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version (X̂, Â , µ̂), so that the dual of L1(X,A , µ) is L∞(X̂, Â , µ̂). Corresponding to this duality is
a generalized Radon-Nikodým theorem. We also provide a characterization of the strictly localizable

version in special cases that include integral geometric measures, when the negligibles are the purely

unrectifiable sets in a given dimension.
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1. Foreword

The Radon-Nikodým Theorem does not hold for every measure space
(X,A , µ). One way to phrase this precisely is to consider the canonical em-
bedding

Υ : L∞(X,A , µ)→ L1(X,A , µ)∗.

The following hold.

(A) Υ is injective (this corresponds to the uniqueness almost everywhere of
Radon-Nikodým derivatives) if and only if (X,A , µ) is semi-finite.

(B) Υ is surjective (this corresponds to the existence of Radon-Nikodým
derivatives) if and only if the Boolean algebra A /Nµ,loc is Dedekind
complete (i.e. order complete as a lattice).

While (A) is classical, see e.g. [6, 243G(a)], (B) is recent and due to the
second author, see [2, 4.6]. Let us recall the relevant definitions. Given
a measure space (X,A , µ), we abbreviate A f := A ∩ {A : µ(A) < ∞}
and Nµ := A ∩ {N : µ(N) = 0}. We say that (X,A , µ) is semi-finite if
every A ∈ A of infinite measure contains some F ∈ A f \Nµ. Equivalently,
µ(A) = sup{µ(F ) : A ⊇ F ∈ A f}. We further define the σ-ideal of locally
µ-null sets as follows: Nµ,loc := A ∩

{
A : A ∩ F ∈ Nµ for all F ∈ A f

}
. It

is easy to see [2, 4.4] that (X,A , µ) is semi-finite if and only if Nµ,loc = Nµ.
Thus we obtain the following classical criterion, [6, 243G(b)].

(C) Υ is an isometric isomorphism if and only if (X,A , µ) is semi-finite and
the Boolean algebra A /Nµ is Dedekind complete.

Though semi-finiteness is a natural property, Caratheodory’s method does
not always provide it. For instance, the measure spaces (R2,AH 1 ,H 1) and
(R2,B(R2),I 1

∞) are not semi-finite – see [8, 439H] and [4, 3.3.20]. Here,
H 1 is the 1-dimensional Hausdorff measure in the Euclidean plane [4, 2.10.2],
AH 1 is the σ-algebra consisting of H 1-measurable sets in Caratheodory’s
sense, I 1

∞ is a 1-dimensional integral geometric measure [4, 2.10.5(1)], and
B(R2) is the σ-algebra whose members are the Borel subsets of R2. Both
H 1(Γ) and I 1

∞(Γ) coincide with the usual Euclidean length of Γ when this
is a Lipschitz curve.

It is natural to want to associate, with an arbitrary (X,A , µ), an improved
version of itself – in a universal way – ideally one for which the Radon-Nikodým
Theorem holds. This is one of our several achievements in this paper. It is not
difficult to modify slightly the measure µ, keeping the underlying measurable
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space (X,A ) untouched, in order to make it semi-finite. Specifically, letting
µsf(A) = sup

{
µ(A ∩ F ) : F ∈ A f

}
, for A ∈ A , one checks that (X,A , µsf)

is semi-finite and that Nµsf = Nµ,loc. However, it appears to be a more
delicate task to modify (X,A , µ) in a canonical way in order for Υ to become
surjective.

An idea for testing if Υ is surjective is as follows. Given α ∈ L1(X,A , µ)∗

we apply the Radon-Nikodým Theorem “locally”, as it is valid on each finite
measure subspace (F,AF , µF ), F ∈ A f , i.e. we represent by integration the
functional α ◦ ιF ∈ L1(F,AF , µF )∗, where ιF : L1(F,AF , µF ) → L1(X,A , µ)
is the obvious map. This produces a family of Radon-Nikodým derivatives
〈fF 〉F∈A f . By the almost everywhere uniqueness of Radon-Nikodým deriva-
tives in finite measure spaces, this is a compatible family in the sense that
F ∩ F ′ ∩ {fF 6= fF ′} ∈ Nµ, for every F, F ′ ∈ A f . In order to obtain a
globally defined Radon-Nikodým derivative, one ought to be able to “glue”
together the functions of this family. A gluing of 〈fF 〉F∈A f is, by definition,
an A -measurable function f : X → R such that F ∩ {f 6= fF } ∈ Nµ for
every F ∈ A f .

The question whether such a gluing exists takes us away from the realm
of measure spaces, as it rather pertains to measurable spaces with negligi-
bles, abbreviated MSNs, i.e. triples (X,A ,N ) where (X,A ) is a measurable
space and N ⊆ A is a σ-ideal. The notion of compatible family 〈fE〉E∈E of
AE-measurable functions E → R subordinated to an arbitrary collection
E ⊆ A readily makes sense in this more general setting, as does the no-
tion of gluing of such a compatible family. That each compatible family of
partially defined measurable functions admits a gluing is equivalent to the
Boolean algebra A /N being Dedekind complete. In this case we say that
(X,A ,N ) is localizable. Equivalently, (X,A ,N ) is localizable if and only
if every collection E ⊆ A admits an N -essential supremum (see 3.3 for a
definition), which corresponds to taking an actual supremum in the Boolean
algebra A /N . For a proof of these classical equivalences, see e.g. [2, 3.13]. It
will be convenient to call N -generating a collection E ⊆ A that admits X as
an N -essential supremum. For instance, one easily checks that if (X,A , µ)
is a semi-finite measure space, then A f is Nµ-generating.

Let (X,A ,N ) be a localizable MSN, E ⊆ A be N -generating, and
〈fE〉E∈E be a compatible family of partially defined measurable functions.
The problem of gluing this compatible family in our setting is reminiscent of
the fact that, for a topological space X, the functor of continuous functions
on open sets is a sheaf. However, unlike in the case of continuous functions,
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in order to define f globally, we ought to make choices on the domains E∩E′,
for E,E′ ∈ E , because fE and fE′ do not coincide everywhere there, but
merely almost everywhere. In an attempt to avoid the issue, one can replace
E with an almost disjointed refinement of itself, say F . By this we mean that
each member of F is contained in a member of E , that F is N -generating,
and that F ∩ F ′ ∈ N whenever F, F ′ ∈ F are distinct. The existence of F
follows from Zorn’s Lemma, see 4.9. Still, F ∩F ′ may not be empty whenever
F, F ′ ∈ F are distinct and we are again in a position to make choices. A
step further along the road would be to produce from F a disjointed family
G whose union is conegligible. From classical measure theory, we learn of two
situations when this is doable. First, in the presence of a lower density of
(X,A ,N ) (see 10.1 for a definition), and second when card F 6 c (see the
proof of 7.6). In those cases, a gluing exists. In fact, in the context of measure
spaces, the existence of a lower density yields a somewhat stronger structure
than localizability. In order to state this, we need one more definition. We
say that a measure space (X,A , µ) is locally determined if it is semi-finite and
if the following holds:

∀A ⊆ X :
[
∀F ∈ A f : A ∩ F ∈ A

]
⇒ A ∈ A .

A complete locally determined measure space (X,A , µ) admits a lower
density if and only if it is strictly localizable, which means, by definition, that
there exists a partition G ⊆ A f of X such that

A = P(X) ∩ {A : A ∩G ∈ A for all G ∈ G }

and µ(A) =
∑

G∈G µ(A ∩ G), for A ∈ A . See [7, 341M] for a proof. The
existence of a lower density for a strictly localizable measure space follows
from the case of finite measure spaces by gluing, and the case of finite measure
spaces is a consequence of a martingale convergence theorem. Even though
the notion of a lower density makes sense for MSNs, their existence does not
hold for even the most natural generalization of finite measure spaces, namely
ccc MSNs (satisfying the countable chain condition, 4.3 and 4.5), see [16].

Both notions of localizability (of an MSN) and local determination (of
a measure space) seem to express in different ways the fact that “there are
enough measurable sets”.

For instance, one easily checks that an MSN (X,A , {∅}), such that A
contains all singletons, is localizable if and only if A = P(X). Thus, given
an arbitrary MSN (X,A ,N ), one may naively attempt to “add measurable
sets” in a smart way in order to obtain a localizable MSN

(
X, Â , N̂

)
, just
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as many as needed, and that would be a “localizable version” of (X,A ,N ).
Unfortunately, within ZFC this cannot always be done while “sticking in the
base space X”, as shown by the following, quoted from [2].

Theorem. Assume that:

(1) C ⊆ [0, 1] is some Cantor set of Hausdorff dimension 0;

(2) X = C × [0, 1];

(3) A is a σ-algebra such that B(X) ⊆ A ⊆P(X);

(4) N = NH 1 or N = Npu.

Then (X,A ,N ) is consistently not localizable.

Here, Npu consists of those subsets S of X that are purely 1-unrectifiable, i.e.
H 1(S ∩ Γ) = 0 for every Lipschitz (or, for that matter, C1) curve Γ ⊆ R2.
Thus, one may need to also add points to the base space X and, in particular
cases such as the one above, we give a very specific way of doing so, in the last
section of this paper. In the case of a general measure space (X,A , µ), we
can get a feeling of what needs to be done, when trying to define the gluing
of a compatible family 〈fF 〉F∈A f . Indeed, each x ∈ X may belong to several
F ∈ A f and this calls for considering an appropriate quotient of the fiber
bundle

{
(x, F ) : x ∈ F ∈ A f

}
.

One of the tasks that we assign ourselves in this paper is to define a general
notion of “localization” of an MSN and to prove existence results in some cases.
Since a definition of “localization” will involve a universal property, it is critical
to determine which category is appropriate for our purposes. As this offers
unexpected surprises, we describe the several steps in some detail. The objects
of our first category MSN are the saturated MSN (X,A ,N ), by what we mean
that for every N,N ′ ⊆ X, if N ⊆ N ′ and N ′ ∈ N , then N ∈ N . This is in
analogy with the notion of a complete measure space. In order to define the
morphisms between two objects (X,A ,N ) and (Y,B,M ), we say that a map
f : X → Y is [(A ,N ), (B,M )]-measurable if f−1(B) ∈ A for every B ∈ B
and f−1(M) ∈ N for every M ∈ M . For instance, if X is a Polish space
and µ is a diffuse probability measure on X, there exists [17, 3.4.23] a Borel
isomorphism f : X → [0, 1] such that f#µ = L 1, where L 1 is the Lebesgue
measure, thus f is [(B(X),Nµ), (B([0, 1]),NL 1)]-measurable. We define an
equivalence relation for such measurable maps f, f ′ : X → Y by saying that
f ∼ f ′ if and only if {f 6= f ′} ∈ N . The morphisms in the category MSN
between the objects (X,A ,N ) and (Y,B,M ) are the equivalence classes of



6 p. bouafia, t. de pauw

[(A ,N ), (B,M )]-measurable maps. At this stage, we need to suppose that
(X,A ,N ) is saturated for the relation of equality almost everywhere to be
transitive 2.7. With this assumption, the composition of measurable maps is
also compatible with ∼, see 2.8.

We let LOC be the full subcategory of MSN whose objects are the local-
izable MSNs. We may be tempted to define the localization of a saturated
MSN (X,A ,N ) as its coreflection (if it exists) along the forgetful functor
Forget : LOC → MSN, and the question of existence in general becomes that
of the existence of a right adjoint to Forget. Specifically, we may want to
say that a pair

[(
X̂, Â , N̂

)
,p
]
, where

(
X̂, Â , N̂

)
is saturated localizable

MSN and p is a morphism X̂ → X, is a localization of (X,A ,N ) whenever
the following universal property holds. For every pair [(Y,B,M ),q], where
(Y,B,M ) is a saturated localizable MSN and q is a morphism Y → X, there
exists a unique morphism r : Y → X̂ such that q = p ◦ r.

(Y,B,M )
(
X̂, Â , N̂

)
(X,A ,N )

q

∃!r

p
(5)

However, we now illustrate that the notion of morphism defined so far is not
yet the appropriate one that we are after. We consider the MSN (X,A , {∅})
where X = R and A is the σ-algebra of Lebesgue measurable subsets of R. We
recall that we want the localization of (X,A , {∅}) to be [(X,P(X), {∅}),p]
with p induced by the identity idX . Assume if possible that this is the case. In
the diagram above we consider (Y,B,M ) = (X,A ,NL 1) and q induced by
the identity. Note that this is, indeed, a localizable MSN since it is associated
with a σ-finite measure space (see 4.5 and 4.4). Thus, there would exist a
morphism r in MSN such that p ◦ r = q. Picking r ∈ r, this implies that
X ∩ {x : r(x) 6= x} is Lebesgue negligible. The measurability of r would then
imply that r−1(S) ∈ A for every S ∈ P(X), contradicting the existence of
non Lebesgue measurable subsets of R.

The problem with the example above is that the objects (X,A ,NL 1) and
(X,A , {∅}) should not be compared, in other words that q should not be a
legitimate morphism. We say that a morphism f : (X,A ,N ) → (Y,B,M )
of the category MSN is supremum preserving if the following holds for (one,
and therefore every) f ∈ f . If F ⊆ B admits an M -essential supremum
S ∈ B, then f−1(S) is an N -essential supremum of f−1(F ). It is easy to
see that adding this condition to the definition of morphism rules out the q
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considered in the preceding paragraph. We define the category MSNsp to be
that whose objects are the saturated MSNs and whose morphisms are those
morphisms of MSN that are supremum preserving. We define similarly LOCsp.
We now define the localizable version (if it exists) of a saturated MSN with
the similar universal property illustrated in (5), except for we now require
all morphisms to be in MSNsp, i.e. supremum preserving. In other words,
it is a coreflection of an object of MSNsp along Forget : LOCsp → MSNsp.
Unfortunately, this is not quite yet the right setting. Indeed, we show in 4.13
that if X is uncountable and C (X) is the countable-cocountable σ-algebra
of X, then [(X,P(X), {∅}), ι] (with ι induced by idX) is not the localizable
version of (X,C (X), {∅}). This prompts us to introduce a new category.

We say that an object (X,A ,N ) of MSN is locally determined if for every
N -generating collection E ⊆ A the following holds:

∀A ⊆ X :
[
∀E ∈ E : A ∩ E ∈ A

]
⇒ A ∈ A .

In case (X,A ,N ) is the MSN associated with some complete semi-finite
measure space (X,A , µ), then it is locally determined (in the sense of MSNs)
if and only if (X,A , µ) is locally determined (in the sense of measure spaces)
– see 5.3(F) – even though the latter sounds stronger because we test with
any generating family E . We say that an object of MSN is lld if it is both
localizable and locally determined, and we let LLDsp be the corresponding
full subcategory of LOCsp. We now define the lld version of an object of
MSNsp to be its coreflection (if it exists) along Forget : LLDsp → MSNsp, i.e. it
satisfies the corresponding universal property illustrated in (5) with Y and
X̂ being lld, and the morphisms being supremum preserving. This definition
is satisfactory in at least the simplest case, 5.4 : If (X,A , {∅}) is so that A
contains all singletons, then it admits [(X,P(X), {∅}), ι] as its lld version.

Our general question has now become whether Forget : LLDsp → MSNsp

admits a right adjoint. Freyd’s Adjoint Functor Theorem [1, 3.3.3] could
prove useful, however do not know whether it applies, mostly because we do
not know whether coequalizers exist in MSNsp. We gather in Table 1 the
information that we know about limits and colimits in the three categories we
introduced.

In view of proving some partial existence result for lld versions, we in-
troduce the intermediary notion of a 4c (or cccc) saturated MSN, short for
coproduct (in MSNsp) of ccc saturated MSNs. It is easy to see that 4c MSNs
are lld, 4.6 and 4.4. The 4c version of an object of MSNsp is likewise de-
fined by its universal property in diagram (5), using supremum preserving
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morphisms. Our main results are about locally ccc MSNs, i.e. those saturated
MSNs (X,A ,N ) such that Eccc = A ∩{Z : the subMSN (Z,AZ ,NZ) is ccc}
is N -generating. A complete semi-finite measure space (X,A , µ) is clearly
locally ccc, since A f is Nµ-generating. Similarly, one can define the more
general locally localizable objects in MSNsp. In 4.14, we give an example of an
MSN which is not even locally localizable.

MSNsp LOCsp LLDsp

equalizers exist if {f = g} ? exist 5.10

is meas. 3.7(C)

products (countable) exist 2.13 ? ?

coequalizers ? ? see 5.7 ? see 5.7

coproducts exist 3.7(D) exist 4.6 exist 4.6 and 5.3(D)

Table 1: Limits and colimits in the three categories of MSNs.

Theorem. Let (X,A ,N ) be a saturated locally ccc MSN. The fol-
lowing hold:

(1) (X,A ,N ) admits a 4c version, 7.4.

(2) If furthermore Eccc contains an N -generating subcollection E such that
card E 6 c and each (Z,AZ) is countably separated, for Z ∈ E , then
(X,A ,N ) admits an lld version which is also its 4c version.

