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Abstract : A convex (or concave) real-valued function, f , on a dual Banach space P ∗ is continuous

for the Mackey topology m (P ∗, P ) if (and only if) it is Mackey continuous on bounded subsets of
P ∗. Equivalence of Mackey continuity to sequential Mackey continuity follows when P is strongly

weakly compactly generated, e.g., when P = L1 (T ), where T is a set that carries a sigma-finite

measure σ. This result of Delbaen, Orihuela and Owari extends their earlier work on the case that
P ∗ is either L∞ (T ) or a dual Orlicz space. An earlier result of this kind is recalled also: it derives

Mackey continuity from bounded Mackey continuity for a nondecreasing concave function, F , that

is defined and finite only on the nonnegative cone L∞+ . Applied to a linear f , the Delbaen-Orihuela-
Owari result shows that the convex bounded Mackey topology is identical to the Mackey topology,

i.e., cbm (P ∗, P ) = m (P ∗, P ); here, this is shown to follow also from Grothendieck’s Completeness

Theorem. As for the bounded Mackey topology, bm (P ∗, P ), it is conjectured here not to be a vector
topology, or equivalently to be strictly stronger than m (P ∗, P ), except when P is reflexive.

Key words: Dual Banach space, convex bounded Mackey topology, convergence in measure, economic

equilibrium.
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1. Introduction

Nonmetric topologies on the norm-dual, P ∗, of a real Banach space (P )
can become much more manageable when restricted to bounded sets. For
example, given a convex subset of P ∗, or a real-valued concave function on
P ∗, the bounded weak* topology, bw∗ := bw (P ∗, P ), can serve to show that
the set in question is weakly* closed, or that the function is weakly* upper
semicontinuous.

In economic theory, such uses of the Krein-Smulian Theorem are made
in [7, Proposition 1.1, Theorem 4.4 and Theorem 4.7], [12, Proposition 1 and
Example 5], [14, Lemma 4.1] and [15, Section 6.2]. In applications of economic

∗ Formerly of the London School of Economics.
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equilibrium models, this can be an indispensable tool for verifying that the
production sets that describe the technologies are weakly* closed, and that
the profit and cost functions are weakly* semicontinuous (which is needed for
equilibria to exist, and for the dual pairs of programmes to have no duality
gaps): see [11, Lemma 6.1] and [15, Lemmas 6.2.3–6.2.5].1

When P is L1(T, σ), the space of integrable real-valued functions on a set
T that carries a sigma-finite measure σ—and so P ∗ is the space of essentially
bounded functions L∞(T )—another useful “bounded” topology on L∞ is the
bounded Mackey topology, bm

(
L∞, L1

)
. This is because a convex (or con-

cave) real-valued function, f , is continuous for the “plain” Mackey topology,
m
(
L∞, L1

)
, if (and only if) it is bm

(
L∞, L1

)
-continuous, i.e., m

(
L∞, L1

)
-

continuous on bounded sets—or, equivalently, if (and only if) f is continuous
along bounded sequences (in L∞) that converge in measure (on subsets of T
of finite measure). Thus the reduction to bounded sets provides direct access
to the methods of integral calculus, which can greatly simplify verification of
Mackey continuity [12, Example 5]. And, in economic equilibrium analysis,
Mackey continuity of a concave utility or production function is essential for
representing the price system by a density, as is done in [3] and [13]. In addi-
tion, the use of convergence in measure furnishes economic interpretations of
Mackey continuity [12, Section 4 and Section 5].

When the convex function f is defined and finite on the whole space
L∞, the equivalence of m

(
L∞, L1

)
-continuity to bm

(
L∞, L1

)
-continuity is a

result of Delbaen and Owari [7, Proposition 1.2], which is quoted here as
Theorem 2; they also extend it to the case of a dual Orlicz space instead of L∞

[7, Theorem 4.5] and apply it in the mathematics of finance [7, Theorem 4.8].
Their ingenious argument shows first that the sublevel sets of the conjugate
function, f#, are uniformly integrable and hence weakly compact (in L1); it
then follows that f is Mackey continuous (on L∞) by the Moreau-Rockafellar
Theorem (on the conjugacy between continuity and inf-compactness).

