

EXTRACTA MATHEMATICAE Vol. **35**, Num. 2 (2020), 127–135 doi:10.17398/2605-5686.35.2.127 Available online May 7, 2020

Extreme and exposed points of $\mathcal{L}({}^{n}l_{\infty}^{2})$ and $\mathcal{L}_{s}({}^{n}l_{\infty}^{2})$

SUNG GUEN KIM

Department of Mathematics, Kyungpook National University Daegu 702-701, South Korea

sgk317@knu.ac.kr

Received November 26, 2019 Accepted April 10, 2020 Presented by Jesús M.F. Castillo

 $\begin{array}{l} Abstract: \mbox{ For every } n \geq 2 \mbox{ this paper is devoted to the description of the sets of extreme and exposed points of the closed unit balls of <math display="inline">\mathcal{L}(nl_{\infty}^2)$ and $\mathcal{L}_s(nl_{\infty}^2)$, where $\mathcal{L}(nl_{\infty}^2)$ is the space of *n*-linear forms on \mathbb{R}^2 with the supremum norm, and $\mathcal{L}_s(nl_{\infty}^2)$ is the subspace of $\mathcal{L}(nl_{\infty}^2)$ consisting of symmetric *n*-linear forms. First we classify the extreme points of the closed unit balls of $\mathcal{L}(nl_{\infty}^2)$ and $\mathcal{L}_s(nl_{\infty}^2)$, correspondingly. As corollaries we obtain $|\operatorname{ext} B_{\mathcal{L}(nl_{\infty}^2)}| = 2^{(2^n)}$ and $|\operatorname{ext} B_{\mathcal{L}_s(nl_{\infty}^2)}| = 2^{n+1}$. We also show that $\exp B_{\mathcal{L}(nl_{\infty}^2)} = \operatorname{ext} B_{\mathcal{L}(nl_{\infty}^2)} = \operatorname{ext} B_{\mathcal{L}_s(nl_{\infty}^2)}. \end{array}$

Key words: n-linear forms, symmetric n-linear forms, extreme points, exposed points.

AMS Subject Class. (2010): 46A22.

1. INTRODUCTION

Let $n \in \mathbb{N}, n \geq 2$. We write B_E for the unit ball of a real Banach space Eand the dual space of E is denoted by E^* . An element $x \in B_E$ is called an extreme point of B_E if $y, z \in B_E$ with $x = \frac{1}{2}(y+z)$ implies x = y = z. We denote by ext B_E the set of all the extreme points of B_E . An element $x \in B_E$ is called an exposed point of B_E if there is a $f \in E^*$ so that f(x) = 1 = ||f||and f(y) < 1 for every $y \in B_E \setminus \{x\}$. It is easy to see that every exposed point of B_E is an extreme point. We denote by $\exp B_E$ the set of exposed points of B_E . We denote by $\mathcal{L}(^nE)$ the Banach space of all continuous *n*-linear forms on E endowed with the norm $||T|| = \sup_{||x_k||=1} |T(x_1, \dots, x_n)|$. $\mathcal{L}_s(^nE)$ denote the closed subspace of all continuous symmetric *n*-linear forms on E.

Let us say about the history of the classifications of extreme and exposed points of the unit ball of continuous (symmetric) multilinear forms on a Banach space. Kim [1] initiated and classified ext $B_{\mathcal{L}_s(2l_{\infty}^2)}$ and $\exp B_{\mathcal{L}_s(2l_{\infty}^2)}$, where $l_{\infty}^n = \mathbb{R}^n$ with the supremum norm. It was shown that ext $B_{\mathcal{L}_s(2l_{\infty}^2)} = \exp B_{\mathcal{L}_s(2l_{\infty}^2)}$. Kim [2, 3, 4, 5] classified ext $B_{\mathcal{L}_s(2d_*(1,w)^2)}$, ext $B_{\mathcal{L}(2d_*(1,w)^2)}$, exp $B_{\mathcal{L}_s(2d_*(1,w)^2)}$, and exp $B_{\mathcal{L}(2d_*(1,w)^2)}$, where $d_*(1,w)^2 = \mathbb{R}^2$ with the octagonal norm $\|(x,y)\|_w = \max\{|x|,|y|,\frac{|x|+|y|}{1+w}\}$. Kim [6, 7] classified ext $B_{\mathcal{L}_s(2\mathbb{R}^2_{h(w)})}$