By saying that a measurable space (Z,AZ) is countably separated we mean
that AZ contains a countable subcollection that separates points in Z. The 4c
version

(
X̂, Â , N̂

)
is obtained as a coproduct

∐
Z∈E (Z,AZ ,NZ) where E is

an N -generating almost disjointed refinement of Eccc, whose existence ensues
from Zorn’s Lemma. In order to establish that this, in fact, is also the lld
version under the extra assumptions in (2), we need to build an appropriate
morphism r in diagram (5), associated with an lld pair [(Y,B,M ),q]. It is
obtained as a gluing of 〈qZ〉Z∈E where qZ : q−1(Z) → X̂ is the obvious map.
Since E is almost disjointed, 〈qZ〉Z∈E is compatible and, since (Y,B,M ) in
diagram (5) is localizable, the only obstruction to gluing is that X̂ is not
R. Notwithstanding,

(
X̂, Â

)
=
∐
Z∈E (Z,AZ) is itself countably separated

because card E 6 c, 6.8 so that the local determinacy of (Y,B,M ) and the fact
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that q−1(E ) is M -generating (because E is N -generating and q is supremum
preserving) provides a gluing r, 6.10.

We now explain how this applies to associating, in a canonical way, a
strictly localizable measure space with any measure space (X,A , µ). First, we
recall that without changing the base spaceX we can render the measure space
complete and semi-finite. In that case, A f is Nµ-generating and witnesses
the fact that the saturated MSN (X,A ,Nµ) is locally ccc. By the theorem

above, it admits a 4c version
[(
X̂, Â , N̂

)
,p
]
.

Theorem. Let (X,A , µ) be a complete semi-finite measure space and[(
X̂, Â , N̂

)
,p
]

its corresponding 4c version. Let p ∈ p. There exists a

unique (and independent of the choice of p) measure µ̂ defined on Â such that
p#µ̂ = µ and Nµ̂ = N̂ . Furthermore

(
X̂, Â , µ̂

)
is a strictly localizable mea-

sure space, and the Banach spaces L1(X,A , µ) and L1

(
X̂, Â , µ̂

)
are isomet-

rically isomorphic.

Of course, the general process for constructing X̂ is non constructive, as
it involves the axiom of choice to turn A f into an almost disjointed gen-
erating family. This is why, in the last two sections of this paper, we ex-
plore a particular case where we are able to describe explicitly X̂ as a quo-
tient of a fiber bundle, all “hands on”. We start with the measure space(
Rm,B(Rm),I k

∞
)

where 1 6 k 6 m− 1 are integers, B(Rm) is the σ-algebra
of Borel subsets of Rm, and I k

∞ is the integral geometric measure described in
[4, 2.10.5(1)] and [11, 5.14]. Note that it is not semi-finite, [4, 3.3.20]. Thus,

we replace it with its complete semi-finite version
(
Rm, B̃(Rm), Ĩ k

∞

)
. We let

E be the collection of k-dimensional submanifolds M ⊆ Rm of class C1 such
that φM = H k M is locally finite. It follows from the Besicovitch Structure
Theorem [4, 3.3.14] that E is NĨ k

∞
-generating, 11.2(ii). Now, for each x ∈ Rm

we define Ex = E ∩ {M : x ∈M} and we define on Ex an equivalence relation
as follows. We declare that M ∼x M ′ if and only if

lim
r→0+

H k(M ∩M ′ ∩B(x, r))

α(k)rk
= 1.

Letting [M ]x denote the equivalence class of M ∈ Ex, we prove 11.2 that
underlying set of the 4c, lld, and strictly localizable version of the MSN(
Rm, B̃(Rm),NĨ k

∞

)
can be taken to be

X̂ =
{

(x, [M ]x) : x ∈ Rm and M ∈ Ex
}
.
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This leads to an explicit description of the dual of L1

(
Rm, B̃(Rm), Ĩ k

∞
)

as

L∞
(
X̂, Â , N̂

)
.

We close this foreword with a comment about the “Baire category” coun-
terpart of our work on measure spaces.

Consider a nonempty topological spaceX which is either completely metriz-
able or locally compact Hausdorff. We recall that a subset of X is termed
meager if it is a countable union of nowhere dense subsets of X (i.e. subsets
whose closure has empty interior). Meager sets in X clearly form a σ-ideal
which we denote by M . Furthermore, A ⊆ X is called Baire measurable if it
is the symmetric difference of an open set and a meager set. Letting B be
the collection of Baire measurable subsets of X, we note that (X,B,M ) is
a saturated MSN and that, under our assumption on X, X 6∈ M . In case
X is Polish (i.e. completely metrizable and separable), everything turns out
perfect from the point of view of this paper, reflecting the situation of σ-finite
measure spaces: This is because (X,B,M ) then satisfies the countable chain
condition. It is therefore localizable, by 4.4, and locally determined, by 5.3(C).
In the general case, however, we do not know whether our results in Section
7 apply to showing that (X,B,M ) admits a localizable version.

We are indebted to David Fremlin whose point of view on measure theory
– generously shared in his immense treatise [5, 6, 7, 8, 9, 10] – influenced
our work in this paper. It is the second author’s pleasure to record useful
conversations with Francis Borceux.

2. Measurable spaces with negligibles

Definition 2.1. (σ-algebra) Let X be a set. A σ-algebra on X is a set
A ⊆P(X) such that

(1) ∅ ∈ A ;

(2) If A ∈ A then X \A ∈ A ;

(3) If 〈An〉n∈N is a sequence in A then
⋃
n∈NAn ∈ A .

If A is a σ-algebra on X then X ∈ A and
⋂
n∈NAn ∈ A whenever 〈An〉n∈N is

a sequence in A . Clearly {∅, X} and P(X) are σ-algebras on X, respectively
the coarsest and the finest. If 〈Ai〉i∈I is a nonempty family of σ-algebras on
X then

⋂
i∈I Ai is a σ-algebra on X. Thus each E ⊆ P(X) is contained in

a coarsest σ-algebra on X which we will denote by σ(E ). If E ,A ⊆ P(X)
and A = σ(E ) we say that the σ-algebra A is generated by E . Clearly, if
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E1 ⊆ E2 ⊆P(X) then σ(E1) ⊆ σ(E2). A measurable space is a couple (X,A )
where X is a set and A is a σ-algebra on X. In this case, if no confusion is
possible we call measurable the members of A .

Definition 2.2. (Measurable maps) Let (X,A ) and (Y,B) be mea-
surable spaces and f : X → Y . We say that f is (A ,B)-measurable (or simply
measurable if no confusion can occur) if f−1(B) ∈ A whenever B ∈ B. Mea-
surable spaces, together with measurable maps, form a well-defined category,
as one can check that the composition of two measurable maps is measurable.

Definition 2.3. (σ-ideal) Let (X,A ) be a measurable space. A σ-ideal
N of A is a subset of A that satisfies the following requirements:

(1) ∅ ∈ N ;

(2) If A ∈ A , N ∈ N and A ⊆ N then A ∈ N ;

(3) If 〈Nn〉n∈N is a sequence in N , then
⋃
n∈NNn ∈ N .

Definition 2.4. (Measurable space with negligibles) A measur-
able space with negligibles (abbreviated MSN) is a triple (X,A ,N ) where
(X,A ) is a measurable space and N is a σ-ideal of A . Given an MSN
(X,A ,N ), elements belonging to N are referred to as N -negligible sets (sim-
ply negligible sets if no confusion can occur). Complements of N -negligible
sets are called N -conegligible sets (or simply conegligible sets).

We can associate to any measure space (X,A , µ) the MSN (X,A ,Nµ)
where Nµ is the σ-ideal Nµ = A ∩ {N : µ(N) = 0}. Conversely, any MSN
(X,A ,N ) derives from a measure space: it suffices to consider the measure
µ : A → [0,∞] that sends negligible sets to 0 and the remaining sets to ∞.

Definition 2.5. (Saturated MSNs) An MSN (X,A ,N ) is called sat-
urated whenever the following property holds: For all N ∈ N , any subset
N ′ ⊆ N is A -measurable – therefore, in fact, N ′ ∈ N . This property is of
purely technical nature, as an MSN (X,A ,N ) that does not have it can be
turned into a saturated MSN (X, Ā , N̄ ), by setting:

N̄ = P(X) ∩ {N̄ : N̄ ⊆ N for some N ∈ N },
Ā = P(X) ∩ {Ā : A	 Ā ∈ N̄ for some A ∈ A }

= P(X) ∩ {A	 N̄ : A ∈ A and N̄ ∈ N̄ }.

Here, 	 denotes the symmetric difference of sets. We call
(
X, Ā , N̄

)
the satu-

ration of (X,A ,N ). In case the original MSN corresponds to a measure space
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(X,A , µ), its saturation corresponds to the measure space usually referred to
as the completion of (X,A , µ). We will denote the latter by

(
X, Ā , µ̄

)
.

Definition 2.6. Let (X,A ,N ) and (Y,B,M ) be two MSNs. We
say that a map f : X → Y is [(A ,N ), (B,M )]-measurable (or simply
measurable) if

(1) f is (A ,B)-measurable;

(2) f−1(M) ∈ N for every M ∈M .

It is easy to check that measurability in the above sense is preserved by
composition.

Definition 2.7. (Morphisms of saturated MSNs) Let (X,A ,N )
and (Y,B,M ) be two saturated MSNs. A morphism from (X,A ,N ) to
(Y,B,M ) is an equivalence class of [(A ,N ), (B,M )]-measurable maps un-
der the relation ∼ of equality almost everywhere: f ∼ f ′ whenever {f 6= f ′} ∈
N . In order to check that this relation is, indeed, transitive, it is important
to assume that (X,A ,N ) is saturated for otherwise we would not know that
{f 6= f ′′} ∈ A when f, f ′′ : X → Y are both [(A ,N ), (B,M )]-measurable.
Also, in the special case where X is N -negligible and Y = ∅, we follow the
convention that there is unique morphism from (X,A ,N ) to (∅, {∅}, {∅}).

Lemma 2.8. Let (X,A ,N ), (Y,B,M ) and (Z,C ,P) be MSNs and let
f, f ′ : X → Y and g, g′ : Y → Z be maps. If

(A) f, f ′ are [(A ,N ), (B,M )]-measurable;

(B) g, g′ are [(B,M ), (C ,P)]-measurable;

(C) (X,A ,N ) is saturated;

(D) f ∼ f ′, g ∼ g′,

then g ◦ f , g′ ◦ f ′ are [(A ,N ), (C ,P)]-measurable and g ◦ f ∼ g′ ◦ f ′.

Proof. The first conclusion follows from hypotheses (A) and (B) and Para-
graph 2.6. The second conclusion is a consequence of

{g ◦ f 6= g′ ◦ f ′} ⊆ {f 6= f ′} ∪ f−1({g 6= g′})

and hypotheses (A), (C) and (D).
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Definition 2.9. (Category MSN) Thanks to the preceding result,
there is a notion of composition for morphisms between saturated MSNs:
If f : (X,A ,N )→ (Y,B,M ) and g : (Y,B,M )→ (Z,C ,P) are morphisms,
we let g ◦ f : (X,A ,N ) → (Z,C ,P) be the equivalence class of g ◦ f where
f ∈ f and g ∈ g.

This allows to define the category MSN whose objects are saturated MSNs
and whose morphisms are described in the paragraph 2.7. Additionally, we
add the convention that, for a negligible saturated MSN, i.e. an MSN of the
form

(
X,P(X),P(X)

)
, there is a unique morphism from

(
X,P(X),P(X)

)
to
(
∅, {∅}, {∅}

)
. This way, negligible saturated MSNs are isomorphic to one

another in the category MSN.

The categorical point of view is rarely considered in measure theory, mainly
due to the lack of a well-behaved notion of morphism between measure spaces.
The category MSN also appears in the work [14] under the name StrictEMS.
We start to investigate the existence of limits and colimits in this category.

Definition 2.10. (subMSN) Let (X,A ,N ) be an MSN and Z∈P(X).
We define the subMSN (Z,AZ ,NZ), where AZ := {A ∩ Z : A ∈ A } and
NZ := {N ∩ Z : N ∈ N }. Note that in the special case where Z is
A -measurable, we have AZ = A ∩{A : A ⊆ Z} and NZ = N ∩{N : N ⊆ Z}.

The inclusion map ιZ : Z → X is [(AZ ,NZ), (A ,N )]-measurable and
induces a morphism ιZ between (Z,AZ ,NZ) and (X,A ,N ).

Proposition 2.11. Let f ,g : (X,A ,N ) → (Y,B,M ) be a pair of mor-
phisms in the category MSN, represented by the maps f ∈ f and g ∈ g, and
set Z := {f = g}. Then the equalizer of f ,g is [(Z,AZ ,NZ), ιZ ].

Proof. As f ◦ ιZ = g ◦ ιZ , we have clearly f ◦ ιZ = g ◦ ιZ . Let h
be any other morphism (T,C ,P) → (X,A ,N ) that satisfies the relation
f ◦ h = g ◦ h and let h ∈ h. Then h−1(Z) is conegligible in T . Up to mod-
ifying h, we can suppose that it has values in Z. The restriction h′ : T → Z
of h is [(C ,P), (AZ ,NZ)]-measurable and we have h = ιZ ◦ h′, leading to
a factorization h = ιZ ◦ h′. This factorization is unique, as any morphism
h′ satisfying h = ιZ ◦ h′ must derive from a map h′ : T → Z that coincides
almost everywhere with h.

Proposition 2.12. The category MSN has coproducts. Consider a family
of saturated MSNs 〈(Xi,Ai,Ni)〉i∈I . Its coproduct is the MSN (X,A ,N )
whose underlying set is X =

∐
i∈I Xi, and whose σ-algebra and σ-ideal are
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defined by

A = P(X) ∩ {A : A ∩Xi ∈ Ai for all i ∈ I},
N = P(X) ∩ {N : N ∩Xi ∈ Ni for all i ∈ I}.

For i ∈ I, the canonical morphism ιi : (Xi,Ai,Ni) → (X,A ,N ) is the mor-
phism induced by the inclusion map ιi : Xi → X.

Proof. Notice that, indeed, (X,A ,N ) is a saturated MSN. Let (Y,B,M )
be a saturated MSN and 〈fi〉i∈I be a collection of morphisms from (Xi,Ai,Ni)
to (Y,B,M ), each fi being represented by a measurable map fi. We set
f =

∐
i∈I fi, the map such that f ◦ ιi = fi for any i ∈ I. It is clear that f

is [(A ,N ), (B,M )]-measurable and f ◦ ιi = fi holds for all i ∈ I. We need
to show that f is the unique morphism (X,A ,N ) → (Y,B,M ) with this
property.

Suppose g : (X,A ,N )→ (Y,B,M ) is another morphism, represented by
a measurable map g : X → Y , for which g ◦ ιi = fi for all i ∈ I. Then f and
g coincide almost everywhere on each Xi, which implies, due to the choice of
N , that f and g are equal almost everywhere and f = g.

Proposition 2.13. The category MSN has countable products.
Let

〈
(Xi,Ai,Ni)

〉
i∈I be a countable family of saturated MSNs. Its product

is the MSN (X,A ,N ), whose underlying set is the product X =
∏
i∈I Xi,

whose σ-ideal is

N = P(X) ∩

{
N : ∃〈Ni〉i∈I ∈

∏
i∈I

Ni, N ⊆
⋃
i∈I

π−1
i (Ni)

}
,

where πi : X → Xi denotes the projection map, and whose σ-algebra is the
saturation of

⊗
i∈I Ai:

A =

{
A	N : A ∈

⊗
i∈I

Ai and N ∈ N

}
.

For i ∈ I, the projection morphism πi : (X,A ,N )→ (Xi,Ai,Ni) is the map
induced by the projection map πi.

Proof. First note that, by construction of A and N , the projection maps
πi are [(A ,N ), (Ai,Ni)]-measurable. Let (Y,B,M ) be a saturated MSN
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and 〈fi〉i∈I be a collection of morphisms from (Y,B,M ) to (Xi,Ai,Ni),
each fi being represented by a measurable map fi : Y → Xi. We define
f =

∏
i∈I fi : Y →

∏
i∈I Xi that assigns y ∈ Y to 〈fi(y)〉i∈I . Clearly, f is

(B,
⊗

i∈I Ai)-measurable. Moreover, for any negligible set N ∈ N , we can
find a sequence 〈Ni〉i∈I such that N ⊆

⋃
i∈I π

−1
i (Ni). Thus

f−1(N) ⊆
⋃
i∈I

(πi ◦ f)−1(Ni) =
⋃
i∈I

f−1
i (Ni).

As I is countable and f−1
i (Ni) ∈M for all i ∈ I, we find that f−1(N) ∈M ,

which entails that the map f is [(B,M ), (A ,N )]-measurable.

Let g : (Y,B,M )→ (X,A ,N ) be another morphism satisfying the iden-
tities πi ◦ g = fi for i ∈ I. Let g : Y → X be a representative of g. The
coordinate functions πi ◦ g must coincide with fi almost everywhere. As there
are only countably many of them, we conclude that f and g are equal almost
everywhere, that is, f = g.

