k(x,s) is a scalar kernel defined on $0 \le x, s \le 1$, and

$$\int_{0}^{1} \int_{0}^{1} |k(x,s)|^{2} ds \, dx < \infty.$$
(4.3)

202

So the Volterra operator V defined by

$$(Vh)(x) = \int_{x}^{1} k(x,s)h(s)ds \quad (h \in L^{2}, x \in [0,1]),$$

is a Hilbert-Schmidt one. Define operator A by

$$(Ah)(x) = a(x)h(x) + \int_{x}^{1} k(x,s)h(s)ds \quad (h \in L^{2}, x \in [0,1]).$$

Then A = D + V, where D is defined by (Dh)(x) = a(x)h(x). Due to Lemma 7.1 and Corollary 3.5 from [3] we have $\sigma(A) = \sigma(D)$. So $\sigma(A)$ is real and $\beta(A) = a_0$. Moreover,

$$N_2(A_I) = N_2(V_I) \le N_2(V) = \left[\int_0^1 \int_x^1 |k(x,s)|^2 ds \, dx\right]^{1/2}.$$

Here $V_I = (V - V^*)/2i$. Thus,

$$g_I(A) \le g_V := \sqrt{2}N_2(V)$$

and

$$||A - \tilde{A}|| \le q_0 := \left[\int_0^1 \int_0^x |k(x,s)|^2 ds \, dx\right]^{1/2}.$$

Simple calculations show that under consideration

$$\hat{J}(A) \leq \hat{J}_0 := \sum_{j,k=0}^{\infty} \frac{g_V^{j+k}(k+j)!}{2^{j+k} a_0^{j+k+1} (j! \ k!)^{3/2}}$$

Making use of Corollary 3.2 and taking into account that in the considered case $\cos \tau(A, X) = 1$, we arrive at the following result.

COROLLARY 4.1. Let \tilde{A} be defined by (4.1) and the conditions (4.2) and (4.3) hold. If, in addition, $q_0 \hat{J}_0 < 1$, then $\sigma(\tilde{A})$ lies in the angular sector

$$\left\{ z \in \mathbb{C} : |\arg z| \le \arccos \frac{(1-q_0\hat{J}_0)}{(1+q_0\hat{J}_0)} \right\}.$$

EXAMPLE 4.2. To estimate the sharpness of our results consider in $L^2(0,1)$ the operators

$$(Ah)(x) = 2h(x)$$
 and $(\tilde{A}h)(x) = (2+i)h(x)$ $(h \in L^2, x \in [0,1]).$

 $\sigma(A)$ consists of the unique point $\lambda = 2$ and so $\cos(A, X) = \cos \arg \lambda = 1$. We have

$$J(A) = 2 \int_0^\infty e^{-4t} dt = 1/2$$
 and $q = 1$.

By Corollary 3.2

$$\cos \tau(\tilde{A}, X) \ge \frac{1 - 1/2}{1 + 1/2} = 1/3.$$

Compare this inequality with the sharp result: $\sigma(\tilde{A})$ consists of the unique point $\tilde{\lambda} = 2 + i$. So $\tan(\arg \tilde{\lambda}) = 1/2$, and therefore $\cos(\arg \tilde{\lambda}) = 2/(\sqrt{5})$.

Acknowledgements

I am very grateful to the referee of this paper for his (her) deep and helpful remarks.

References

- YU.L. DALECKII, M.G. KREIN, "Stability of Solutions of Differential Equations in Banach Space", Vol. 43, American Mathematical Society, Providence, R. I., 1974.
- [2] M.I. GIL', "Operator Functions and Operator Equations", World Scientific Publishing Co. Pte. Ltd., Hackensack, New Jersey, 2018.
- [3] M.I. GIL', Norm estimates for resolvents of linear operators in a Banach space and spectral variations, Adv. Oper. Theory 4(1) (2019), 113–139.
- [4] G.H. HOSTETTER, An improved test for the zeros of a polynomial in a sector, IEEE Trans. Automatic Control AC-20 (3) (1975), 433-434.
- [5] E.I. JURY, N.K. BOSE, B.D.O. ANDERSON, A simple test for zeros of a complex polynomial in a sector, *IEEE Trans. Automatic Control* AC-19 (1974), 437-438.
- [6] E.I. JURY, N.K. BOSE, B.D.O. ANDERSON, On eigenvalues of complex matrices in a sector, *IEEE Trans. Automatic Control* AC-20 (1975), 433– 434.
- [7] M.G. KREIN, The angular localization of the spectrum of a multiplicative integral in Hilbert space (in Russian) Funkcional. Anal. i Prilozhen 3(1) (1969), 89–90.
- [8] G.V. ROZENBLYUM, Angular asymptotics of the spectrum of operators that are close to normal, J. Soviet Math. 45 (3) (1989), 1250-1261.