and $\operatorname{ext} B_{\mathcal{L}(2\mathbb{R}^2_{h(w)})}$, where where $\mathbb{R}^2_{h(w)} = \mathbb{R}^2$ with the hexagonal norm $||(x,y)||_{h(w)} = \max\{|y|, |x| + (1-w)|y|\}$. Kim [8, 9, 10] classified $\operatorname{ext} B_{\mathcal{L}_s(2l_{\infty}^3)}$, $\operatorname{ext} B_{\mathcal{L}_s(3l_{\infty}^2)}$ and $\operatorname{ext} B_{\mathcal{L}(3l_{\infty}^2)}$. It was shown that every extreme point is exposed in each space. Kim [11] characterized $\operatorname{ext} B_{\mathcal{L}(2l_{\infty}^n)}$ and $\operatorname{ext} B_{\mathcal{L}_s(2l_{\infty}^n)}$. Recently, Kim [12] classified $\operatorname{ext} B_{\mathcal{L}(2l_{\infty}^3)}$ and showed $\operatorname{exp} B_{\mathcal{L}(2l_{\infty}^3)} = \operatorname{ext} B_{\mathcal{L}(2l_{\infty}^3)}$.

2. The extreme and exposed points of the unit ball of $\mathcal{L}(nl_{\infty}^2)$

Let
$$l_{\infty}^2 = \{(x, y) \in \mathbb{R}^2 : ||(x, y)||_{\infty} = \max(|x|, |y|)\}$$
. For $n \ge 2$, we denote
 $\mathcal{W}_n := \{[(1, w_1), \dots, (1, w_n)] : w_j = \pm 1 \text{ for } j = 1, \dots, n\}.$

Note that \mathcal{W}_n has 2^n elements in $S_{l^2_{\infty}} \times \cdots \times S_{l^2_{\infty}}$.

Recall that the Krein-Milman Theorem [13] say that every nonempty compact convex subset of a Housdorff locally convex space is the closed convex hull of its set of extreme points. Hence, the unit ball of l_{∞}^2 is the closed convex hull of

$$\{(1,1), (-1,1), (1,-1), (-1,-1)\}.$$

THEOREM 2.1. Let $n \geq 2$ and $T \in \mathcal{L}(nl_{\infty}^2)$. Then,

$$||T|| = \sup_{W \in \mathcal{W}_n} |T(W)|.$$

Proof. It follows that from the Krein-Milman theorem and multilinearity of T.

Let Z_1, \ldots, Z_{2^n} be an ordering of the monomials $x_{l_1} \cdots x_{l_j} y_{k_1} \cdots y_{k_{n-j}}$ with $\{l_1, \cdots, l_j, k_1, \cdots, k_{n-j}\} = \{1, \cdots, n\}$. Note that $\{Z_1, \ldots, Z_{2^n}\}$ is a basis for $\mathcal{L}({}^n l_{\infty}^2)$. Hence, dim $(\mathcal{L}({}^n l_{\infty}^2)) = 2^n$. If $T \in \mathcal{L}({}^n l_{\infty}^2)$, then,

$$T = \sum_{k=1}^{2^n} a_k Z_k$$

for some $a_1, \ldots, a_{2^n} \in \mathbb{R}$. By simplicity, we denote $T = (a_1, \cdots, a_{2^n})^t$. Let W_1, \ldots, W_{2^n} be an ordering of the elements of \mathcal{W}_n . Let