An earlier result that derives Mackey continuity from its bounded version
applies to a nondecreasing concave function, F , that is defined (and finite)
only on the nonnegative cone L∞+ . Quoted here as Theorem 1, it requires
a different method—one which relies on Mackey continuity of the lattice op-
erations in L∞ as well as on the monotonicity of F [12, Proposition 1 and
Proposition 3 with Example 2 and Example 4]. (This case is different because
F need not have a finite concave extension to the whole space L∞, and the

1A similar use of bw∗ is made in Part I of the work on energy storage whose Part II is
[11].
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Mackey interior of L∞+ is empty—except when L∞(T ) is finite-dimensional,
i.e., when T consists of a finite number of atoms of σ.)

For a finite-valued convex (or concave) f defined on the whole space,
the equivalence of Mackey continuity to bounded Mackey continuity extends
to the case of a general dual Banach space, P ∗, as the domain of f : see
Delbaen and Orihuela [6, Theorem 8]. (Equivalence to sequential Mackey
continuity follows when P is strongly weakly compactly generated [6, Corol-
lary 11].) A fortiori, those linear functionals (on P ∗) that are continuous for
the bounded Mackey topology, bm∗ := bm (P ∗, P ), are actually continuous
for m∗ := m (P ∗, P ), i.e., belong to P . It follows that the convex bounded
Mackey topology, cbm (P ∗, P ), is identical to the “plain” Mackey topology 2 :
cbm∗ = m∗ for every P . 3 Implicit in [12, Proposition 1], this result is de-
rived here more simply from Grothendieck’s Completeness Theorem (Proof
of Proposition 1). It does not follow that bm∗ equals m∗ because bm∗ is not
known to be a vector topology and, indeed, it is conjectured not to be one,
unless P is reflexive (Conjecture 1).

There are, then, two different methods of “upgrading” the bounded Mackey
continuity to full, unqualified Mackey continuity, each with its own limitations
and its own area of applicability:

• The method of [12] applies to a nondecreasing concave function that is
finite only on the cone L∞+ (or, more generally, on the nonnegative cone
P ∗+ of a dual Banach lattice P ∗ on which m (P ∗, P ) is locally solid, i.e.,
is a vector-lattice topology).

• The method of [6] and [7] applies to an everywhere-finite convex (or
concave) function on a dual Banach space P ∗; it is based on the Fenchel-
Legendre conjugacy (and on using convergence in measure when P ∗ is
L∞ or a dual Orlicz space).

Finally, the case of a dual Banach lattice different from L∞, in which the
norm-bounded sets differ from the order-bounded ones, is addressed briefly in
the Remarks at the end of Section 2; these include an outline of the Delbaen-
Owari analysis for dual Orlicz spaces in [7].

2 For P = L1 only, that cbm
(
L∞, L1

)
= m

(
L∞, L1

)
has been shown earlier by methods

specific to this space, in [5, III.1.6 and III.1.9] and in [16, Theorem 5].
3 It also follows that bm∗-continuity upgrades to m∗-continuity not only for linear func-

tionals but also for general linear maps, i.e., every bm∗-continuous linear map of P ∗, into
any topological vector space, is m∗-continuous (on P ∗). This is because, for a linear map of
a space with topologies of the forms bT and cbT , its bT -continuity implies cbT -continuity
[5, I.1.7], and because cbm∗ = m∗.
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2. Mackey continuity derived from bounded continuity

Quoted below are the continuity-upgrade results for finite nondecreasing
concave functions on L∞+ [12] and for finite convex functions on L∞ [7] or on
any Banach dual space P ∗ [6].