Remark 2.14. In case (Xi,Ai,Ni) are associated with measure spaces
(Xi,Ai, µi), i = 1, 2, the σ-ideal N considered in the above proposition may
not coincide with Nµ1⊗µ2 .

This is the case, for instance, when (Xi,Ai, µi) = (R,B(R),L 1), i = 1, 2,
since the diagonal D = R2 ∩{(x, x) : x ∈ R} ∈ B(R)⊗B(R) is L 2-negligible
but does not belong to N .

3. Supremum preserving morphisms

3.1. (Motivation) One of the reasons we were led to introduce MSNs is
that the category of measure spaces and (equivalence classes of) measure pre-
serving measurable maps does not have good properties at all. Roughly speak-
ing, this can be attributed to the fact that it has very few arrows. One way
to increase their number is to define as morphisms (X,A , µ)→ (Y,B, ν) the
(A ,B)-measurable maps ϕ : X → Y such that the pushforward measure ϕ#µ
is absolutely continuous with respect to ν. If we drop the measures and retain
only which sets have measure zero, we get the notion of [(A ,Nµ), (B,Nν)]-
measurability of 2.6. However, doing so, we may introduce some “irregular”
maps. For example, if A is the σ-algebra of Lebesgue measurable sets of the
real line, L 1 the Lebesgue measure and ν the counting measure on (R,A )
then the identity map induces a morphism (R,A ,L 1)→ (R,A , ν). But, L 1

does not really compare to ν, although it is absolutely continuous with respect
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to ν. For instance, L 1 has no Radon-Nikodým density with respect to ν, not
even in the generalized sense of Section 9. Forgetting the measures, the mor-
phism of MSNs (R,A ,NL 1)→ (R,A , {∅}) is still somehow inappropriate. To
avoid this, we restrict our attention to the supremum preserving morphisms
introduced below. This will allow us to define a new category MSNsp of satu-
rated MSNs with supremum preserving morphisms. Later, we will be able to
define localizable versions of MSNs and similar notions by means of universal
properties to be satisfied in MSNsp.

Definition 3.2. (Boolean algebras) Many of the properties that we
will introduce underneath for MSNs are related to their Boolean algebra, de-
fined in the following way: given an MSN (X,A ,N ), we observe that the
σ-algebra A is a Boolean algebra and N is an ideal of A in the ring-theoretic
sense; we then associate to (X,A ,N ) the quotient Boolean algebra A /N .

When we restrict our attention to saturated MSNs, this construction be-
comes functorial. Call Bool(X,A ,N ) = A /N the Boolean algebra of a
saturated MSN. Given a morphism f : (X,A ,N ) → (Y,B,M ) represented
by a measurable map f : X → Y , we define

Bool(f) : Bool(Y,B,M )→ Bool(X,A ,N )

that maps the equivalence class of B ∈ B to the equivalence class of f−1(B).
This map is well-defined because of the [(A ,N ), (B,M )]-measurability of f ,
it is a morphism of Boolean algebras, and it does not depend on the represen-
tative of f , as one can easily check.

Definition 3.3. Let (X,A ,N ) be an MSN and E be a subcollection
of A . We say that U ∈ A is an N -essential upper bound of E whenever
E \ U ∈ N for all E ∈ E . Furthermore, a measurable set S ∈ A is an
N -essential supremum of E whenever

(1) S is an N -essential upper bound of E ;

(2) If S′ is an N -essential upper bound of E , then S \ S′ ∈ N .

In particular, if S, S′ are both N -essential suprema of E , their symmetric
difference S 	 S′ is negligible. In other words, an essential supremum, when
it exists, is unique up to negligible sets. In fact, it corresponds to a (unique)
supremum in Bool(X,A ,N ). A collection E ⊆ A that admits X as an
N -essential supremum is called N -generating. We will use the following
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repeatedly. If E ⊆ A and S ∈ A is an N -essential supremum of E , then
E ∪ {X \ S} is N -generating.

The next ubiquitous lemma expresses that ∩ is distributive over the (par-
tially defined) operation of taking essential suprema. It implies the following
fact, which we will use frequently: If E is N -generating and A ∈ A \ N ,
then E ∩A 6∈ N for some E ∈ E .

Lemma 3.4. (Distributivity Lemma) Let (X,A ,N ) be an MSN,
E ⊆ A be a collection that has an N -essential supremum S, and C ∈ A .
Then C ∩ S is an N -essential supremum of {C ∩ E : E ∈ E }.

Proof. Condition (1) in Definition 3.3 is met because

C ∩ E \ C ∩ S = C ∩ (E \ S) ∈ N for all E ∈ E .

As for (2), we let S′ be an N -essential upper bound for {C ∩ E : E ∈ E }.
We claim that S′′ := S′ ∪ (X \ C) is an N -essential upper bound for E .
Indeed, for any E ∈ E , we have E \ S′′ = (C ∩ E) \ S′ ∈ N . It follows that
(C ∩ S) \ S′ = S \ S′′ ∈ N .

3.5. Note that if (X,A ,N ) and (Y,B,M ) are MSNs, f : X → Y is
[(A ,N ), (B,M )]-measurable, E ⊆ B, and S ∈ B is an M -essential upper
bound of E , then f−1(S) is an N -essential upper bound of f−1(E ). However,
if S is an M -essential supremum of E then f−1(S) may not be an N -essential
supremum of f−1(E ). Consider, for instance, (X,A ,N ) = (R,B(R),NL 1),
(Y,B,M ) = (R,B(R), {∅}), f = idR, and E = {{x} : x ∈ R}. Then R is an
{∅}-essential supremum of E , ∅ is an NL 1-essential supremum of E = f−1(E ),
and R \ ∅ 6∈ NL 1 .

3.6. There are several objects that we can call supremum preserving. For
saturated MSNs (X,A ,N ) and (Y,B,M ), we define

• A morphism of Boolean algebras ϕ : A→ B is called supremum preserv-
ing if, for any family E ⊆ A that admits a supremum, the family ϕ(E)
admits a supremum and ϕ(supE) = supϕ(E).

• A morphism f : (X,A ,N )→ (Y,B,M ) is called supremum preserving
whenever Bool(f) is.

• An [(A ,N ), (B,M )]-measurable map f : X → Y is called supremum
preserving if, for any collection E ⊆ B with an M -essential supremum
S, f−1(S) is an N -essential supremum of f−1(E ) := {f−1(E) : E ∈ E }.
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For a morphism f represented by f ∈ f , the supremum preserving charac-
ters of f , f and Bool(f) are all equivalent. Also, the composition of two
supremum preserving morphisms is supremum preserving. We call MSNsp the
subcategory of MSN that consists of saturated MSNs and supremum preserv-
ing morphisms. In the next proposition, we gather some basic facts about
supremum preserving morphisms and the category MSNsp.

Proposition 3.7. The following hold:

(A) Two saturated MSNs are isomorphic in MSN if and only if they are
isomorphic in MSNsp.

(B) Let (X,A ,N ) be a saturated MSN and Z ∈ A . The morphism
ιZ : (Z,AZ ,NZ)→ (X,A ,N ) induced by the inclusion map ιZ : Z → X
is supremum preserving.

(C) Let f ,g : (X,A ,N ) → (Y,B,M ) be a pair of morphisms in MSNsp,
represented by f ∈ f and g ∈ g. If Z := {f = g} is A -measurable, then(
(Z,AZ ,NZ), ιZ

)
is the equalizer of f ,g in MSNsp.

(D) The category MSNsp has coproducts, which are preserved by the forgetful
functor MSNsp → MSN.

Proof. (A) Let f be an isomorphism in MSN. Then Bool(f) is an isomor-
phism of Boolean algebras. More specifically, it is an isomorphism of posets
and for this reason it preserves suprema.

(B) This is the content of Lemma 3.4.

(C) By Proposition 2.11, ((Z,AZ ,NZ), ιZ) is the equalizer of f ,g
in MSN and by (B) the morphism ιZ is a morphism of MSNsp. Let
h : (T,C ,P) → (X,A ,N ) be a supremum preserving morphism that sat-
isfies f ◦ h = g ◦ h. Recalling the proof of Proposition 2.11, there is a repre-
sentative h ∈ h with values in Z, and its restriction h′ : T → Z induces the
unique morphism h′ such that h = ιZ ◦ h′. The results follows from the fact
that h′ is easily checked to be supremum preserving.

(D) Let 〈(Xi,Ai,Ni)〉i∈I be a family of saturated MSNs, (X,A ,N ) be
their coproduct in the category MSN, and 〈fi〉i∈I be a family of supremum
preserving morphisms from (Xi,Ai,Ni) to a saturated (Y,B,M ), each rep-
resented by fi : Xi → Y . We need to show that f :=

∐
i∈I fi : X → Y

is supremum preserving. For this, let E ⊆ B be a collection that has
an M -essential supremum S. We observe that f−1(S) =

∐
i∈I f

−1
i (S) is

an N -essential upper bound of f−1(E ). Let U be a second N -essential
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upper bound of f−1(E ). Then Xi ∩ U is an Ni-essential upper bound of
{Xi ∩ f−1(E) : E ∈ E } = f−1

i (E ). It follows that f−1
i (S) \ (Xi ∩U) ∈ Ni. As

this happens for all i ∈ I, we get that f−1(S) \ U ∈ N .

4. Localizable, 4c and strictly localizable MSNs

Definition 4.1. (Localizable MSN) An MSN (X,A ,N ) is localiz-
able whenever each collection E ⊆ A admits an N -essential supremum.
Equivalently, (X,A ,N ) is localizable whenever its Boolean algebra A /N
is Dedekind complete, that is, each subset of A /N has a supremum.

Originally, localizability was introduced by Segal [15] in the context of
measure spaces. Since then, many minor variations over the definition in that
context have been proposed (see [13] for an overview). We will follow the
definition in [6, Chapter 2]. A measure space (X,A , µ) is called localizable
whenever

(1) it is semi-finite, i.e. for all A ∈ A with µ(A) > 0, there is a measurable
set A′ ⊆ A such that 0 < µ(A′) <∞;

(2) the underlying MSN (X,A ,Nµ) is localizable.

4.2. (Semi-finite measure space) In the definition of localizable mea-
sure space, semi-finiteness plays on important rôle. Let us rephrase it. Given
(X,A , µ) a measure space, we abbreviate A f := A ∩ {E : µ(E) < ∞}. We
say that N ∈ A is locally µ-negligible whenever N∩E ∈ Nµ for every E ∈ A f .
We let Nµ,loc be the σ-ideal consisting of locally µ-negligible measurable sets.
The following are equivalent:

(1) Nµ = Nµ,loc.

(2) (X,A , µ) is semi-finite.

(3) A f is Nµ-generating.

The only non trivial part is (3) ⇒ (1). If N ∈ A then N is an
Nµ-essential supremum of

{
N ∩ F : F ∈ A f

}
, according to the Distribu-

tivity Lemma 3.4. If also N ∈ Nµ,loc, then it follows that N ∈ Nµ. The
notion of locally µ-negligible sets will appear again in 5.2.

Next we introduce some classes of localizable MSNs that will appear
throughout the paper.
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4.3. (Countable chain condition) Let (X,A ,N ) be an MSN. A
family E ⊆ A \ N is called almost disjointed whenever E ∩ E′ ∈ N for
any pair of distinct E,E′ ∈ E . The MSN (X,A ,N ) is said to have the
countable chain condition (in short: is ccc) whenever an almost disjointed
family in A \N is at most countable.

The previous notions have counterparts in the realm of Boolean algebras.
Given a Boolean algebra A, a subset E ⊆ A is called disjointed whenever x∧y =
0 for any pair of distinct elements x, y ∈ E. The Boolean algebra A has the
countable chain condition (or: is ccc) whenever each of its disjointed families
is at most countable. Of course, an MSN (X,A ,N ) is ccc if and only if its
Boolean algebra A /N is. In the following proposition, we show that being ccc
is stronger than localizability. It is related to the fact, first established in [18],
that a Dedekind σ-complete Boolean algebra (that is, a Boolean algebra where
countable collections have suprema) having the countable chain condition is
Dedekind complete.

Proposition 4.4. If an MSN (X,A ,N ) is ccc and E ⊆ A is a collec-
tion, then there is a countable subcollection E ′ ⊆ E such that

⋃
E ′ is an

N -essential supremum of E . In particular, (X,A ,N ) is localizable.

Proof. Suppose the existence of a collection E ⊆ A for which one can-
not find a countable subcollection E ′ ⊆ E whose union is an N -essential
supremum of E . This assumption allows us to construct transfinitely a se-
quence 〈Eα〉α<ω1 with values in E such that for every α < ω1, one has
Fα := Eα \

⋃
β<αEβ 6∈ N . But the disjointed family {Fα : α < ω1} con-

tradicts the fact that (X,A ,N ) is ccc.

Proposition 4.5. Let (X,A , µ) be a finite measure space. Then the
space (X,A ,Nµ) is ccc.

Proof. Let E ⊆ A \N be an almost disjointed family. For each positive
integer n, set En = E ∩{E : µ(E) > n−1}. As µ(X) > µ (

⋃
En) > n−1 card En,

we have that En is finite. Consequently, E is at most countable.

Proposition 4.6. A coproduct
∐
i∈I(Xi,Ai,Ni) of saturated localizable

MSNs is localizable.

Proof. Let E be a collection of measurable sets of some coproduct∐
i∈I(Xi,Ai,Ni). For each i ∈ I, the collection Ei := {Xi ∩ E : E ∈ E }
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has an Ni-essential supremum Si ⊆ Xi. We then routinely check that
S :=

∐
i∈I Si ∈ A is an N -essential supremum of E .

Definition 4.7. (Stronger notions of localizability) An MSN
is called strictly localizable if it is isomorphic to a coproduct of the form∐
i∈I(Xi,Ai,Nµi), where (Xi,Ai, µi) are complete finite measure spaces. Ex-

amples of strictly localizable MSNs are provided by MSNs associated to com-
plete σ-finite measure spaces (X,A , µ). Indeed, denoting 〈Xi〉i∈I a countable
partition of X into measurable subsets of finite µ measure, one can verify that
(X,A ,Nµ) is isomorphic to

∐
i∈I(Xi,AXi ,Nµ Xi).

Likewise, we say that an MSN is cccc (abbreviated 4c) whenever it is
isomorphic to a coproduct of saturated ccc MSNs. We have the chain of
implications

strictly localizable =⇒ 4c =⇒ localizable.

The first implication comes from Proposition 4.5, the second one from Propo-
sitions 4.4 and 4.6. Examples of non localizable spaces are provided by the
next results.

Lemma 4.8. Let (X,A ,N ) be a localizable MSN, E ⊆ A \N an almost
disjointed family. Then card(A /N ) > 2card E .

Proof. Consider the application P(E ) → A /N which maps each sub-
collection E ′ ⊆ E to the equivalence class of its N -essential supremum. We
claim that this map is injective. Indeed, suppose E ′,E ′′ ⊆ E are distinct. Call
S′ (resp. S′′) an N -essential supremum of E ′ (resp. E ′′). Without loss of
generality, there is F ∈ E ′ \ E ′′. By Lemma 3.4, F ∩ S′ (resp. F ∩ S′′) is
an essential supremum of {F ∩ E : E ∈ E ′} (resp. {F ∩ E : E ∈ E ′′}). We
deduce that F \S′ ∈ N and, taking the almost disjointed character of E into
account, that F ∩ S′′ ∈ N . This implies that S′ and S′′ do not induce the
same equivalence class in A /N .

We will use the following many times.

Lemma 4.9. Let (X,A ,N ) be an MSN and let C ⊆ A be N -generating.
There exists E ⊆ A \N with the following properties.

(A) E is almost disjointed.

(B) For each E ∈ E , there exists C ∈ C such that E ⊆ C.

(C) E is N -generating.
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Proof. There is no restriction to assume that N 6= A ; in particular,
C 6= ∅. Consider the set E consisting of those E ⊆ A \ N that satisfy
conditions (A) and (B) above, ordered by inclusion. Thus, E is nonempty
and one readily checks that every chain in E possesses a maximal element.
Therefore, E admits a maximal element E , according to Zorn’s Lemma. We
ought to show that E is N -generating. If this were not the case, there would
exist an N -essential upper bound U ∈ A of E such that X \ U 6∈ N . The
latter, together with the fact that C is N -generating, implies the existence
of C ∈ C such that C ∩ (X \ U) 6∈ N . Then, E ∪ {C ∩ (X \ U)} contradicts
the maximality of E .

Proposition 4.10. (ZFC + CH) Let X be a Polish space endowed with
its Borel σ-algebra B(X) and µ : B(X)→ [0,∞] be a semi-finite Borel mea-
sure. Under the Continuum Hypothesis, one has the following dichotomy:
either µ is σ-finite, or the MSN (X,B(X),Nµ) is not localizable.

Proof. Let E be associated with C := B(X) ∩ {A : µ(A) < ∞} in
Lemma 4.9. Recall 4.2 that C is Nµ-generating. If E is countable, then⋃

E is measurable and, accordingly, an Nµ-essential upper bound of E . Thus
X \

⋃
E ∈ Nµ, since E is Nµ-generating. We have proven that µ is σ-finite.