$$M(Z_1, \ldots, Z_{2^n}; W_1, \ldots, W_{2^n}) = [Z_i(W_j)]$$

be the $2^n \times 2^n$ matrix. Note that, for every $T \in \mathcal{L}(nl_{\infty}^2)$,

$$M(Z_1,\ldots,Z_{2^n};W_1,\ldots,W_{2^n})T = (T(W_1),\ldots,T(W_{2^n}))^t.$$

Here, $(\epsilon_1, \ldots, \epsilon_{2^n})^t$ denote the transpose of $(\epsilon_1, \ldots, \epsilon_{2^n})$.

THEOREM 2.2. Let $n \geq 2$. Then,

ext
$$B_{\mathcal{L}(nl_{\infty}^2)} = \{ M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (\epsilon_1, \dots, \epsilon_{2^n})^t$$

: $\epsilon_j = \pm 1, \ j = 1, \dots, 2^n \}.$

Proof. CLAIM 1: $M(Z_1, \ldots, Z_{2^n}; W_1, \ldots, W_{2^n})$ is invertible. Consider the equation

$$M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})(t_1, \dots, t_{2^n})^t = (0, \dots, 0)^t.$$
(*)

Let a_1, \dots, a_{2^n} be a solution of (*) and let $T = \sum_{k=1}^{2^n} a_k Z_k \in \mathcal{L}({}^n l_{\infty}^2)$. Then,

$$T(W_j) = 0 \qquad j = 1, \dots, 2^n.$$

By Theorem 2.1, ||T|| = 0, hence T = 0. Since Z_1, \ldots, Z_{2^n} are linearly independent in $\mathcal{L}({}^n l_{\infty}^2)$, we have $a_j = 0$ for all $j = 1, \ldots, 2^n$. Hence, the equation (*) has only zero solution. Therefore, $M(Z_1, \ldots, Z_{2^n}; W_1, \ldots, W_{2^n})$ is invertible.

CLAIM 2: $M(Z_1, \ldots, Z_{2^n}; W_1, \ldots, W_{2^n})^{-1}(\epsilon_1, \ldots, \epsilon_{2^n})^t$ is an extreme point for $\epsilon_j = \pm 1, (j = 1, \ldots, 2^n)$.

Let

$$T := M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (\epsilon_1, \dots, \epsilon_{2^n})^t.$$

Since

$$M(Z_1,...,Z_{2^n};W_1,...,W_{2^n})T = (\epsilon_1,...,\epsilon_{2^n})^t,$$

 $T(W_j) = \epsilon_j$ for $j = 1, \ldots, 2^n$. By Theorem 2.1,

$$||T|| = \sup_{1 \le j \le 2^n} |T(W_j)| = \sup_{1 \le j \le 2^n} |\epsilon_j| = 1.$$

Suppose that $T = \frac{1}{2}(T_1 + T_2)$ for some $T_k \in B_{\mathcal{L}(nl_{\infty}^2)}$ (k = 1, 2). We may write

$$T_1 = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (\epsilon_1, \dots, \epsilon_{2^n})^t + (\delta_1, \dots, \delta_{2^n})^t$$

and

$$T_2 = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (\epsilon_1, \dots, \epsilon_{2^n})^t - (\delta_1, \dots, \delta_{2^n})^t$$

for some $\delta_j \in \mathbb{R}$ $(j = 1, ..., 2^n)$. Note that

$$(T_k(W_1), \dots, T_k(W_{2^n}))^t = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})T_k$$
 for $k = 1, 2$.