Terminology (weak topology and Mackey topology, SWCG space):

• Let P ∗ be the norm-dual of a real Banach space P . The weakest and the
strongest of those locally convex topologies on P ∗ which yield P as the
continuous dual are denoted by w (P ∗, P ) and m (P ∗, P ). Known as the
weak and the Mackey topologies, on P ∗ for its pairing with P , the two
can be called the weak* and the Mackey topologies (since m (P ∗, P ∗∗),
the Mackey topology on P ∗ for its pairing with its norm-dual P ∗∗, is
identical to the norm topology of P ∗). With w (P, P ∗) denoting the
weak topology of P , m (P ∗, P ) can be described as the topology of uni-
form convergence on all w (P, P ∗)-compact, convex and balanced (a.k.a.
circled) subsets of P [17, IV.3.2: Corollary 1].4

• A real Banach space P—whose norm-dual is P ∗ and whose unit ball
(centered at 0) is B—is called strongly weakly compactly generated
(SWCG) if it contains a w (P, P ∗)-compact set G such that, for every
w (P, P ∗)-compact set C ⊂ P and every scalar ε > 0, there exists an
n ∈ N with C ⊆ nG + εB. (When such a G exists, it can be chosen to
be convex and balanced, by Krein’s Theorem [17, IV.11.4].) See [18] for
properties and examples of such spaces.

Theorem 1. (Horsley-Wrobel) Let σ be a sigma-finite nonnegative
measure on T . For a nondecreasing concave function F : L∞+ (T, σ) → R
(defined and finite only on the nonnegative cone L∞+ ), the following conditions
are equivalent to one another:

(1) F is m
(
L∞, L1

)
-continuous (on L∞+ );

(2) F is m
(
L∞, L1

)
-continuous on bounded subsets (of L∞+ );

(3) F is sequentially m
(
L∞, L1

)
-continuous (on L∞+ );

(4) on bounded subsets (of L∞+ ), F is continuous for Tσ, the topology of
convergence in the measure σ on subsets of T of finite measure.

4 Here “convex” can actually be omitted because P is a Banach space and one can apply
Krein’s Theorem [17, IV.11.4]. That “circled” can be omitted is obvious [17, I.5.2].
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Proof. See [12, Proofs of Proposition 1 and Proposition 3, with Example
2 and Example 4].

When the cone L∞+ is replaced by the whole space L∞, the same holds
without the monotonicity assumption. Despite their formal similarity, the
two cases are very different in their methods of proof, which overlap only in
their standard uses of: (i) the Krein-Smulian Theorem (for the “easy” semi-
continuity part), and (ii) the equality, on bounded sets, of m

(
L∞(σ), L1(σ)

)
to Tσ (the topology of convergence in measure).

Theorem 2. (Delbaen-Owari) Let σ be a sigma-finite nonnegative
measure on T . For a convex (or concave) function f : L∞(T, σ) → R that
is finite everywhere (on the whole space L∞), the following conditions are
equivalent to one another:

(1) f is m
(
L∞, L1

)
-continuous (on L∞);

(2) f is m
(
L∞, L1

)
-continuous on bounded subsets (of L∞);

(3) f is sequentially m
(
L∞, L1

)
-continuous (on L∞);

(4) on bounded subsets (of L∞), f is continuous for Tσ, the topology of con-
vergence in the measure σ on subsets of T of finite measure.

Proof. The argument of [7, Proof of Proposition 1.2], where σ is assumed
to be finite, is sufficient when σ is also nonatomic. It can be extended to
the case an arbitrary sigma-finite σ by using two standard techniques: (i)
embedding a finite measure with atoms in a nonatomic one, and (ii)replacing
a sigma-finite measure by an equivalent finite one (i.e., one with a strictly
positive and integrable density).

Conditions (1) and (2) of Theorem 2 remain equivalent to each other when
L∞ is replaced by any dual Banach space P ∗ (with “bounded” taken to mean
“norm-bounded”). Condition (3) is equivalent to the first two if P is SWCG.