On the other hand, if E is uncountable, the Continuum Hypothesis guar-
antees that it has cardinal greater or equal to c. Assume if possible that
(X,B(X), µ) is localizable. As the map B(X) → B(X)/Nµ is onto, we de-
duce from Lemma 4.8 that card B(X) > 2c > c. However, Borel sets are
Suslin, and Suslin sets are continuous images of closed subsets of a particular
Polish space, the Baire space, see e.g [17, 3.3.18]. This gives the upper bound
card B(X) 6 c, contradicting the preceding inequality.

Definition 4.11. (P-version of an MSN) Let P be a property asso-
ciated to MSNs. We suppose that the property P is hereditary: if (X,A ,N )
has P then the MSNs

(
Z,AZ ,NZ

)
also has P for all Z ∈ A . “Being strictly

localizable”, “being 4c” or “being localizable” are examples of hereditary prop-
erties. Let (X,A ,N ) be a saturated MSN.

We define a P-version of (X,A ,N ) to be a couple
[(
X̂, Â , N̂

)
,p
]

con-

sisting of a saturated MSN
(
X̂, Â , N̂

)
with the property P and a supre-

mum preserving morphism p :
(
X̂, Â , N̂

)
→ (X,A ,N ) satisfying the fol-

lowing property: For any saturated MSN (Y,B,M ) with the property P
and any supremum preserving morphism q : (Y,B,M ) → (X,A ,N ), there
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is a unique supremum preserving morphism r : (Y,B,M )→
(
X̂, Â , N̂

)
such

that q = p ◦ r.

(Y,B,M )
(
X̂, Â , N̂

)
(X,A ,N )

q

∃!r

p

By this definition, a P-version must satisfy a universal property, and as such it
is unique up to a unique isomorphism of the category MSNsp. More specifically,

if
[(
X̂, Â , N̂

)
,p
]

and
[(
X̂ ′, Â ′, N̂ ′),p′] are two P-versions, then we easily

check that there is a unique isomorphism r :
(
X̂, Â , N̂

)
→
(
X̂ ′, Â ′, N̂ ′) such

that p′ ◦ r = p.

Definition 4.12. (Atomic MSNs) One of our motivations in this
article is to find a universal construction that transforms an MSN into some-
thing with better localizability properties. As such, it is wise to first have a
look at the not so easy case of MSNs (X,A ,N ) such that all singletons are
A -measurable and N = {∅}. We call such MSNs atomic.

In an atomic MSN (X,A , {∅}), it is easy to see that a subset E ⊆ A has
an {∅}-essential supremum if and only if

⋃
E ∈ A , in which case

⋃
E is the

{∅}-essential supremum. Therefore the MSN (X,A , {∅}) is localizable if and
only if A = P(X). In other words, the non localizability of (X,A , {∅}) can
only be due to the lack of measurable sets; therefore it seems sensible to ask
for (X,P(X), {∅}) to be the “localization” of (X,A , {∅}).

Unfortunately, Proposition 4.13 gives a negative result. It tells us that
the localizable version of an MSN, as defined in 4.11, is not the right notion
of “localization”. This issue will be addressed in Section 5 by introducing a
notion of local determination for MSNs.

Proposition 4.13. Let X be an uncountable set, C (X) be its countable-
cocountable σ-algebra. Let ι : (X,P(X), {∅}) → (X,C (X), {∅}) be the
morphism induced by the identity map. Then

[
(X,P(X), {∅}), ι

]
is not a

localizable version of (X,C (X), {∅}).

Proof. That ι is supremum preserving follows from the discussion in Para-
graph 4.12. Assume if possible that ((X,P(X), {∅}), ι) is a localizable version
of (X,A , {∅}).
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We will get a contradiction if we manage to build a localizable saturated
MSN (Y,B,M ) and a function q : Y → X that is [(B,M ), (C (X), {∅})]-
measurable, supremum preserving, but not (B,P(X))-measurable.

We choose Y = X2 ×{0, 1}. For any subset B ⊆ Y , we call B[0] and B[1]
the subsets defined by

B[i] := X2 ∩ {(x1, x2) : (x1, x2, i) ∈ B} for i ∈ {0, 1}

We let B = P(Y ) ∩ {B : B[0] 	 B[1] is countable}. We claim that B is a
σ-algebra of Y . The stability of B under countable unions is a consequence
of the formula(⋃

n∈N
Bn

)
[0]	

(⋃
n∈N

Bn

)
[1] ⊆

⋃
n∈N

Bn[0]	Bn[1]

that holds for any sequence 〈Bn〉n∈N of subsets in Y , and we leave the other
points to the reader. Finally, we define the σ-ideal M := B∩{M : M [0] = ∅}.
Clearly (Y,B,M ) is a saturated MSN.

Let us show that (Y,B,M ) is localizable. Let E ⊆ B be any collection.
We set A :=

⋃
E∈E E[0] and S := A × {0, 1}. The set S is B-measurable,

because S[0] = S[1] = A. For any E ∈ E , we have (E \S)[0] = E[0]\S[0] = ∅,
meaning that S is an M -essential upper bound of E . Denoting by U another
essential upper bound of E , then (E \ U)[0] = E[0] \ U [0] = ∅ for all E ∈ E .
It follows that A ⊆ U [0] and (S \ U)[0] = S[0] \ U [0] = ∅. Thus, S is an
M -essential supremum, as we wanted.

Now, let σ : X → X be a bijection of X without fixed points. For example,
choose a partition X = Z∪Z ′ into subsets Z,Z ′ that have the same cardinality
as X, choose a bijection f : Z → Z ′ and set σ so that σ(x) = f(x) for all x ∈ Z
and σ(x) = f−1(x) for all x ∈ Z ′. We define the map q : Y → X by

∀(x1, x2, i) ∈ Y, q(x1, x2, i) =

{
x2 if i = 1 and x2 = σ(x1),

x1 otherwise .

First we show that q is [(B,M ), (C (X), {∅})]-measurable. It suffices to
show that q−1({x}) ∈ B for all x ∈ X. But we have

q−1({x})[0] = {x} ×X,

q−1({x})[1] =
(
{x} × (X \ {σ(x)})

)
∪ {(σ−1(x) , x)}.
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Consequently, q−1({x})[0] 	 q−1({x})[1] has only two elements. By the defi-
nition of B, this ensures the measurability of q−1({x}).

However, we claim that q is not (B,P(X))-measurable. To this end, we
will show that q−1(Z) 6∈ B. We have

q−1(Z)[0] = Z ×X,

q−1(Z)[1] = {(x1, x2) : x1 ∈ Z, x2 6= σ(x1)} ∪ {(σ−1(x), x) : x ∈ Z}.

It follows that q−1(Z)[0]	q−1(Z)[1]={(x, σ(x)) :x ∈ Z}∪{(σ−1(x), x) :x ∈ Z}
is uncountable. Thus, q−1(Z) 6∈ B.

It only remains to prove that q is supremum preserving. Let E ⊆ C (X)
be a collection that has an {∅}-essential supremum S. This implies that
S =

⋃
E . First suppose that E consists only of singletons. We wish to prove

that q−1(S) is an M -essential supremum of q−1(E ) = {q−1{x} : x ∈ S}.
Of course, q−1(S) is an M -essential upper bound of q−1(E ). Let U an arbitrary
M -essential upper bound of q−1(E ). For all x ∈ S, we have q−1{x} \U ∈M ,
meaning that {x} × X = (q−1{x})[0] ⊆ U [0]. Thus S × X ⊆ U [0], which
implies (q−1(S) \ U)[0] = q−1(S)[0] \ U [0] = S × X \ U [0] = ∅. It means
that q−1(S) \ U ∈ M . Thus, we have shown that q−1(S) is an M -essential
supremum of E .

Now we turn to the general case, where E need not consist only of sin-
gletons. Let E ′ = {{x} : x ∈ E ∈ E }. Clearly, E and E ′ have the same
{∅}-essential supremum S :=

⋃
E =

⋃
E ′. By what precedes, q−1(S) is an

M -essential supremum of q−1(E ′) and it is an M -essential upper bound of
q−1(E ). An M -essential upper bound U of q−1(E ) is also an upper bound for
q−1(E ′), as any member of q−1(E ′) is a subset of a member of q−1(E ). There-
fore, q−1(S) \ U ∈ M , showing that q−1(S) is an M -essential supremum of
q−1(E ).

4.14. (Example of an MSN with no localizable part) Consider an
MSN of the form (X,P(X),K (X)), where X is a set of cardinality ℵ1 and
K (X) is the σ-ideal of countable subsets. There is a bijection ϕ : X → X×X
and we can use it to construct an uncountable family of “horizontal lines”
Hx := ϕ−1(X × {x}) indexed by x ∈ X witnessing that (X,P(X),K (X))
is not ccc. Actually, we can do better and prove that it is not localizable.
Suppose {Hx : x ∈ X} has a K (X)-essential supremum S. For each x ∈ X
choose a point px ∈ S ∩Hx. Then it is easy to see that U := S \ {px : x ∈ X}
is an essential upper bound for the family of horizontal lines, however
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S \ U = {px : x ∈ X} is not negligible, contradicting that S is an essen-
tial supremum.

Observe that the MSN (X,P(X),K (X)) is isomorphic to all its non neg-
ligible subMSNs. In particular, it has no nontrivial ccc or localizable part, an
unpleasant situation that we will rule out in the next paragraph by introducing
the notions of “locally localizable” and “locally ccc” MSN.

We will prove nonetheless that
(
X,P(X),K (X)

)
has a 4c version, that

is disappointingly the trivial MSN (∅, {∅}, {∅}) (with the only morphism from
there to

(
X,P(X),K (X)

)
). To establish this fact, one needs to prove

that if (Y,B,M ) is a 4c MSN and f : (Y,B,M ) →
(
X,P(X),K (X)

)
is a

supremum preserving morphism, then Y ∈ M (actually, the supremum pre-
serving character of f will not be used). We can reduce to the case where
(Y,B,M ) is ccc.

We reproduce an argument due to Ulam [19], showing that there is a family
〈An,α〉n∈N,α<ω1 of subsets of X such that

• for all n ∈ N, the family 〈An,α〉α<ω1 is disjointed;

• for all α < ω1, the union
⋃
n∈NAn,α is conegligible (that is, cocountable).

Any ordinal β < ω1 is countable, so we can select a sequence 〈kα,β〉α<β of
distinct integers. Let 〈xβ〉β<ω1 be an enumeration of all the elements in X.
Set An,α := {xβ : β > α and kα,β = n} for every n ∈ N and α < ω1. For
distinct α, α′ < ω1, there cannot be some xβ ∈ An,α ∩ An,α′ , for otherwise
we would have kα,β = kα′,β. In addition, one has

⋃
n∈NAn,α = {xβ : β > α}

whose complement in X is the countable set {xβ : β 6 α}.
Now, fix a representative f ∈ f . The family

〈
f−1(An,α)

〉
α<ω1

being dis-

jointed, the set Cn := ω1 ∩
{
α : f−1(An,α) 6∈ M

}
is countable for all n ∈ N.

Hence the existence of some α ∈ ω1 \
⋃
n∈NCn. Now we see that the set

f−1
(⋃

n∈NAn,α
)

is both negligible and conegligible in Y , which can happen
only if Y ∈M .

Definition 4.15. Let P be a hereditary property associated to MSNs.
We say that an MSN (X,A ,N ) is locally P whenever one of the following
equivalent statements holds:

(A) The collection

A ∩
{
Z : (Z,AZ ,NZ) has the property P

}
is N -generating;
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(B) for any Y ∈ A \N there is Z ∈ A \N such that Z ⊆ Y and (Z,AZ ,NZ)
has the property P.

Proof. (Proof of the equivalence) (A) =⇒ (B) For Y ∈ A \N , an appli-
cation of Lemma 3.4 gives that Y is an essential supremum of{

Y ∩ Z : Z ∈ A and (Z,AZ ,NZ) has the property P
}
.

Therefore, there must be some Z ∈ A such that Y ∩Z 6∈ N and (Z,AZ ,NZ)
has the property P. The subset Y ∩ Z ⊆ Y establishes (B).

(B) =⇒ (A) Clearly, X is an N -essential upper bound of the collec-
tion A ∩ {Z : (Z,AZ ,NZ) has the property P}. Let S be another upper
bound. If X\S were not negligible, (B) gives the existence of some measurable
Z ∈ A \N such that Z ⊆ X \ S and (Z,AZ ,NZ) has the property P. But
Z \ S = Z 6∈ N , which contradicts that S is an essential upper bound.

For instance, in a semi-finite measure space (X,A , µ), any non negligible
set A ∈ A \Nµ contains a measurable subset Z of nonzero finite measure.
By (B), this implies that the associated MSN (X,A ,Nµ) is locally strictly
localizable.

We conclude this section with an important property of “local isomor-
phism” that holds for P-versions.

Proposition 4.16. Let (X,A ,N ) be a saturated MSN and[(
X̂, Â , N̂

)
,p
]

a P-version of it. Fix a representative map p ∈ p. For any

F ∈ A , we set F̂ := p−1(F ) and we call pF :
(
F̂ , ÂF̂ , N̂F̂

)
→ (F,AF ,NF ) the

morphism induced by the restriction pF : F̂ → F of p.

(A)
[(
F̂ , ÂF̂ , N̂F̂

)
,pF

]
is the P-version of (F,AF ,NF );

(B) If (F,AF ,NF ) has the property P, then pF is an isomorphism.

Proof. (A) Since the property P is hereditary, we can assert that
(F̂ , ÂF̂ , N̂F̂ ) has it. We also readily check that pF is supremum preserv-
ing. Let q : (Y,B,M ) → (F,AF ,NF ) be a supremum preserving morphism
starting from a saturated MSN with the property P.

Then ιF ◦q is a supremum preserving morphism ending in (X,A ,N ). It
has a lifting r : (Y,B,M ) →

(
X̂, Â , N̂

)
. Let r ∈ r and q ∈ q be represen-

tatives. As p(r(y)) = q(y) for M -almost all y ∈ Y , we lose no generality in
supposing that r has values in F̂ . Calling its restriction r′ : Y → F̂ , we see
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that pF ◦ r′ and q coincide M -almost everywhere. The induced morphism r′

provides a factorization of q through
(
F̂ , ÂF̂ , N̂F̂

)
.

To establish the uniqueness of this factorization, we proceed as follows.
For any morphism r′′ such that pF ◦ r′′ = q we notice that

ιF ◦ q = ιF ◦ pF ◦ r′′ = p ◦ ιF̂ ◦ r
′′.

Since this holds for r′ we obtain p ◦ ιF̂ ◦ r
′ = p ◦ ιF̂ ◦ r

′′ and, by unique-

ness of the factorization relative to the universal property of
(
X̂, Â , N̂

)
,

ιF̂ ◦ r
′ = ιF̂ ◦ r

′′. Thus, r′ and r′′ coincide M -almost everywhere.
(B) If (F,AF ,NF ) has property P, then obviously

[
(F,AF ,NF ), id

]
is

a second P-version. From the uniqueness of the P-version, we obtain a
isomorphism r : (F,AF ,NF ) →

(
F̂ , ÂF̂ , N̂F̂

)
such that id = pF ◦ r, whence

pF = r−1.

5. Localizable locally determined MSNs

In order to motivate the main definition in this section, we start with the
following result, of which we can think as a way of testing whether an MSN
has a property P. For instance, if each F ∈ F corresponds to a ccc subMSN,
then (X,A ,N ) is 4c. The difficulty in applying this proposition stems with
both hypotheses: conditions (1) and (2) will be turned into a definition in
5.2, whereas condition (3), that F is disjointed rather than merely almost
disjointed, calls for techniques that transform almost disjointed generating
families (whose existence, in applications, follows from Lemma 4.9) into par-
titions – see the proof of Theorem 7.6 in case card E 6 c and the notion of
compatible family of densities introduced in Section 10.

Proposition 5.1. Let (X,A ,N ) be an MSN and F ⊆ A . Assume that

(1) For every A ⊆ X the following holds:[
∀F ∈ F : A ∩ F ∈ A

]
⇒ A ∈ A ;

(2) For every N ⊆ X the following holds:[
∀F ∈ F : N ∩ F ∈ N

]
⇒ N ∈ N ;

(3) F is a partition of X.

Then the MSNs (X,A ,N ) and
∐
F∈F (F,AF ,NF ) are isomorphic in MSNsp.
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Proof. We abbreviate (Y,B,M ) for
∐
F∈F (F,AF ,NF ). Since F is a

partition of X, there is a canonical bijection ϕ : X → Y . Its inverse ϕ−1 is
[(B,M ), (A ,N )]-measurable, by definition of coproduct of MSNs. We now
show that ϕ is [(A ,N ), (B,M )]-measurable. Given B ∈ B, we note that
ϕ−1(B) =

⋃
F∈F B ∩ F , whence ϕ−1(B) ∩ F = B ∩ F ∈ A for every F ∈ F ,

by definition of B. We infer from hypothesis (1) that ϕ−1(B) ∈ A . Let
M ∈M . As above we infer from the definition of M that ϕ−1(M) ∩ F ∈ N
for every F ∈ F , whence ϕ−1(M) ∈ N , in view of hypothesis (2). In other
words, (X,A ,N ) and (Y,B,M ) are isomorphic in MSN. The conclusion
follows from Proposition 3.7(A).