Therefore,

$$(T_1(W_1), \dots, T_1(W_{2^n}))^t = (\epsilon_1, \dots, \epsilon_{2^n})^t + M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})(\delta_1, \dots, \delta_{2^n})^t$$

and

$$(T_2(W_1), \dots, T_2(W_{2^n}))^t = (\epsilon_1, \dots, \epsilon_{2^n})^t - M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})(\delta_1, \dots, \delta_{2^n})^t.$$

Hence, for $j = 1, \ldots, 2^n$,

$$T_1(W_j) = \epsilon_j + (Z_1(W_j), \dots, Z_{2^n}(W_j))(\delta_1, \dots, \delta_{2^n})^t,$$

and

$$T_2(W_j) = \epsilon_j - (Z_1(W_j), \dots, Z_{2^n}(W_j))(\delta_1, \dots, \delta_{2^n})^t$$

It follows that, for $j = 1, \ldots, 2^n$,

$$1 \ge \max\{|T_1(W_j)|, |T_2(W_j)|\}$$

= $|\epsilon_j| + |(Z_1(W_j), \dots, Z_{2^n}(W_j))(\delta_1, \dots, \delta_{2^n})^t|$
= $1 + |(Z_1(W_j), \dots, Z_{2^n}(W_j))(\delta_1, \dots, \delta_{2^n})^t|,$

which shows that

$$(Z_1(W_j), \dots, Z_{2^n}(W_j))(\delta_1, \dots, \delta_{2^n})^t = 0$$
 for $j = 1, \dots, 2^n$.

Hence,

$$M(Z_1,\ldots,Z_{2^n};W_1,\ldots,W_{2^n})(\delta_1,\ldots,\delta_{2^n})^t=0.$$

Therefore,

$$(\delta_1, \dots, \delta_{2^n})^t = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (0, \dots, 0)^t$$

= $(0, \dots, 0)^t$.

Hence, $T_k = T$ for k = 1, 2. Therefore, T is extreme. Suppose that $T \in \operatorname{ext} B_{\mathcal{L}(nl_{\infty}^2)}$. Note that

$$(T(W_1),\ldots,T(W_{2^n}))^t = M(Z_1,\ldots,Z_{2^n};W_1,\ldots,W_{2^n})T_{\cdot}$$

130

CLAIM 3: $|T(W_j)| = 1$ for all $j = 1, ..., 2^n$.

If not. There exists $1 \leq j_0 \leq 2^n$ such that $|T(W_{j_0})| < 1$. Let $\delta_0 > 0$ such that $|T(W_{j_0})| + \delta_0 < 1$. Let

$$T_1 = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} \times (T(W_1), \dots, T(W_{j_0-1}), T(W_{j_0}) + \delta_0, T(W_{j_0+1}), \dots, T(W_{2^n}))^t$$

and

$$T_2 = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} \times (T(W_1), \dots, T(W_{j_0-1}), T(W_{j_0}) - \delta_0, T(W_{j_0+1}), \dots, T(W_{2^n}))^t.$$

Hence,

$$T_1(W_{j_0}) = T(W_{j_0}) + \delta_0, T_2(W_{j_0})$$

= $T(W_{j_0}) - \delta_0, T_1(W_j) = T_2(W_j) = T(W_j) \qquad (j \neq j_0).$

Obviously, $T \neq T_k$ for k = 1, 2. By Theorem 2.1, $||T_k|| = 1$ for k = 1, 2 and $T = \frac{1}{2}(T_1 + T_2)$, which is a contradiction. Therefore,

$$T = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1}(T(W_1), \dots, T(W_{2^n}))^t$$

with $|T(W_j)| = 1$ for all $j = 1, \ldots, 2^n$.

Kim [10] characterized ext $B_{\mathcal{L}(^{3}l_{\infty}^{2})}$. Notice that using Wolfram Mathematica 8 and Theorem 2.2, we can exclusively describe ext $B_{\mathcal{L}(^{n}l_{\infty}^{2})}$ for a given $n \geq 2$.

For every $T \in \mathcal{L}(^{n}l_{\infty}^{2})$, we let

Norm(T) := { [(1, w₁), ..., (1, w_n)]
$$\in W_n : |T((1, w_1), ..., (1, w_n))| = ||T|| }.$$

We call Norm(T) the set of the norming points of T.