Theorem 3. (Delbaen-Orihuela-Owari) Let P be a real Banach
space and P ∗ its norm-dual. For a convex (or concave) function f : P ∗ → R
that is finite everywhere (on the whole space P ), the following two conditions
are equivalent to each other:

(1) f is m (P ∗, P )-continuous (on P ∗);
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(2) f is m (P ∗, P )-continuous on norm-bounded subsets (of P ∗).

When P is strongly weakly compactly generated, the above Condition (2) is
equivalent (whether f is convex or not) to the condition 5:

(3) f is sequentially m (P ∗, P )-continuous (on P ∗).

Proof. See [6, Theorem 8 and Corollary 11]. K. Owari has given a sim-
pler proof that Condition (2) implies Condition (1): although his argument is
essentially the same as that in [6], it does not involve the approximate subdif-
ferential.6 Also, the assumption in [6, Theorem 8 and Corollary 11] that f is
a conjugate function (or, equivalently, that it is weakly* lower semicontinuous
on P ∗) is superfluous: it follows from the bounded Mackey continuity (and the
convexity) of f by the Krein-Smulian Theorem (as is noted in [7, Proposition
1.1] and in [12, Proposition 1]).

Remarks (on the case of a dual Banach lattice P ∗ 6= L∞):

• In such a Banach lattice, order-bounded sets are norm-bounded, but not
vice versa. Four more questions arise, then, about m (P ∗, P )-continuity
of a finite convex function f on P ∗: (a) Does sequential continuity on
order-intervals imply either (i) continuity on order-intervals, or (ii) se-
quential continuity (on balls and hence on all of P ∗ by the Banach-
Steinhaus Theorem)? (b) Does either of the last two conditions imply
continuity on P ∗? For dual Orlicz spaces, all four conditions are equiv-
alent by a result of Delbaen and Owari [7, Theorem 4.5], whose analysis
can be outlined as follows.

• On order-intervals, sequential continuity implies continuity (i.e., “yes”
to Part (i) of (a)) whenever m (P ∗, P ) is metrizable on order-intervals.
And m (P ∗, P ) is so not only when P is SWCG, but also when P is an
Orlicz space LΦ(T, σ)—where σ is a finite nonnegative measure on T
and Φ : R+ → R+ is a super-coercive (a.k.a. strict) Young function that

meets the ∆2-condition, and so
(
LΦ

)∗
= LΦ#

, where Φ# is the convex
conjugate of Φ [7, pp. 1052–1053]. On each order-interval of such a

space, m
(
LΦ#

, LΦ
)

is equal to Tσ, the globally metrizable topology of

convergence in the measure σ [7, (2.1)].

5 The corresponding part of Theorem 2 is a special case of this, since L1(T, σ) is SWCG
when σ is sigma-finite [18, 2.3].

6 Personal communication.
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• Once f##—the second convex conjugate of f for the pairing of LΦ#
with

LΦ—has been shown to equal f , that sequential m
(
LΦ#

, LΦ
)

-continuity

on order-intervals implies unqualified m
(
LΦ#

, LΦ
)

-continuity is shown

by using Tσ in essentially the same way as in the case of P ∗ = L∞:
compare the proofs of [7, Proposition 1.2 and Theorem 4.5].

• So, to complete the proof that all four conditions are equivalent (for
P = LΦ), it remains to establish that indeed f## = f when f is

m
(
LΦ#

, LΦ
)

-lower semicontinuous (l.s.c.) on order-intervals. This is

done, in [7, Theorem 4.1 and Theorem 4.4], by using a new variant of
Komlós’s Theorem [7, Theorem 3.6 and Corollary 3.10]—which, cru-

cially, from a merely norm-bounded sequence (in LΦ#
) produces an or-

der-bounded and σ-almost everywhere convergent sequence of forward
convex combinations. Of interest in itself, in the present context the
Delbaen-Owari variant of Komlós’s Theorem bridges the gap between
order- and norm-boundedness.7