Definition 5.2. We borrow the following definition from [6, 211H]. A
measure space (X,A , µ) is locally determined whenever it is semi-finite and,
for every subset A ⊆ X,[

∀E ∈ A f : A ∩ E ∈ A
]
⇒ A ∈ A ,

where, as usual, A f = A ∩ {E : µ(E) <∞}.
The definition relies on the particular collection A f (which is Nµ-generating,

recall 4.2). This makes sense because we are dealing with a measure space.
It is a rather good surprise that we can define an analogous notion of locally
determined MSNs, by substituting for A f an arbitrary generating collection.
Namely, a saturated MSN (X,A ,N ) is called locally determined whenever
the following holds. For every N -generating collection E ⊆ A and every
A ⊆ X, [

∀E ∈ E : A ∩ E ∈ A
]
⇒ A ∈ A .

An MSN that is both localizable and locally determined is called lld.

The following is useful as well. We say that a saturated MSN (X,A ,N )
has locally determined negligible sets whenever the following holds. For every
N -generating collection E ⊆ A and every N ⊆ X,[

∀E ∈ E : N ∩ E ∈ N
]
⇒ N ∈ N .

We observe that if (X,A ,N ) is locally determined, then it has locally de-
termined negligible sets. Indeed, let E ⊆ A and N ⊆ X be as above, we
first infer from the local determinacy of (X,A ,N ) that N ∈ A and, in turn
from the Distributivity Lemma 3.4, that N is an N -essential supremum of
{N ∩ E : E ∈ E }. Therefore, N ∈ N .
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Next we prove some elementary properties concerning locally determined
MSNs. In particular, the consistency between both notions of local determi-
nation (for complete semi-finite measure spaces and MSNs) is established in
Proposition 5.3(F). Here, the semi-finiteness property of a measure space is
critical as the following example shows. We consider H 1, the 1-dimensional
Hausdorff measure in R2 and A the σ-algebra consisting of H 1-measurable
subsets of R2 in the sense of Carathéodory. The following hold:

(a) ∀A ⊆ R2 :
[
∀F ∈ A f : A ∩ F ∈ A

]
⇒ A ∈ A ;

(b) the measure space (R2,A ,H 1) is not semi-finite;

(c) the (saturated) MSN (R2,A ,NH 1) does not have locally determined
negligible sets and, in particular, is not locally determined.

For (a), see for instance [2, 6.2]. For (b), see [8, 439H]. Now (c) follows for
example from [2, 4.4]. It follows from 4.2 that A f is not NH 1-generating.

Proposition 5.3. The following hold.

(A) Being locally determined is a hereditary property.

(B) Being locally determined is a property invariant under isomorphisms in
MSNsp.

(C) A saturated ccc MSN is locally determined.

(D) A coproduct of locally determined MSNs is locally determined.

(E) A 4c MSN is locally determined.

(F) A complete semi-finite measure space (X,A , µ) is locally determined
(as a measure space) if and only if the MSN (X,A ,Nµ) is locally de-
termined.

Proof. (A) Let (X,A ,N ) be a locally determined MSN and Z ∈ A . Let
E be an NZ-generating family in the subMSN (Z,AZ ,NZ) and A ⊆ Z be such
that E ∩A ∈ AZ for any E ∈ E . The family E ∪ {X \Z} is N -generating in
(X,A ,N ) and E ∩A ∈ A for all E ∈ E ∪ {X \ Z}. It follows that A ∈ A .

(B) Let (X,A ,N ) and (Y,B,M ) be two saturated MSNs, f : X → Y
and g : Y → X be two measurable supremum preserving maps that induce
reciprocal isomorphisms. Assume that (X,A ,N ) is locally determined. Let
E ⊆ B be an M -generating collection and B ⊆ Y be such that E ∩ B ∈
B for all E ∈ E . Then f−1(E) ∩ f−1(B) = f−1(E ∩ B) ∈ A . As f is
supremum preserving, f−1(E ) is N -generating. And as (X,A ,N ) is locally
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determined, we infer that f−1(B) ∈ A . Therefore g−1(f−1(B)) ∈ B. But
B	g−1(f−1(B)) ∈M and as (Y,B,M ) is saturated we conclude that B ∈ B.

(C) Let (X,A ,N ) be a saturated ccc MSN, E ⊆ A an N -generating
family and A ∈ P(X) be such that E ∩ A ∈ A for all E ∈ E . By Proposi-
tion 4.4, there is a countable subset E ′ ⊆ E that is N -generating. Then

A =

( ⋃
E∈E ′

E ∩A

)
∪
(
A \

⋃
E ′
)

Since X \
⋃

E ′ is N -negligible and (X,A ,N ) is saturated, we infer that
A \

⋃
E ′ is A -measurable. Therefore, A ∈ A .

(D) Let (X,A ,N ) be the coproduct of a family 〈(Xi,Ai,Ni)〉i∈I of locally
determined MSNs. It is readily saturated. Let E ⊆ A be an N -generating
family and A ⊆ X such that E ∩ A ∈ A for all E ∈ E . For all i ∈ I, the
family Ei := {E ∩Xi : E ∈ E } is Ni-generating in (Xi,Ai,Ni) by Lemma 3.4.
This observation leads to the fact that A ∩ Xi ∈ Ai for all i ∈ I, in other
words, A ∈ A .

(E) This obviously follows from (C) and (D).
(F) Suppose that the measure space (X,A , µ) is locally determined. Let

E ⊆ A be an Nµ-generating family and A ⊆ X be such that E ∩ A ∈ A for
all E ∈ E . Let F ∈ A f . By Lemma 3.4, the collection {F ∩ E : E ∈ E }
is NF -generating in

(
F,AF , (Nµ)F

)
and of course F ∩ E ∩ A ∈ AF for all

E ∈ E . On top of that,
(
F,AF , (Nµ)F

)
is a ccc MSN by Proposition 4.5 and

it is saturated. We get from (C) above that A ∩ F is measurable. As this
happens for all F ∈ A f , we conclude that A ∈ A .

Conversely, suppose the MSN (X,A ,Nµ) is locally determined. Ow-
ing to the semi-finiteness of (X,A , µ), the collection A f is Nµ-generating.
Then (X,A , µ) is easily seen to be locally determined: if A ∈P(X) satisfies
A ∩ F ∈ A for all F ∈ A f , then A ∈ A .

5.4. (lld version of an atomic MSN) As a first result, we mention that
the lld version of an atomic MSN (X,A , {∅}) is the space [(X,P(X), {∅}), ι],
where ι is the morphism induced by the identity map (that ι is supremum
preserving follows from 4.12). This amounts to prove that, for any lld MSN
(Y,B,M ), a [(B,M ), (A , {∅})]-measurable supremum preserving map
q : Y → X is automatically (B,P(X))-measurable.

Indeed, let S ∈P(X). Then q−1(S)∩ q−1{x} is either q−1{x} or ∅, hence
q−1(S) ∩ q−1{x} is B-measurable for every x ∈ X. Besides, q is supremum
preserving, thus the collection {q−1{x} : x ∈ X} is M -generating. By local
determination in (Y,B,M ) we conclude that q−1(S) ∈ B.
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5.5. Call LLDsp the full subcategory of MSNsp that consists of lld MSNs,
and consider the forgetful functor Forget : LLDsp → MSNsp. In categorical
terms, an lld version is the coreflection of a saturated MSN (X,A ,N ) along
the functor Forget, see [1, Chapter 3]. In this paper, we do not answer the
question whether there exists an lld version for each saturated MSN. This
is equivalent to the existence of a right adjoint R of Forget. As a matter
of fact, if such an adjoint exists, there would be a natural transformation
ε : Forget ◦ R =⇒ idMSNsp such that the pair

[
R(X,A ,N ), ε(X,A ,N )

]
gives

the lld version of any saturated MSN (X,A ,N ).

In search for an abstract proof of the existence of R, one might think of
using Freyd’s Adjunction Theorem, [1, Theorem 3.3.3]. Following this path,
one needs to establish (setting aside the solution set condition) that:

(A) the category MSNsp is cocomplete;

(B) the forgetful functor Forget preserves small colimits.

Assertion (A) boils down to showing that MSNsp has two types of small
colimits: coproducts and coequalizers. The existence of the former is shown
in Proposition 3.7(D). We do not know whether coequalizers exist in MSNsp

and it is the main difficulty here.

As for (B), which, regarding the existence of lld versions, is a necessary
condition even if (A) were to be false, we have already proven in Proposi-
tions 4.6 and 5.3(D) that coproducts of lld MSNs are lld. Our next goal is
Proposition 5.7 which states that coequalizers of lld MSNs are lld. Before
that, we need to introduce some notation and a lemma.

For a saturated MSN (X,A ,N ) and an arbitrary E ⊆ A , we define

AE := P(X) ∩ {A : E ∩A ∈ A for all E ∈ E },
NE := P(X) ∩ {N : E ∩N ∈ N for all E ∈ E }.

It is clear that (X,AE ,NE ) is a saturated MSN.

Lemma 5.6. Let (X,A ,N ) be a localizable saturated MSN and E ⊆ A
an N -generating family. Let ι be the morphism (X,AE ,NE ) → (X,A ,N )
induced by the identity map on X. Then Bool(ι) is an isomorphism. In
particular, ι is supremum preserving and (X,AE ,NE ) is localizable.

Proof. First we make the following observation, to be used later in the
proof: A ∩ NE = N . Indeed, if N ∈ A is such that E ∩ N ∈ N for all
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E ∈ E , then by the Distributivity Lemma 3.4, we conclude that N ∈ N .
This proves the inclusion A ∩NE ⊆ N , the reciprocal being trivial.

The identity map ι : X → X is [(AE ,NE ), (A ,N )]-measurable because
A ⊆ AE and N ⊆ NE . Let us show that Bool(ι) : A /N → AE /NE is
injective by inspecting its kernel. Let A ∈ A /N be a class represented by
A ∈ A such that Bool(ι)(A) = 0, in other words A = ι−1(A) ∈ NE . Then
A ∈ A ∩NE = N . This means that A = 0 in A /N . Therefore, Bool(ι) is
injective.

Now let us show that Bool(ι) is surjective. To this end, let H ∈ AE /NE

be a class represented by H ∈ AE . We ought to prove that H is in the range
of Bool(ι). Set F := {E ∩H : E ∈ E }. Note that F ⊆ A . The localizability
of (X,A ,N ) guarantees that F has an N -essential supremum S ∈ A . In
particular, E ∩H \ S ∈ N for all E ∈ E , meaning that H \ S ∈ NE .

We also claim thatS\H ∈ NE . Indeed, letE0 ∈ E . Set S′ := S\(E0∩S\H).
We note that S′ ∈ A . For all E ∈ E , we have E ∩H \ S′ = E ∩H \ S ∈ N ,
as H \ S ∈ NE . This means that S′ is an N -essential upper bound of F . It
follows that S \ S′ = E0 ∩ S \ H ∈ N . As E0 ∈ E is arbitrary, we obtain
S \H ∈ NE , as required.

We proved that H 	 S ∈ NE . Calling S the equivalence class of S in
A /N , we have that Bool(ι)(S) = H.

Proposition 5.7. Consider the following diagram in MSNsp, where
((Z,C ,P),h) is the coequalizer of f ,g.

(X,A ,N ) (Y,B,M ) (Z,C ,P)
f

g
h

(A) If (Y,B,M ) is localizable, so is (Z,C ,P).

(B) If (Y,B,M ) is lld, so is (Z,C ,P).

Proof. (A) Let us call 2 the special MSN
(
{0, 1},P({0, 1}), {∅}

)
. First we

show the following intermediate result: for any MSN (X,A ,N ), there is a
one-to-one correspondence ΥX between the Boolean algebra Bool(X,A ,N )
and the set of morphisms Hom

(
(X,A ,N ),2

)
(those are automatically supre-

mum preserving since the Boolean algebra of 2 is finite). Given a class
A ∈ Bool(X,A ,N ), represented by a set A, the characteristic function
1A : X → {0, 1} induces a morphism 1A which only depends on the equiva-
lence class A. Indeed, if A′ is another representative of A, then 1A and 1A′

coincide N -almost everywhere. We set ΥX(A) := 1A.
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This map is surjective because each morphism ϕ : (X,A ,N )→ 2 is rep-
resented by a map ϕ ∈ ϕ which has the form ϕ = 1ϕ−1({1}). It is injective
because if 1A coincides with 1B almost everywhere, for measurable sets A and
B, then A and B yield the same equivalence class in Bool(X,A ,N ).

Now we turn to the proof of conclusion (A). By naturality of Υ, the fol-
lowing diagram is commutative, where Hom(h,2), Hom(f ,2) and Hom(g,2)
denote the right composition with h, f , and g, respectively:

Hom((Z,C ,P),2) Hom((Y,B,M ),2) Hom((X,A ,N ),2)

Bool(Z,C ,P) Bool(Y,B,M ) Bool(X,A ,N )

Hom(h,2) Hom(f ,2)

Hom(g,2)

ΥZ

Bool(h)

ΥY

Bool(f)

Bool(g)

ΥX

We show that Hom(h,2) is injective. Indeed, if ϕ and ψ are such that
Hom(h,2)(ϕ) = Hom(h,2)(ψ) then, upon letting k = ϕ ◦ h = ψ ◦ h, we
infer that k ◦ f = k ◦ g. By the universal property of (Z,C ,P), there exists
a unique ` ∈ Hom

(
(Z,C ,P),2

)
such that ` ◦ h = k. Since ϕ and ψ have

the property of `, we conclude that they coincide. Similarly, the universal
property of coequalizers tells us that the range of Hom(h,2) consists of those
morphisms k such that Hom(f ,2)(k) = Hom(g,2)(k). On the second line of
the diagram, these two observations translate to the fact that Bool(h) induces
an isomorphism of Boolean algebras from Bool(Z,C ,P) onto the Boolean
subalgebra

A := Bool(Y,B,M ) ∩
{
ξ : Bool(f)(ξ) = Bool(g)(ξ)

}
.

It remains to prove that A is Dedekind complete. Let E ⊆ A be a collection.
It has a supremum s in Bool(Y,B,M ), as (Y,B,M ) is localizable. Since f
and g are supremum preserving, we have

Bool(f)(s) = supBool(f)(E) = supBool(g)(E) = Bool(g)(s).

Hence s ∈ A and A is Dedekind complete.

(B) That (Z,C ,P) is localizable follows from (A). Let G ⊆ C be any
P-generating family. We wish to prove that CG ⊆ C . If we manage to do so,
then (Z,C ,P) is locally determined, as G is arbitrary.

Let h be a representative of h. By definition, it is [(B,M ), (C ,P)]-
measurable and supremum preserving. We claim that it is, in fact,
[(B,M ), (CG ,PG )]-measurable. Indeed, let C ∈ CG . For all G ∈ G , we
have G ∩ C ∈ C which implies that h−1(G) ∩ h−1(C) = h−1(G ∩ C) ∈ B.
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Moreover, h−1(G ) is M -generating, as G is P-generating and h is supre-
mum preserving. Thus, since (Y,B,M ) is locally determined, we have that
h−1(C) ∈ B. Next, if P ∈ PG , then h−1(P ) ∈ B by what precedes and
h−1(P ) ∩ h−1(G) = h−1(P ∩ G) ∈ M for all G ∈ G . By the Distributivity
Lemma 3.4, we obtain h−1(P ) ∈M .

Denote as h′ : (Y,B,M )→ (Z,CG ,PG ) the morphism induced by h, and
denote as ι : (Z,CG ,PG ) → (Z,C ,G ) the morphism induced by the iden-
tity map idZ . By Lemma 5.6, we have Bool(h′) = Bool(h) ◦ Bool(ι)−1,
which is the composition of two supremum preserving morphisms of Boolean
algebras. Thus, h′ is a supremum preserving as well. Also, we recall
h ◦ f = h ◦ g. As h and h′ are induced by the same map, we deduce that
h′ ◦ f = h′ ◦g. By the universal property of coequalizers, there is a morphism
k : (Z,C ,P)→ (Z,CG ,PG ) such that h′ = k ◦ h.

(Z,CG ,PG )

(X,A ,N ) (Y,B,M ) (Z,C ,P)

ι

f

g
h

h′
k

Hence ι ◦ k ◦ h = ι ◦ h′ = h = id(Z,C ,P) ◦h. The uniqueness in the universal
property of equalizers implies that h is an epimorphism. Thus ι◦k = id(Z,C ,P).
A representative k ∈ k must satisfy z = idZ(k(z)) = k(z) for P-almost all
z ∈ Z, i.e. P = Z ∩ {z : z 6= k(z)} ∈ P. Let C ∈ CG . Since k is (C ,CG )-
measurable, it follows that k−1(C) ∈ C . Since k−1(C) 	 C ⊆ P , we deduce
that k−1(C)	 C ∈ C and, in turn, C ∈ C .