COROLLARY 2.3. (a) Let $n \ge 2$. ext $B_{\mathcal{L}(nl_{\infty}^2)}$ has exactly $2^{(2^n)}$ elements. (b) Let $n \ge 2$ and $T \in \mathcal{L}(nl_{\infty}^2)$ with ||T|| = 1. Then $T \in \text{ext } B_{\mathcal{L}(nl_{\infty}^2)}$ if and only if $\text{Norm}(T) = \mathcal{W}_n$.

THEOREM 2.4. ([4]) Let E be a real Banach space such that $\operatorname{ext} B_E$ is finite. Suppose that $x \in \operatorname{ext} B_E$ satisfies that there exists an $f \in E^*$ with f(x) = 1 = ||f|| and |f(y)| < 1 for every $y \in \operatorname{ext} B_E \setminus \{\pm x\}$. Then $x \in \operatorname{exp} B_E$. THEOREM 2.5. Let $n \geq 2$. Then, $\exp B_{\mathcal{L}(nl_{\infty}^2)} = \exp B_{\mathcal{L}(nl_{\infty}^2)}$.

Proof. Let $T \in \text{ext} B_{\mathcal{L}(nl_{\infty}^2)}$ and let

$$f := \frac{1}{2^n} \sum_{1 \le j \le 2^n} \operatorname{sign}(T(W_j)) \delta_{W_j} \in \mathcal{L}({}^n l_{\infty}^2)^*.$$

Note that 1 = ||f|| = f(T). Let $S \in \text{ext } B_{\mathcal{L}(nl_{\infty}^2)}$ be such that |f(S)| = 1. We will show that S = T or S = -T. It follows that

$$1 = |f(S)| = \left|\frac{1}{2^{n}} \sum_{1 \le j \le 2^{n}} \operatorname{sign}(T(W_{j}))S(W_{j})\right|$$

$$\leq \frac{1}{2^{n}} \sum_{1 \le j \le 2^{n}} |S(W_{j})|$$

$$\leq 1,$$

which shows that

$$S(W_j) = \operatorname{sign}(T(W_j)) \qquad (1 \le j \le 2^n)$$

or

$$S(W_j) = -\operatorname{sign}(T(W_j)) \qquad (1 \le j \le 2^n).$$

Suppose that

$$S(W_j) = -\operatorname{sign}(T(W_j)) \qquad (1 \le j \le 2^n).$$

It follows that

$$S = M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (S(W_1), \dots, S(W_{2^n}))^t$$

= $M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (-\operatorname{sign}(T(W_1)), \dots, -\operatorname{sign}(T(W_{2^n})))^t$
= $M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (-T(W_1), \dots, -T(W_{2^n}))^t$
= $-T.$

Note that if $S(W_j) = \operatorname{sign}(T(W_j))$ $(1 \le j \le 2^n)$, then S = T. By Theorem 2.4, T is exposed.

3. The extreme and exposed points of the unit ball of $\mathcal{L}_s(nl_{\infty}^2)$

Let $n \geq 2$ and

$$\begin{aligned} \mathcal{U}_n &:= \big\{ [(1,1),(1,1),\ldots,(1,1)], [(1,-1),(1,1),\ldots,(1,1)], \\ &\quad [(1,-1),(1,-1),(1,1),\ldots,(1,1)], \\ &\quad [(1,-1),(1,-1),(1-1),(1,1),\ldots,(1,1)], \\ &\quad \ldots, [(1,-1),(1,-1),\ldots,(1,-1),(1,1)], \\ &\quad [(1,-1),(1,-1),\ldots,(1,-1),(1,-1)] \big\}. \end{aligned}$$

Note that \mathcal{U}_n has n+1 elements in $S_{l_{\infty}^2} \times \cdots \times S_{l_{\infty}^2}$.