• The question of whether, on P ∗, sequential continuity implies continu-
ity (i.e., Part (ii) of (b)) does not involve the order structure, and by
Theorem 3 the answer is “yes” when P is SWCG. The outlined analysis
of [7], which does use the order, adds the “yes” answer for P = LΦ—
whether it is SWCG or not, which in general seems to be an unanswered
question.8

• Continuity on order-intervals (rather than balls) can be of use in verify-
ing “full” continuity also when P is a reflexive Banach lattice (e.g., the
Lebesgue space L% with 1 < % < +∞), in which case m (P ∗, P ) is the
norm topology.

• With a Banach lattice P other than LΦ, any extension of this analy-

7 In detail: since f is convex and m
(
LΦ#

, LΦ
)

-l.s.c. on order-intervals, it follows from [7,

Corollary 3.10]—by using ordinary sequences (rather than uncountable nets)—that f is Tσ-

l.s.c. on norm -bounded sets. A fortiori, f is m
(
LΦ#

, LΦ
)

-l.s.c. on such sets and so, being

convex, it is w
(
LΦ#

, LΦ
)

-l.s.c. on norm-bounded sets. By the Krein-Smulian Theorem [17,

IV.6.4], this means that f is actually w
(
LΦ#

, LΦ
)

-l.s.c. on all of LΦ#

—i.e., that f## = f .
8 The space LΦ is known to be SWCG if yΦ′(y)/Φ(y)→ 1 as y → +∞ or, equivalently, if

1 = %Φ := lim supy→+∞ yΦ′(y)/Φ(y), where Φ′ is the one-sided (left or right) derivative of
Φ: see [6, paragraph after (20)]. (That %Φ < +∞ is an equivalent form of the ∆2-condition
[7, (1.1)].) But this criterion proves LΦ to be SWCG only when its %Φ is the same as that
of the SWCG space L1.
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sis would have to start with a metric for m (P ∗, P ) on order-intervals.
But its very existence seems to be an unanswered question (when P
is not SWCG). This is so even though there is a relevant metrizability
criterion—for order-continuous locally solid topologies, a.k.a. Lebesgue
topologies. Namely, a Lebesgue topology, T , on a vector lattice Y is
metrizable on order-intervals if and only if Y has the countable sup
property [2, 4.26]. And a locally convex-solid topology, T , on a vector
lattice Y is order-continuous if (and only if) the T -dual of Y is con-
tained in the order-continuous dual, Y ∼n , of Y [2, 3.12]. This inclusion
always holds for Y = P ∗ and T = m (P ∗, P ), i.e., P ⊆ (P∼)∼n = (P ∗)∼n
by [1, p. 331, line 8 f.b.], since the order-dual P∼ is equal to the norm-
dual P ∗ [1, Theorem 9.11]. So the metrizability criterion applies to
m (P ∗, P ) when (and only when) m (P ∗, P ) is locally solid (i.e., makes
P ∗ a topological vector lattice): on this condition, m (P ∗, P ) is metriz-
able on order-intervals if and only if P ∗ has the countable sup property
(or, equivalently, is of countable type). But, apart from L∞ (and dual
Orlicz spaces), few, if any, examples seem to be known of (nonreflexive)
dual Banach lattices whose Mackey topologies are locally solid.

3. The bounded and convex bounded Mackey topologies
on a dual Banach space

Mackey continuity on norm-bounded subsets of the norm-dual, P ∗, of a
real Banach space P (which is Condition (2) of Theorem 3) can be restated
as continuity for the bounded Mackey topology. This is a case of [8, The-
orem 1 (b)], and it holds for every map (of P ∗) into any topological space:
it does not depend on any monotonicity or convexity properties of the map.
Denoted by bm (P ∗, P ) or bm∗ for brevity, the bounded Mackey topology is
the strongest topology that is equal to m (P ∗, P ) on every bounded subset (of
P ∗). The convex bounded Mackey topology, denoted by cbm (P ∗, P ) or cbm∗