5.8. The last two results of this section show that the category LLDsp has
better categorical properties than MSNsp: it has equalizers in full generality.
This result is reminiscent of [6, 214Ie].

Proposition 5.9. Let (X,A ,N ) be an lld MSN and Y ⊆ X any subset.
Then the subMSN (Y,AY ,NY ) is lld and the canonical morphism
ιY : (Y,AY ,NY )→ (X,A ,N ) is supremum preserving.

Proof. First we show that the map ιY : Y → X is supremum preserving.
Let E ⊆ A and assume S ∈ A is an N -essential supremum of E . The set
S ∩ Y = ι−1

Y (S) is an NY -essential upper bound of ι−1
Y (E ). Let U ∈ AY be

an arbitrary NY -essential upper bound of ι−1
Y (E ). We ought to show that

S ∩Y \U ∈ NY . For all E ∈ E , one has E ∩S ∩Y \U ⊆ E ∩Y \U ∈ NY . As
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(X,A ,N ) is saturated, NY ⊆ N and, also, E ∩ S ∩ Y \ U ∈ N . Of course
(X \ S)∩ S ∩ Y \U = ∅ is also N -negligible. Since the family E ∪ {X \ S} is
N -generating and (X,A ,N ) is locally determined, we deduce that S∩Y \U
is A -measurable and, in turn, that it is N -negligible by the Distributivity
Lemma 3.4. The proof that ιY is supremum preserving is complete.

Since the morphism Bool(ιY ) : A /N → AY /NY is onto and supremum
preserving, and A /N is Dedekind complete, so is AY /NY , meaning that
(Y,AY ,NY ) is localizable. It remains to show that (X,A ,N ) is locally
determined.

We claim the following: If E ⊆ AY is NY -generating and N ∈ P(Y )
satisfies E ∩N ∈ NY for all E ∈ E , then N ∈ NY . By definition of AY , any
set E ∈ E can be written as E = E′∩Y , for some E′ ∈ A , so there is a subset
E ′ ⊆ A such that E = ι−1

Y (E ′). The localizability of (X,A ,N ) guarantees
the existence of an N -essential supremum S of E ′. For all E′ ∈ E ′ one has
E′∩N = E′∩Y ∩N ∈ NY ⊆ N , because E′∩Y ∈ E . Also S∩Y = ι−1

Z (S) is
an NY -essential supremum of E = ι−1

Z (E ′), by the first paragraph. Recalling
that E is NY -generating, we find that Y \S = Y \(S∩Y ) ∈ NY . Consequently,
(X \ S) ∩ N ⊆ Y \ S ∈ NY ⊆ N . As (X,A ,N ) is saturated, we find that
(X \ S)∩N ∈ N . In conclusion, E′ ∩N ∈ N for any E′ that belongs to the
N -generating family E ′ ∪ {X \ S}. Since (X,A ,N ) is locally determined,
we infer that N ∈ A and then that N ∈ N by the Distributivity Lemma 3.4.
As N ⊆ Y , we conclude that N ∈ NY .

Now let E ⊆ AY be an NY -generating collection and A ∈ P(Y ) be such
that E ∩ A ∈ AY for all E ∈ E . We want to prove that A ∈ AY . As
(Y,AY ,NY ) is localizable, {E ∩ A : E ∈ E } has an NY -essential supremum
S. This implies that E ∩ A \ S ∈ NY for all E ∈ E . By the claim above,
A \ S ∈ NY .

Fix E0 ∈ E . Note that E0 ∩ (S \A) = (E0 ∩ S) \ (E0 ∩A) ∈ AY . Also,

E ∩A \ ((S \ (E0 ∩ S \A)) = E ∩A ∩ ((Y \ S) ∪ (E0 ∩ S \A))

= E ∩A \ S ∈ NY ,

for all E ∈ E . In other words, S \ (E0 ∩ S \ A) is an NY -essential upper
bound of {E ∩A : E ∈ E }. As S is an NY -essential supremum of this family,
S \ (S \ (E0 ∩ S \ A)) = E0 ∩ S \ A ∈ NY . Applying again the claim above,
we deduce that S \ A ∈ NY from the arbitrariness of E0. Summing up,
A	 S ∈ NY . As S ∈ AY we infer that A ∈ AY . The proof that (Y,AY ,NY )
is locally determined is now complete.
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Corollary 5.10. LLDsp has equalizers preserved by the forgetful functor
LLDsp → MSN.

Proof. Consider a pair of supremum preserving morphisms
f ,g : (X,A ,N ) → (Y,B,M ) in the category LLDsp, represented by maps
f ∈ f and g ∈ g. Let h : (T,C ,P) → (X,A ,N ) be another supremum
preserving morphism in LLDsp, such that f ◦ h = g ◦ h.

Set Z = {f = g}. We know since Proposition 2.11 that
(
(Z,AZ ,NZ), ιZ

)
is the equalizer of the pair f ,g in the category MSN, so there is a unique
morphism h′ : (T,C ,P) → (X,A ,N ) such that h = ιZ ◦ h′. By the propo-
sition 5.9, ιZ is supremum-preserving and (Z,AZ ,NZ) is lld. It remains
to prove that h′ is supremum preserving. This follows from the fact that
Bool(h) = Bool(h′) ◦ Bool(ιZ), where Bool(h) is supremum preserving and
Bool(ιZ) is supremum preserving and surjective.

6. Gluing measurable functions

Definition 6.1. Let (X,A ,N ) be an MSN and (Y,B) a measurable
space. Let E ⊆ A be a collection. A family subordinated to E is a family of
functions 〈fE〉E∈E such that:

(1) fE : E → Y is (AE ,B)-measurable for every E ∈ E .

We further say that 〈fE〉E∈E is compatible whenever

(2) for all pairs E,E′ ∈ E one has E ∩ E′ ∩ {fE 6= fE′} ∈ N .

A gluing of a compatible family 〈fE〉E∈E subordinated to E is a function
f : X → Y such that:

(3) f is (A ,B)-measurable;

(4) E ∩ {f 6= fE} ∈ N for every E ∈ E .

In this section, we will be mainly concerned about the existence of gluings,
as they will be of use in the construction of the 4c version of a locally ccc MSN
in Section 7. This turns out to depend both on the domain and the target
space. In case where (Y,B) is the real line equipped with its Borel σ-algebra
(R,B(R)), we can glue measurable functions together if (X,A ,N ) is local-
izable. In fact, this important property is a characterization of localizability.
The interested reader may find a proof of this classical result expressed in the
language of MSNs in [2, Proposition 3.13]. Only the measurable structure of
(R,B(R)) is involved, thus, the result holds in the more general case where
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(Y,B) is a standard Borel space, see [17, Chapter 3].
Many questions arise when we remove the condition that (Y,B) is a stan-

dard Borel space. In this case, we need some additional assumptions on
(X,A ,N ). We will focus on two cases: (X,A ,N ) is 4c or lld. But first, we
prove that a gluing inherits some of the properties of the functions fE .

Lemma 6.2. Let (X,A ,N ) be a saturated MSN, (Y,B,M ) an MSN,
and E ⊆ A an N -generating collection. We let 〈fE〉E∈E be a compatible
family of functions subordinated to E and we assume that:

(1) for every E ∈ E , the map fE is [(AE ,NE), (B,M )]-measurable;

(2) the family 〈fE〉E∈E has a gluing f .

Then:

(A) the gluing f is [(A ,N ), (B,M )]-measurable;

(B) if fE is supremum preserving, for every E ∈ E , then so is f .

Proof. We start with the following easy observation. For each E ∈ E and
B ∈ B one has f−1

E (B)	 (E ∩ f−1(B)) ⊆ E ∩ {fE 6= f} ∈ N .
(A) As the gluing f is (A ,B)-measurable by definition, we need only

show that f−1(M) ∈ N for M ∈ M . Since f−1
E (M) is N -negligible, the

above observation applied with B = M ensures that E ∩ f−1(M) ∈ N for
any E ∈ E . We next use Lemma 3.4 to assert that f−1(M) is an N -essential
supremum of {E∩f−1(M) : E ∈ E }. This forces f−1(M) to be N -negligible.

(B) Let F ⊆ B be a collection that admits an M -essential supremum S.
Since fE is supremum preserving for every E ∈ E , f−1

E (S) is an N -essential
supremum of {f−1

E (F ) : F ∈ F} and it ensues from the observation above,
applied with B ∈ {S} ∪F , that E ∩ f−1(S) is an N -essential supremum of
{E ∩ f−1(F ) : F ∈ F}. Therefore,

f−1(S) = N - ess supE∈E E ∩ f−1(S)

(by Lemma 3.4)

= N - ess supE∈E

(
N - ess supF∈F E ∩ f−1(F )

)
(from what precedes)

= N - ess supF∈F

(
N - ess supE∈E E ∩ f−1(F )

)
= N - ess supF∈F f−1(F )

(by Lemma 3.4).
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Proposition 6.3. Let (X,A ,N ) be a locally determined MSN and (Y,B)
be any nonempty measurable space. Let E ⊆ A be an N -generating col-
lection. If a compatible family 〈fE〉E∈E has a gluing, then it is unique up to
equality almost everywhere.

Proof. Let f, g : X → Y be two gluings of 〈fE〉E∈E . We warn the reader
that the measurability of {f 6= g} is not immediate, since the diagonal
{(y, y) : y ∈ Y } may not be measurable in (Y 2,B⊗B). Notwithstanding, for
all E ∈ E , we have E ∩ {f 6= g} ⊆ (E ∩ {f 6= fE}) ∪ (E ∩ {g 6= fE}). Since
f, g are gluings and (X,A ,N ) is saturated, it follows that E∩{f 6= g} ∈ N .
This happens for any E in the N -generating set E . By local determination
and the Distributivity Lemma 3.4, {f 6= g} ∈ N .

Proposition 6.4. Let (X,A ,N ) be a 4c MSN and (Y,B) be any
nonempty measurable space. Let E ⊆ A be an N -generating collection.
Any compatible family 〈fE〉E∈E subordinated to E admits a unique gluing f
up to equality N -almost everywhere.

Proof. First observe that the uniqueness of the gluing up to almost every-
where equality follows from Proposition 6.3, as a 4c MSN is locally determined
by Proposition 5.3(E).

Let us treat the special case where (X,A ,N ) is a saturated ccc MSN.
According to Proposition 4.4, we can find a sequence of sets 〈Ei〉i∈N in E such
that

⋃
i∈NEi provides an N -essential supremum of E . We then define the

(A ,B)-measurable map f : X → Y which, for all i ∈ N, coincides with fi on
the set Ei \

⋃
j<iEj , and maps the negligible set N := X \

⋃
i∈NEi to some

arbitrary point. Let E ∈ E . For every i ∈ N, we have

Ni := E ∩ Ei ∩ {fE 6= fEi} ∈ N ,

by hypothesis. Thus, E ∩ {f 6= fE} ⊆ N ∪
⋃
i∈NNi is negligible.

Suppose now that (X,A ,N ) is a coproduct
∐
i∈I(Xi,Ai,Ni) of saturated

ccc MSNs. For each E ∈ E and i ∈ I, call fE,i the restriction of fE to
E ∩ Xi. By Lemma 3.4, Xi is an Ni-essential supremum of the collection
{E ∩ Xi : E ∈ E }. Also, 〈fE,i〉E∈E is a compatible family of measurable
maps subordinated to 〈E ∩Xi〉E∈E . From what precedes, it admits a gluing
fi : Xi → Y . Define f :=

∐
i∈I fi. The verification that f is a gluing of

〈fE〉E∈E is routine.
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6.5. It would be interesting to know whether 4c MSNs are the only lld
MSNs such that gluings can always be performed, with no restriction on the
target space (Y,B). This property will be used in the next section and justifies
the special role played by 4c MSN.

Definition 6.6. (Countably separated measurable spaces) One
measurable space (Y,B) is called countably separated whenever there is a
countable set C ⊆ B such that for any distinct y1, y2 ∈ Y there exists C ∈ C
such that y1 ∈ C 63 y2 or y1 6∈ C 3 y2. Here is a well-known characterization
of countably separated spaces.

Proposition 6.7. Let (Y,B) be a measurable space. The following state-
ments are equivalent:

(A) (Y,B) is countably separated;

(B) there is an injective measurable map (Y,B)→ (R,B(R));

(C) there is an injective measurable map (Y,B) → (X,B(X)) to a Polish
space X.

Proof. (A) ⇒ (B) Let C ⊆ B be a countable set that separates the
points of Y . Let 〈Cn〉n∈N be a enumeration of C and h : Y → R be the map
h =

∑∞
n=0 3−n1Cn . The sets Cn are measurable, therefore h is measurable.

Let y1, y2 be distinct points in Y and n0 := min{n ∈ N : 1Cn(y1) 6= 1Cn(y2)}.
Then

|h(y1)− h(y2)| > 3−n0 −
∞∑

n=n0+1

3−n|1Cn(y1)− 1Cn(y2)| > 3−n0 − 3−n0

2
> 0

thus h(y1) 6= h(y2), which shows that f is injective.

(B) ⇒ (C) is obvious.

(C) ⇒ (A) Let U be a countable basis for the topology of X. If there is
an injective measurable map h : (Y,B)→ (X,B(X)), then h−1(U ) ⊆ B is a
countable set that separates points.

Proposition 6.8. Let 〈(Yi,Bi)〉i∈I be a family of countably separated
measurable spaces. If card I 6 c, then

∐
i∈I(Yi,Bi) is countably separated.

Proof. For each i ∈ I, there is an injective (Bi,B(R))-measurable map
hi : Yi → R by Proposition 6.7. Choose an arbitrary injective map g : I → R.
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Let h :
∐
i∈I Yi → R2 be the map defined by h(yi) := (hi(yi), g(i)) for all i ∈ I

and yi ∈ Yi. Let B ⊆ R2 be a Borel set. Then, for any i ∈ I, we have

h−1(B) ∩ Yi = h−1
i (R ∩ {x : (x, g(i)) ∈ B}) = h−1

i (Bg(i)).

This last set is Bi-measurable as hi is measurable and the horizontal section
Bg(i) is Borel. As i is arbitrary, we conclude that h−1(B) is measurable. This
means that h is measurable. By Proposition 6.7, it follows that

∐
i∈I(Yi,Bi)

is countably separated.

Remark 6.9. The restriction on the cardinal of I is necessary, since a
countably measurable space must have cardinal less or equal than c by
Proposition 6.7(B).

Proposition 6.10. Let (X,A ,N ) be an lld MSN and (Y,B) be a non-
empty countably separated measurable space. Let E ⊆ A be N -generating.
Any compatible family 〈fE〉E∈E subordinated to E admits a gluing, unique
up to equality almost everywhere.

Proof. Let h be a measurable injective map (Y,B) → (R,B(R)), whose
existence follows from Proposition 6.7. Now, 〈h ◦ fE〉E∈E is still a compat-
ible family of measurable functions, this time with values in (R,B(R)). As
(X,A ,N ) is localizable, it admits a gluing g : X → R. For all E ∈ E , one
has E ∩ g−1(R \ h(Y )) ⊆ E ∩ {g 6= h ◦ fE}. Therefore E ∩ g−1(R \ h(Y ))
is negligible. This holds for any E in the N -generating set E . By local de-
termination and Lemma 3.4, we deduce that g−1(R \ h(Y )) ∈ N . Thus, we
lose no generality in supposing, from now on, that g takes values in h(Y ).
Define f := h−1 ◦ g. We claim that f is a gluing. For E ∈ E , we observe
that E ∩ {f 6= fE} ⊆ E ∩ {g 6= h ◦ fE} ∈ N , since h is injective. Therefore,
condition (4) of 6.1 is satisfied.

Also, let B ∈ B, then (E ∩ f−1(B)) 	 f−1
E (B) ⊆ E ∩ {f 6= fE} ∈ N .

Since fE is measurable, we have f−1
E (B) ∈ A and, in turn, E ∩ f−1(B) ∈ A .

Since E is arbitrary, we deduce that f−1(B) ∈ A , by local determination,
showing that f is measurable. Of course, the uniqueness of the gluing is given
by Proposition 6.3.

6.11. In this paragraph, we exhibit an lld MSN (X,A ,N ), a measurable
space (Y,B) and, within this setting, a compatible family of measurable maps
that cannot be glued. With regards to Proposition 6.4, it is natural to turn to-
wards Fremlin’s example in [6, §216E] of a localizable, locally determined but
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not strictly localizable1 measure space (X,A , µ). Let us recall its construc-
tion. Fix a set Y with cardinal greater than c and we set X := {0, 1}P(Y ).
For any y ∈ Y , we define xy ∈ X by

∀Z ∈P(Y ), xy(Z) =

{
1 if y ∈ Z,
0 if y 6∈ Z.

Let K ⊆ P(P(Y )) be the family of countable subsets of P(Y ). For any
K ∈ K and y ∈ Y , we define Fy,K := X ∩ {x : x(Z) = xy(Z) for all Z ∈ K}.
Then we define, for all y ∈ Y ,

Ay = P(X) ∩
{
A : there is K ∈ K such that Fy,K ⊆ A or Fy,K ⊆ X \A

}
.