THEOREM 3.1. Let $n \geq 2$ and $T \in \mathcal{L}_s(nl_{\infty}^2)$. Then,

$$||T|| = \sup_{U \in \mathcal{U}_n} |T(U)|$$

Proof. It follows that from Theorem 2.1 and symmetry of T.

For $j = 0, \ldots, n$, we let

$$F_j = \sum_{\{l_1, \cdots, l_j, k_1, \cdots, k_{n-j}\} = \{1, \cdots, n\}} x_{l_1} \cdots x_{l_j} y_{k_1} \cdots y_{k_{n-j}}.$$

Then, $\{F_0, \ldots, F_n\}$ is a basis for $\mathcal{L}_s({}^nl_{\infty}^2)$. Hence, $\dim(\mathcal{L}_s({}^nl_{\infty}^2)) = n + 1$. If $T \in \mathcal{L}_s({}^nl_{\infty}^2)$, then,

$$T = \sum_{j=0}^{n} b_j F_j$$

for some $b_0, \ldots, b_n \in \mathbb{R}$. By simplicity, we denote $T = (b_0, \cdots, b_n)^t$. For $j = 0, \ldots, n$, we let

$$U_j = [(1, u_1), \ldots, (1, u_n)] \in \mathcal{U}_n,$$

where $u_k = -1$ for $1 \le k \le j$ and $u_k = 1$ for $j + 1 \le k \le n$. Let

$$M(F_0,\ldots,F_n;U_0,\ldots,U_n)=[F_i(U_j)]$$

be the $(n+1) \times (n+1)$ matrix. Note that, for every $T \in \mathcal{L}_s(nl_{\infty}^2)$,

$$M(F_0, \ldots, F_n; U_0, \ldots, U_n)T = (T(U_0), \ldots, T(U_n))^t.$$

By analogous arguments in the claim 1 of Theorem 2.2, $M(F_0, \ldots, F_n; U_0, \ldots, U_n)$ is invertible.

THEOREM 3.2. Let $n \geq 2$. Then,

$$\operatorname{ext} B_{\mathcal{L}_s(^n l_{\infty}^2)} = \left\{ M(F_0, \dots, F_n; U_0, \dots, U_n)^{-1} (\epsilon_0, \dots, \epsilon_n)^t \\ : \epsilon_j = \pm 1, j = 0, \dots, n \right\}.$$

Proof. It follows by Theorem 3.1 and analogous arguments in the claims 2 and 3 of Theorem 2.2. \blacksquare

Notice that using Wolfram Mathematica 8 and Theorem 3.2, we can exclusively describe ext $B_{\mathcal{L}_s(nl_{\infty}^2)}$ for a given $n \geq 2$.

For every $T \in \mathcal{L}_s(nl_{\infty}^2)$, we let

Norm(T) := { [(1, u₁), ..., (1, u_n)]
$$\in \mathcal{U}_n : |T((1, u_1), ..., (1, u_n))| = ||T|| }.$$

We call Norm(T) the set of the norming points of T.

COROLLARY 3.3. (a) Let $n \ge 2$. ext $B_{\mathcal{L}_s(nl_{\infty}^2)}$ has exactly 2^{n+1} elements. (b) Let $n \ge 2$ and $T \in \mathcal{L}_s(nl_{\infty}^2)$ with ||T|| = 1. Then $T \in \text{ext } B_{\mathcal{L}_s(nl_{\infty}^2)}$ if and only if $\text{Norm}(T) = \mathcal{U}_n$.

THEOREM 3.4. Let $n \geq 2$. Then, $\exp B_{\mathcal{L}_s(nl_{\infty}^2)} = \exp B_{\mathcal{L}_s(nl_{\infty}^2)}$.