for brevity, is the strongest locally convex topology that is equal to m (P ∗, P )
on every bounded set. Remarkably, this is also the strongest vector topology
that is equal to m (P ∗, P ) on every bounded set: this is a case of [19, 2.2.2], a
result given also in [5, I.1.4 and I.1.5 (iii)]. Obviously bm∗ is at least as strong
as cbm∗, which in turn is at least as strong as m∗ := m (P ∗, P ). The last two
are actually one and the same. A corollary to Theorem 3, this equality is next
obtained more simply by applying Grothendieck’s Completeness Theorem [17,
IV.6.2], which is quoted for easy reference.
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Theorem 4. (Grothendieck) Let T be a locally convex topology on
a real vector space E. When additionally S is a saturated family 9 of T-
bounded sets covering E, the T-dual of E is complete under the S-topology
(the topology of uniform convergence on every S ∈ S) if and only if every
linear functional (on E) that is T-continuous on each S ∈ S is actually T-
continuous on the whole space E (i.e., is in the T-dual of E).

Proposition 1. Let P be a real Banach space, and P ∗ its norm-dual.
Then cbm (P ∗, P ) = m (P ∗, P ).

Proof. Apply Theorem 4 to P ∗ as E—with m∗ as T and the bounded
subsets of P ∗ as S, and hence with P as the T-dual and the norm topology
of P as the S-topology—to conclude that a linear functional on P ∗ is m∗-
continuous if it is so on bounded sets (i.e., if it is bm∗-continuous). A fortiori,
it is m∗-continuous (i.e., is in P ) if it is cbm∗-continuous. In other words,
cbm∗ yields the same dual space as m∗ (viz., P ). This proves that cbm∗ = m∗

(since cbm∗ is both locally convex and stronger than m∗). 10

As for bm (P ∗, P ), it is semi-linear (i.e., both vector addition and scalar
multiplication are separately continuous in either variable): this is a case of [4,
Theorem 5], a result noted also in [8, p. 410]. It seems to be unknown whether
bm∗ is linear (i.e., a vector topology), but if it were, it would be identical to
cbm∗ = m∗. The Delbaen-Owari result, with its reliance on convexity, makes
this implausible—as is put forward next.

Conjecture 1. For P = L1[0, 1] at least, and possibly for every non-
reflexive Banach space P , the topology bm (P ∗, P ) is strictly stronger than
m (P ∗, P )—or, equivalently, bm (P ∗, P ) is not linear.

The conjecture, then, is based on what it takes to establish that a bm∗-
continuous R-valued function f , on a nonreflexive space P ∗, is m∗-continuous:
Theorem 2 and Theorem 3 require f to be convex, and it is hard to imagine

9 A family, S, of subsets of a locally convex space is called saturated [17, p. 81] if: (i) all
subsets of every member of S belong to S, (ii) all scalar multiples of every member of S
belong to S, and (iii) for each finite F ⊂ S, the closed convex circled hull of the union of F
belongs to S.

10 Alternatively, Cooper’s special case of Grothendieck’s Theorem [5, I.1.17 (ii)] can be
applied—to P ∗ as his E, with m∗ as τ and the bounded subsets of P ∗ as B, and hence with
P ∗∗ as E′B and cbm∗ as his γ = γ (B, τ)—to conclude that the cbm∗-dual equals the m∗-dual
(so cbm∗ = m∗).
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(even when P ∗ = L∞[0, 1]) how the convexity assumption might be disposed
of entirely—as would be necessary for bm∗ to equal m∗.

Comment on bounded topologies: See [20] for a more detailed review
of such topologies: in addition to bw∗ and bm∗, it includes the bounded weak
topology and its convex variant (bw and cbw), which are studied in [9], as well
as the compact weak topology and its convex variant (kw and ckw), which
are introduced in [10].
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