Let us prove that Ay is a σ-algebra. Clearly ∅ ∈ Ay and Ay is closed under
complementations. Let 〈An〉n∈N be a sequence in Ay. Suppose there is some
n0 ∈ N and K ∈ K such that Fy,K ⊆ An0 . Then Fy,K ⊆

⋃
n∈NAn, which

implies
⋃
n∈NAn ∈ Ay.

Suppose on the contrary that for all n ∈ N, there is Kn ∈ K such that
Fy,Kn ⊆ X \ An. Then

⋂
n∈N Fy,Kn = Fy,

⋃
n∈NKn

⊆ X \
⋃
n∈NAn which also

gives that
⋃
n∈NAn ∈ Ay.

Finally set A :=
⋂
y∈Y Ay and define the measure µ : A → [0,∞] by

∀A ∈ A , µ(A) = card
(
Y ∩ {y : xy ∈ A}

)
.

For the rest of the discussion, we admit that (X,A , µ) is complete, localizable,
locally determined and not strictly localizable. The proof of the latter relies
on a non trivial fact in infinitary combinatorics; we refer to [6, 216E(f)(g)] for
more details. The associated MSN (X,A ,Nµ) is saturated, localizable, and
it is locally determined, by Proposition 5.3(E).

Define Ey = X ∩{x : x({y}) = 1} for all y ∈ Y . This set is A measurable,
because Fy,{{y}} = Ey (hence Ey ∈ Ay), and for any z ∈ Y \ {y}, we have
Fz,{{y}} = X \ Ey (hence Ey ∈ Az). Note that Y ∩ {z : xz ∈ Ey} = {y}.

We now choose B to be the countable cocountable σ-algebra of Y . For any
y ∈ Y , we define the measurable map fy : (Ey,AEy)→ (Y,B) that is constant
equal to y. We claim that 〈fy〉y∈Y is a compatible family of measurable maps
subordinated to 〈Ey〉y∈Y . This ensues from the fact that Ey ∩ Ez ∈ Nµ for

1In the context of measure spaces, we follow the terminology of [6]: (X,A , µ) is strictly
localizable whenever there is a measurable partition 〈Xi〉i∈I such that a set A ⊆ X is
measurable whenever the sets A ∩Xi are, and in that case µ(A) =

∑
i∈I µ(A ∩Xi).
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any distinct y, z ∈ Y . Assume by contradiction that we can find a gluing
f : X → Y . We will use the decomposition 〈f−1({y})〉y∈Y to show (X,A , µ)
is strictly localizable.

Let A ⊆ X such that A ∩ f−1({y}) ∈ A for all y. We want to show that
A ∈ A . For y ∈ Y , we have

• Case xy ∈ A: as A ∩ f−1({y}) ∈ Ay and xy ∈ A ∩ f−1({y}), there is
K ∈ K such that Fy,K ⊆ A ∩ f−1({y}) ⊆ A (because xy ∈ Fy,K , this
is the branch of the dichotomy, in the definition of Ay, that occurs).
Therefore A ∈ Ay.

• Case xy 6∈ A: since xy 6∈ A ∩ f−1({y}) ∈ Ay, we can find K ∈ K such
that Fy,K ⊆ X\

(
A∩f−1({y})

)
. We deduce that Fy,K∩f−1({y}) ⊆ X\A.

Butxy ∈ f−1({y}) ∈ Ay, so there isK ′ ∈ K such thatFy,K′ ⊆ f−1({y}).
Whence Fy,K∪K′ = Fy,K ∩ Fy,K′ ⊆ Fy,K ∩ f−1({y}) ⊆ X \A. It follows
that A ∈ Ay.

In any case, we have shown that A ∈ Ay. As y ∈ Y is arbitrary, A ∈ A .
Now, one observes that the only z ∈ Y such that xz ∈ f−1({y}) is y.

Therefore µ(A∩f−1({y})) equals 1 if xy ∈ A and 0 otherwise. In consequence,
we have µ(A) =

∑
y∈Y µ(A ∩ f−1({y})) as desired.

7. Existence of 4c and lld versions

Theorem 7.1. Let (X,A ,N ) be a saturated MSN and E ⊆ A \N . We
suppose that

(1) (Z,AZ ,NZ) is 4c for every Z ∈ E ;

(2) E is almost disjointed;

(3) E is N -generating.

Then the pair consisting of the MSN(
X̂, Â , N̂

)
=
∐

Z∈E
(Z,AZ ,NZ)

and the morphism p =
∐
Z∈E ιZ is the 4c version of (X,A ,N ) (as usual ιZ

is the morphism induced by the inclusion map ιZ : Z → X).

Proof. The MSN
(
X̂, Â , N̂

)
is 4c as a coproduct of 4c MSNs (this is

a general fact, in any category, a coproduct of coproducts is a coproduct,
see [1, Proposition 2.2.3]), and p is supremum preserving, according to 3.7(B)
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and (D). Observe that each Z ∈ E is also a subset of X̂ and we denote by
ι̂Z : Z → X̂ the corresponding inclusion map.

Let (Y,B,M ) be a 4c MSN and q : (Y,B,M )→ (X,A ,N ) be a supre-
mum preserving morphism, represented by q ∈ q. For all Z ∈ E , call
qZ := ι̂Z ◦ (q q−1(Z)) : q−1(Z) → X̂. Because q is supremum preserv-
ing, Y = q−1(X) is an M -essential supremum of the family 〈q−1(Z)〉Z∈E .
The family E being almost disjointed and q being measurable,
q−1(Z) ∩ q−1(Z ′) = q−1(Z ∩ Z ′) ∈ M for any distinct Z,Z ′ ∈ E . As a
result, the family 〈qZ〉Z∈E subordinated to 〈q−1(Z)〉Z∈E is compatible. By
Proposition 6.4, this family has a gluing r : Y → X̂ and, by Lemma 6.2, r is
[(B,M ), (Â , N̂ )]-measurable and supremum preserving. Call p :=

∐
Z∈E ιZ .

For each Z ∈ E , we have

q−1(Z) ∩ {p ◦ r 6= q} ⊆ q−1(Z) ∩ {r 6= ι̂Z ◦ (q q−1(Z))} ∈M .

The family {q−1(Z) : Z ∈ E } is M -generating and (Y,B,M ) is locally de-
termined, so we conclude that {p ◦ r 6= q} ∈M , that is, p ◦ r = q.

As for uniqueness, let r be any morphism such that p ◦ r = q, and call
r ∈ r one of its representatives. Fix Z ∈ E . Observe that ι̂Z(p(z)) = z for
all z ∈ Z. For M -almost every x ∈ q−1(Z), we have p(r(x)) = q(x) which
implies that r(x) ∈ Z ⊆ X̂. For such an x, we find that

r(x) = ι̂Z(p(r(x))) = ι̂Z(q(x)) = qZ(x).

Hence, r is a gluing of the compatible family 〈qZ〉Z∈E and we invoke the
uniqueness part of Proposition 6.4 to conclude.

7.2. Consider the following example, taken from [6, 216D]. Let X be a
set of cardinality greater or equal than ℵ2. For each x, y ∈ X, we define
Hy = X × {y} and Vx = {x} × X. Sets of this form are respectively called
horizontal and vertical lines. We define a σ-algebra A of X2 by declaring
that A ∈ A iff for all x, y ∈ X, the trace A ∩ Hy (resp. A ∩ Vx) is either
countable or cocountable in Hy (resp. Vx). Also, we define the σ-ideal N of
A as follows: N ∈ N if and only if the intersection of N with any line is
countable. Clearly, (X2,A ,N ) is saturated.

We assert that it is not localizable. Suppose if possible that the family of
horizontal lines {Hy : y ∈ X} has an N -essential supremum S. Then for all
y ∈ X, the intersection S ∩ Hy is cocountable in Hy, that is,
Ny := X ∩ {x : (x, y) 6∈ S} is countable. Let Z be a subset of X of cardinal-
ity ℵ1. Then card

⋃
y∈Z Ny 6 ℵ1, hence the existence of x ∈ X \

⋃
y∈Z Ny.
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This implies that Vx∩S is not countable, so it is cocountable in Vx. However,
S \ Vx is easily checked to be an N -essential upper bound of {Hy : y ∈ X},
as Hy ∩ Vx is negligible for all y. Since Vx ∩ S = S \ (S \ Vx) 6∈ N , we get
a contradiction.

The family of all lines E := {Hy : y ∈ X}∪{Vx : x ∈ X} satisfies the three
hypotheses of Theorem 7.1. Applying the theorem, we see that the 4c version
of (X2,A ,N ) can be described as the coproduct of all lines. Doing so, we
see that each point (x, y) in the base MSN (X2,A ,N ) is duplicated in the
4c version: the “fibers” p−1({(x, y)}) contains two elements, which represent
the horizontal and vertical directions emanating from the point (x, y).

If a given MSN has no obvious choice of a family satisfying the conditions
of Theorem 7.1, we can justify the existence of a 4c version in a non construc-
tive way.

Lemma 7.3. Let (X,A ,N ) be a saturated MSN and C ⊆ A an
N -generating collection such that (Z,AZ ,NZ) is ccc for all Z ∈ C . Then we
can find a collection E ⊆ A \N that satisfies conditions (1), (2) and (3) of
Theorem 7.1 and such that each of its members is a subset of some member
of C . Moreover, we can suppose card E 6 max{ℵ0, card C }.

Proof. Let E be associated with C in Lemma 4.9. It clearly satisfies con-
ditions (1), (2), and (3) of 7.1, since a subMSN of a ccc MSN is ccc as well.
If C is infinite, then for all Z ∈ C , call EZ := E ∩ {Z ′ : Z ′ ⊆ Z}. Then, each
EZ is at most countable, since it is an almost disjointed family in the ccc MSN
(Z,AZ ,NZ). As E =

⋃
Z∈C EZ , we conclude that card E 6 card C .

Corollary 7.4. Every saturated locally ccc MSN admits a 4c version.

Proof. Apply Lemma 7.3 to the family C := A ∩{Z : (Z,AZ ,NZ) is ccc}
and then Theorem 7.1.

7.5. It is worth noticing that all the arguments contained in Theorem 7.1
and Corollary 7.4 remain valid provided we replace “ccc” by “strictly localiz-
able”, “locally ccc” by “locally strictly localizable”, and “4c” by “strictly local-
izable”. Summing up, a saturated locally strictly localizable MSN (X,A ,N )
has a strictly localizable version, which is constructed as the coproduct of
subMSNs whose underlying sets belongs to a family E that satisfies hypothe-
ses (2), (3) of Theorem 7.1 and

(1’) (Z,AZ ,NZ) is strictly localizable for every Z ∈ C .
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Since (1’) implies (1) we can apply Theorem 7.1 again to conclude that the
4c and strictly localizable versions of (X,A ,N ) are the same.

As for the existence of lld versions, we have a partial result, which applies
for most locally ccc MSNs that one is likely to encounter in analysis.

Theorem 7.6. Let (X,A ,N ) be a saturated MSN with a collection
C ⊆ A such that

(1) (Z,AZ ,NZ) is ccc for all Z ∈ C ;

(2) C is N -generating;

(3) card C 6 c.

The following hold:

(A) If (X,A ,N ) has an lld version, then it coincides with the 4c version.

(B) If moreover (Z,AZ) is countably separated for all Z ∈ C , then the lld
version exists.

Proof. (A) Recall (X,A ,N ) has a 4c version, according to Corollary 7.4.
Suppose (X,A ,N ) has an lld version

[(
X̂, Â , N̂

)
,p
]
. In view of Proposition

5.3(E), conclusion (A) will be established if we prove that
(
X̂, Â , N̂

)
is 4c.

To this end, we need to find a suitable decomposition in X̂. Apply Lemma 7.3
to get an almost disjointed N -generating family E such that card E 6 c and
(Z,AZ ,NZ) is ccc for all Z ∈ E . Choose an injection c : E → R : Z 7→ cZ
and p ∈ p. Let fZ : p−1(Z)→ R be the constant map equal to cZ ; it is readily(
Âp−1(Z),B(R)

)
-measurable. The family 〈fZ〉Z∈E is obviously compatible,

since E is almost disjointed. As
(
X̂, Â , N̂

)
is localizable, this family has an

(Â ,B(R))-measurable gluing f : X̂ → R.

We now show that 〈f−1{cZ}〉Z∈E is a partition of X̂ into ccc measurable
pieces. Since c is injective, the family 〈f−1{cZ}〉Z∈E is, indeed, a partition of
X̂ and, since f is (Â ,B(R))-measurable, f−1{cZ} ∈ Â for all Z ∈ E . As f
is a gluing of 〈fZ〉Z∈E , we have

p−1(Z) \ f−1{cZ} = p−1(Z) ∩ {f 6= fZ} ∈ N̂ for all Z ∈ E .

Moreover, since c is injective, for all Z ′ ∈ E distinct from Z, one has

p−1(Z ′) ∩ (f−1{cZ} \ p−1(Z)) ⊆ p−1(Z ′) ∩ {f 6= fZ′} ∈ N̂ .
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Also, p−1(Z) ∩
(
f−1{cZ} \ p−1(Z)

)
= ∅ is clearly negligible. Recalling

that
(
X̂, Â , N̂

)
is saturated and that p−1(E ) is N̂ -generating (because E is

N -generating and p is supremum preserving), one infers from the Distribu-
tivity Lemma 3.4 that f−1{cZ} \ p−1(Z) ∈ N̂ .

Thus p−1(Z) 	 f−1{cZ} ∈ N̂ . As p is a local isomorphism, according to
Propositions 4.16(B) and 5.3(A),

(
p−1(Z), Âp−1(Z), N̂p−1(Z)

)
is ccc. By what

precedes, so is
(
f−1{cZ}, Âf−1{cZ}, N̂f−1{cZ}

)
. Therefore, the MSN

(Y,B,M ) :=
∐

Z∈E

(
f−1{cZ}, Âf−1{cZ}, N̂f−1{cZ}

)
is 4c, by definition. It remains to establish that (X̂, Â , N̂ ) and (Y,B,M )
are isomorphic in MSNsp. This is a consequence of Proposition 5.1 applied to
the measurable partition F = {f−1{cZ} : Z ∈ E }. Recalling that p−1(E ) is
N̂ -generating, it ensues from the preceding paragraph that so is F . Since
(X̂, Â , N̂ ) is locally determined (whence, has locally determined negligible
sets, recall 5.2), F satisfies hypotheses (1) and (2) of Proposition 5.1.

(B) Apply Lemma 7.3 to C and let E be the family thus obtained. By
Theorem 7.1, the MSN

(
X̂, Â , N̂

)
:=
∐
Z∈E (Z,AZ ,NZ) and the morphism p

induced by p =
∐
Z∈E ιZ constitute the 4c version of (X,A ,N ). Furthermore,(

X̂, Â
)

is countably separated, by Proposition 6.8. In order to prove that[(
X̂, Â, N̂

)
,p
]

is an lld version, we need to adapt the end of the proof of 7.1.

Let (Y,B,M ) be an lld MSN and q : (Y,B,M ) → (X,A ,N ) a supre-
mum preserving morphism represented by q ∈ q. As before, we let ι̂Z : Z → X̂
be the inclusion map and qZ := ι̂Z ◦

(
q q−1(Z)

)
for all Z ∈ E . The fam-

ily 〈qZ〉Z∈E subordinated to
〈
q−1(Z)

〉
Z∈E

is compatible. This time we use
the gluing result 6.10 instead, that provides a gluing r : Y → X of 〈qZ〉Z∈E .
We argue as before to show that r induces the unique supremum preserving
morphism r : (Y,B,M )→ (X,A ,N ) such that p ◦ r = q.

8. Strictly localizable version of a measure space

Lemma 8.1. Let (X,A ,µ) be a measure space and E ⊆A an Nµ-generating
collection that is closed under finite union. Then, for every A ∈ A , we have
µ(A) = sup {µ(A ∩ Z) : Z ∈ E }.

Proof. If α := sup{µ(A∩Z) : Z ∈ E } is infinite, there is nothing to prove.
Otherwise, select an increasing sequence 〈Zn〉n∈N such that limn µ(A∩Zn) = α.
Set A′ := A ∩

⋃
n∈N Zn. Suppose that µ((A \ A′) ∩ Z) > 0 for some Z ∈ E .
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Then
α > µ(A ∩ (Zn ∪ Z)) > µ(A ∩ Zn) + µ((A \A′) ∩ Z).

Letting n → ∞ gives a contradiction. So we conclude that (A \ A′) ∩ Z
is negligible for all Z ∈ E . With the help of Lemma 3.4, we obtain that
µ(A \A′) = 0. Consequently, µ(A) = µ(A′) = limn→∞ µ(A ∩ Zn) = α.

Definition 8.2. (Pushforward of a measure by a morphism) Let
(X,A ,N ) be a saturated MSN. A measure µ : A → [0,∞] is absolutely
continuous with respect to N whenever N ∈ N implies µ(N) = 0. Let
q : (X,A ,N ) → (Y,B,M ) a morphism of saturated MSNs. We define
the pushforward measure q#µ := q#µ, where q is any representative of q.
This definition makes sense, because, for all q′ ∈ q and A ∈ A , we have
µ(q−1(A) 	 (q′)−1(A)) = 0, owing to the absolute continuity of µ. Trivially,
q#µ is absolutely continuous with respect to M .