Proof. Let $T \in \text{ext} B_{\mathcal{L}_s(nl^2_{\infty})}$ and let

$$f := \frac{1}{n+1} \sum_{0 \le j \le n} \operatorname{sign}(T(U_j)) \delta_{U_j} \in \mathcal{L}_s({}^n l_{\infty}^2)^*.$$

Note that 1 = ||f|| = f(T). By analogous arguments in the proof of Theorem 2.5, f exposes T. Therefore, T is exposed.

QUESTIONS. (a) Let $n \ge 2$ and $\epsilon_1, \ldots, \epsilon_{2^n}$ be fixed with $\epsilon_j = \pm 1, (j = 1, \ldots, 2^n)$. Is it true that

ext
$$B_{\mathcal{L}(nl_{\infty}^2)} = \{ M(Z_1, \dots, Z_{2^n}; W_1, \dots, W_{2^n})^{-1} (\epsilon_1, \dots, \epsilon_{2^n})^t : Z_1, \dots, Z_{2^n}, W_1, \dots, W_{2^n} \text{ are any ordering} \}$$
?

(b) By Theorem 2.2, $M(Z_1, \ldots, Z_{2^n}; W_1, \ldots, W_{2^n})^{-1}(\epsilon_1, \ldots, \epsilon_{2^n})^t$ is extreme if $Z_1, \ldots, Z_{2^n}, W_1, \ldots, W_{2^n}$ are any ordering. Similarly, we may ask the following: Let $n \geq 2$ and $\delta_0, \ldots, \delta_n$ be fixed with $\delta_k = \pm 1, (k = 0, \ldots, n)$. Is it true that

$$\operatorname{ext} B_{\mathcal{L}_s(nl_{\infty}^2)} = \left\{ M(F_0, \dots, F_n; U_0, \dots, U_n)^{-1} (\delta_0, \dots, \delta_n)^t \\ : F_0, \dots, F_n, U_0, \dots, U_n \text{ are any ordering} \right\}?$$

Acknowledgements

The author is thankful to the referee for the careful reading and considered suggestions leading to a better presented paper.

References

- [1] S.G. KIM, The unit ball of $\mathcal{L}_s(^2l_{\infty}^2)$, Extracta Math. 24 (2009), 17–29.
- [2] S.G. KIM, The unit ball of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J. 53 (2013), 295–306.
- [3] S.G. KIM, Extreme bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J. 53 (2013), 625–638.
- [4] S.G. KIM, Exposed symmetric bilinear forms of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J. 54 (2014), 341–347.
- [5] S.G. KIM, Exposed bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J. 55 (2015), 119–126.
- [6] S.G. KIM, The unit ball of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{h(w)})$, Bull. Korean Math. Soc. 54 (2017), 417–428.
- [7] S.G. KIM, Extremal problems for $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$, Kyungpook Math. J. 57 (2017), 223–232.
- [8] S.G. KIM, The unit ball of $\mathcal{L}_s(^2l_{\infty}^3)$, Comment. Math. 57 (2017), 1–7.
- [9] S.G. KIM, The geometry of $\mathcal{L}_{s}({}^{3}l_{\infty}^{2})$, Commun. Korean Math. Soc. **32** (2017), 991–997.
- [10] S.G. KIM, The geometry of $\mathcal{L}({}^{3}l_{\infty}^{2})$ and optimal constants in the Bohnenblust-Hill inequality for multilinear forms and polynomials, *Extracta Math.* **33** (1) (2018), 51–66.
- [11] S.G. KIM, Extreme bilinear forms on \mathbb{R}^n with the supremum norm, *Period.* Math. Hungar. 77 (2018), 274–290.
- [12] S.G. KIM, The unit ball of the space of bilinear forms on ℝ³ with the supremum norm, Commun. Korean Math. Soc. 34 (2) (2019), 487–494.
- [13] M.G. KREIN, D.P. MILMAN, On extreme points of regular convex sets, Studia Math. 9 (1940), 133-137.