Definition 8.3. (Pre-image Measure) Let (X,A , µ) be a complete
semi-finite measure space. To simplify the notations, we abbreviate Nµ to
N . Following the discussion in Paragraph 4.15, (X,A ,N ) is locally ccc.
Recording Corollary 7.4, (X,A ,N ) has a 4c version

[(
X̂, Â , N̂

)
,p
]

and we

shall show that there is a unique measure µ̂ on (X̂, Â ) such that

(1) Nµ̂ = N̂ ;

(2) p#µ̂ = µ.

Such a measure µ̂ is referred to as the pre-image measure of µ. Moreover, we
will show that the measure space

(
X̂, Â , µ̂

)
is strictly localizable; we say that[(

X̂, Â , µ̂
)
,p
]

is the strictly localizable version of the measure space (X,A , µ).
We start to prove the uniqueness of µ̂. Fix a representative p ∈ p. For

any F ∈ A we define F̂ := p−1(F ) and call pF : F̂ → F the restriction of p,
which induces, as usual, a morphism pF :

(
F̂ , ÂF̂ , N̂F̂

)
→
(
F,AF ,NF

)
. Call

A f := A ∩ {F : µ(F ) < ∞}. A pre-image measure µ̂ must satisfy
pF#

(µ̂ F̂ ) = µ F for every F ∈ A f . But (F,AF ,NF ) is ccc, so by Propo-

sition 4.16, pF is an isomorphism, forcing µ̂ F̂ = (p−1
F )#(µ F ) to hold.

Since p is supremum preserving, the collection
{
F̂ : F ∈ A f

}
admits X̂ as

an N̂ essential supremum. By (1) and Lemma 8.1 we infer that

µ̂(A) = sup
{
µ̂(A ∩ F̂ ) : F ∈ A f

}
= sup

{
(p−1

F )#(µ F )(A ∩ F̂ ) : F ∈ A f
}

for all A ∈ Â , from which the uniqueness of the pre-image measure follows
straightforwardly.
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8.4. To deal with the existence of pre-image measures, we will fix a 4c
version, obtained by an application Theorem 7.1 to the family A f defined
above. As all 4c versions of (X,A ,N ) are isomorphic, there is no restriction
in considering this special case.

Henceforth we suppose that
(
X̂, Â , N̂

)
=
∐
Z∈E (Z,AZ ,NZ), where

E ⊆ A f \ N is a collection such that (A), (B) and (C) of Theorem 7.1
hold. We now define µ̂ on (X̂, Â ) by

µ̂
(∐

Z∈E
AZ

)
:=
∑

Z∈E
µ(AZ)

each AZ being an arbitrary measurable subset of Z. We choose the represen-
tative p =

∐
Z∈E ιZ of p, each ιZ : Z → X being the inclusion map.

Obviously, (X̂, Â , µ̂) is a strictly localizable measure space and Nµ̂ = N̂ ,
which is condition (1) of Paragraph 8.3. The next result gathers some facts
about the measure µ̂. In particular, condition (2) of Paragraph 8.3 is proven
in Proposition 8.5(B).

Proposition 8.5. With the notations of paragraph 8.4:

(A) For all A ∈ A , one has µ(A) =
∑

Z∈E µ(A ∩ Z).

(B) p#µ̂ = µ.

(C) For every set A ∈ Â with σ-finite µ̂-measure, there is B ∈ A with
σ-finite µ-measure such that µ̂(A	 B̂) = 0, where B̂ := p−1(B).

Proof. (A) When E ∩ {Z : µ(A ∩ Z) > 0} is uncountable, the result
follows easily, for there is α > 0 such that Eα := E ∩ {Z : µ(A ∩ Z) > α} is
infinite. Taking a countable subset E ′α ⊆ Eα, then

µ(A) > µ
(
A ∩

⋃
E ′α

)
=
∑

Z∈E ′α
µ(A ∩ Z) =∞

because E ′α is almost disjointed.

On the other hand, suppose E ′ := E ∩ {Z : µ(A ∩ Z) > 0} is countable
and set A′ := A \

⋃
E ′. Then µ(A′ ∩Z) = 0 for every Z ∈ E . By Lemma 3.4,

A′ is an N essential supremum of {A′ ∩ Z : Z ∈ E }, which forces A′ to be
negligible. Consequently,

µ(A) = µ
(
A ∩

⋃
E ′
)

=
∑

Z∈E ′
µ(A ∩ Z) =

∑
Z∈E

µ(A ∩ Z)
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(B) For any A ∈ A , one has

p#µ̂(A) = µ̂(p−1(A)) = µ̂
(∐

Z∈E
A ∩ Z

)
=
∑

Z∈E
µ(A ∩ Z).

We conclude by means of (A).

(C) Let A ∈ Â a set of σ-finite µ̂ measure. Writing A =
∐
Z∈E AZ ,

each AZ being a measurable subset of Z, the set E ′ := E ∩ {Z : µ(AZ) > 0}
must be countable. Define B :=

⋃
{AZ : Z ∈ E ′}. We claim that the set

A	 B̂ =
∐
Z∈E

(
AZ 	 (B∩Z)

)
is negligible, or, equivalently, all AZ 	 (B∩Z)

are negligible. Indeed, for Z ∈ E ′, one has

AZ 	 (B ∩ Z) ⊆
⋃{

AZ′ ∩ Z : Z ′ ∈ E ′ and Z ′ 6= Z
}
∈ N .

If Z 6∈ E ′, then both AZ and B ∩ Z are negligible.

Proposition 8.6. The Banach spaces L1(X,A , µ) and L1(X̂, Â , µ̂) are
isometrically isomorphic.

Proof. For any f, f ′ ∈ f ∈ L1(X,A , µ) we check that f◦p and f ′◦p coincide
almost everywhere. Thus, the linear map ϕ : L1(X,A , µ) → L1(X̂, Â , µ̂)
which assigns to f the equivalence class of f ◦ p is well-defined. Furthermore,
we have ∫

X
|f | dµ =

∫ ∞
0

µ
(
{|f | > t}

)
dt =

∫ ∞
0

p#µ̂
(
{|f | > t}

)
dt

=

∫ ∞
0

µ̂
(
{|f ◦ p| > t}

)
dt =

∫
X̂
|f ◦ p| dµ̂ ,

showing that ϕ is an isometry.

Let us show that ϕ is onto. Let f̂ be an integrable function on
(
X̂, Â , µ̂

)
.

As {f̂ 6= 0} has σ-finite µ̂ measure, Proposition 8.5(B) provides a set B ∈ A
of σ-finite µ measure such that µ̂({f̂ 6= 0} 	 B̂) = 0. But

(
B,AB,NB

)
is strictly localizable, and by Proposition 4.16, the morphism
pB :

(
B̂, ÂB̂, N̂B̂

)
→ (B,AB,NB) induced by the restriction pB : B̂ → B of p

is an isomorphism. We choose qB : B → B̂ a representative of p−1
B and define

the map f : X → R by f(x) := f̂(qB(x)) for x ∈ B and f(x) := 0 otherwise.
Finally, because {f̂ 6= f ◦ p} ⊆

(
B̂ ∩ {x : qB(p(x)) 6= x}

)
∪ ({f̂ 6= 0} \ B̂), the

maps f̂ and f ◦ p coincide almost everywhere.
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Corollary 8.7. The dual of L1(X,A , µ) is L∞(X̂, Â , µ̂).

Proof. It follows from Proposition 8.6 and the (strict) localizability of
(X̂, Â , µ̂), see e.g. [6, 243G].

Definition 8.8. (Semi-finite version) We report on [6, 213X(c)]. Let
(X,A , µ) be a measure space. We define a measure µ̌ on A by the formula

µ̌(A) = sup
{
µ(A ∩ F ) : F ∈ A f

}
,

A ∈ A . As usual, A f = A ∩ {A : µ(A) <∞}. The following hold.

(1) (X,A , µ̌) is semi-finite.

(2) If A ∈ A and µ A is σ-finite, then µ A = µ̌ A.

(3) If A ∈ A and µ̌(A) <∞, then there are F ∈ A f and N ∈ Nµ̌ such that
A = F ∪N .

(4) The Banach space L1(X,A , µ) and L1(X,A , µ̌) are isometrically iso-
morphic.

These all straightforwardly follow from the definition.

If we let (X, Ã, µ̃) be the completion of (X,A , µ̌), it follows from (4)
that L1(X,A , µ) is isometrically isomorphic to L1(X, Ã, µ̃) and, in turn, to
L1(X̂, Â , µ̂), according to Proposition 8.6. In other words, we have associated
with each measure space (X,A , µ) a strictly localizable “version”, and we
have identified the dual of L1(X,A , µ). However, reference to Zorn’s Lemma
in Section 7 (by means of Lemma 4.9) makes it difficult to understand the
corresponding space X̂. This is why we determine X̂ explicitly in Sections 10
and 11, in some special cases of interest.

9. A directional Radon-Nikodým theorem

In this section, we prove an extension of the Radon-Nikodým theorem
for measure spaces that are not necessarily localizable, in connection with
the duality outlined in Corollary 8.7. So to speak, it involves a generalized
Radon-Nikodým density that also depends on the direction: as a function, it
is defined on the strictly localizable version.

This result is a slight extension of the Radon-Nikodým theorem that was
discovered independently by McShane [12, Theorem 7.1] and Zaanen [20].
Using Fremlin’s version of the Radon-Nikodým theorem [6, 232E] in the proof
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below instead of the standard one (between measure spaces of finite measure),
we are able to weaken one of the hypotheses in [12] and ask (2) instead. But
the main difference with [12] and [20] is in terms of formulation. In their
work, the Radon-Nikodým density takes the form of a “quasi-function” or a
“cross-section”, a notion that is very close to that of a compatible family of
measurable functions.

Theorem 9.1. Let (X,A , µ) be a complete semi-finite measure space and
ν a semi-finite measure on (X,A ). We let

[(
X̂, Â , µ̂

)
,p
]

be the strictly
localizable version of (X,A , µ). Suppose that

(1) ν is absolutely continuous with respect to µ.

(2) For all A ∈ A such that ν(A) > 0, there is an A -measurable subset
F ⊆ A such that µ(F ) <∞ and ν(F ) > 0.

Then there is a Â -measurable function f : X̂ → R+, unique up to equality
µ̂-almost everywhere, such that ν = p#(fµ̂).

Proof. We let A f := {F : ν(F ) < ∞}. We claim that this family
is Nµ-generating. Let U ∈ A be an Nµ-essential upper bound of A f .
Then µ(F \ U) = 0 for all F ∈ A f . By absolute continuity, it follows
that ν((X \ U) ∩ F ) = ν(F \ U) = 0 for all F ∈ A f . However, A f is
Nν-generating, by semi-finiteness of ν, and a routine application of the Dis-
tributivity Lemma 3.4 shows that ν(X \ U) = 0. Hence X \ U ∈ A f and
µ(X \ U) = µ((X \ U) \ U) = 0.

Now, the measure ν F is truly continuous with respect to µ F , for
F ∈ A f . Indeed, the hypotheses of [6, 232B(b)] are all satisfied. Thus we can
apply Fremlin’s version of the Radon-Nikodým theorem. It says that ν F
has a Radon-Nikodým density gF : F → R+ with respect to µ F . It is easy
to show that, for any F, F ′ ∈ A f , one has µ

(
F ∩F ′ ∩{gF 6= g′F }

)
= 0. Hence

〈gF 〉F∈A f is a compatible family subordinated to A f .

Fix a representative p ∈ p and set F̂ := p−1(F ) and fF := gF ◦ pF for
each F ∈ A f . where pF : F̂ → F is the restriction of p. We claim that
〈fF 〉F∈A f is a compatible family subordinated to 〈F̂ 〉F∈A f . Indeed, for dis-
tinct F, F ′ ∈ A f , we have F̂ ∩ F̂ ′ ∩ {fF 6= fF ′} = p−1(F ∩ F ′ ∩ {gF 6= gF ′}).
Since p is [(Â ,Nµ̂), (A ,Nµ)]-measurable, F̂ ∩ F̂ ′ ∩ {fF 6= fF ′} ∈ Nµ̂. Ow-

ing to the supremum preserving character of p, the family {F̂ : F ∈ A f} is
Nµ̂-generating. By Proposition 6.4, the family 〈fF 〉F∈A f has a gluing
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f : X̂ → R+. For every A ∈ A and F ∈ A f , we have

ν(A ∩ F ) =

∫
1A∩F gFdµ Radon-Nikodým Theorem

=

∫
1A∩F gFdp#µ̂ µ̂ is a pre-image measure

=

∫
1p−1(A∩F )fFdµ̂

=

∫
p−1(A)∩F̂

fdµ̂ f = fF a.e on F̂

= (fµ̂)(p−1(A) ∩ F̂ )

Applying Lemma 8.1, we obtain ν(A) = sup
{
ν(A∩F ) : F ∈ A f

}
. Also, if we

set Z := X̂ ∩ {x : f(x) > 0}, then in the subMSN
(
Z, ÂZ , (Nµ̂)Z

)
the family

{Z ∩ F̂ : F ∈ A f} admits Z as an (Nµ̂)Z-essential supremum, because p ◦ ιZ
is supremum preserving (ιZ : Z → X̂, being the inclusion map, is supremum
preserving, and the composition of supremum preserving maps is supremum
preserving). Since (Nµ̂)Z = Nfµ̂ Z , we can apply Lemma 8.1 again and
deduce

(fµ̂)
(
p−1(A)

)
= (fµ̂ Z)

(
p−1(A) ∩ Z

)
= sup

{
(fµ̂ Z)(p−1(A) ∩ Z ∩ F̂ ) : F ∈ A f

}
= sup

{
(fµ̂)(p−1(A) ∩ F̂ ) : F ∈ A f

}
.

Hence ν(A) = p#(fµ̂)(A).
Now we prove the uniqueness of f . Let f ′ be another density, and suppose

µ̂({f ′ > f}) > 0. By semi-finiteness of µ̂ there is a set A ∈ Â such that
A ⊆ {f ′ > f} and 0 < µ̂(A) < ∞. By Proposition 8.5(C), there is B ∈ A
such that µ̂(A	 p−1(B)) = 0. However, we have

p#(f ′µ̂)(B) = (f ′µ̂)(A) > (fµ̂)(A) = p#(fµ̂)(B),

which is a contradiction. It follows that f ′ 6 f almost everywhere. Similarly,
we prove the reverse inequality.

10. 4c version deduced from a compatible family
of lower densities

We devote this section to an explicit construction of the 4c and lld version
under some extra assumptions. It will be applied in the next section.
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Definition 10.1. Let (X,A ,N ) be an MSN. A lower density for
(X,A ,N ) is a function Θ: A → A such that:

(1) Θ(A) = Θ(B) for all A,B ∈ A such that A	B ∈ N ;

(2) A	Θ(A) ∈ N for all A ∈ A ;

(3) Θ(∅) = ∅;
(4) Θ(A ∩B) = Θ(A) ∩Θ(B) for all A,B ∈ A .

Proposition 10.2. Let (X,A ,N ) be a saturated MSN, E ⊆ A , and
Θ: A → A a lower density. Assume that

(A) for all Z ∈ E , the subMSN (Z,AZ ,NZ) is ccc;

(B) E is N -generating;

(C) One has

(i) ∀A ⊆ X :
[
∀Z ∈ E : A ∩ Z ∈ A

]
⇒ A ∈ A ;

(ii) ∀N ⊆ X :
[
∀Z ∈ E : N ∩ Z ∈ N

]
⇒ N ∈ N .

Then (X,A ,N ) is 4c.

Proof. Let E1 be associated with E in Lemma 4.9. Thus, E1 is almost
disjointed and N -generating, and (Z,AZ ,NZ) is ccc for all Z ∈ E1.

We claim that E may be replaced by E1 in hypothesis (C). Let A ∈P(X)
be such that A ∩ Z ∈ A for every Z ∈ E1. Let Z ′ ∈ E .

Define Z := {Z∩Z ′ : Z ∈ E1 and Z∩Z ′ 6∈ N }. Notice that (Z ′,AZ′ ,NZ′)
is ccc and Z is almost disjointed. Thus Z is countable and

⋃
Z is an

N -essential supremum of Z . Besides, by the Distributivity Lemma 3.4, the
family {Z ∩Z ′ : Z ∈ E1} admits Z ′ as an N -essential supremum. This family
differs from Z only by negligible sets. Therefore, Z ′ 	

⋃
Z ∈ N . Since

(X,A ,N ) is saturated, we deduce that (A ∩ Z ′) 	
(
A ∩

⋃
Z
)
∈ N . Thus,

one needs to establish that A ∩
⋃

Z ∈ A in order to show that A ∩ Z ′ ∈ A .
This is readily done by observing that

A ∩
⋃

Z =
⋃{

A ∩ Z ∩ Z ′ : Z ∈ E1 and Z ∩ Z ′ 6∈ N
}

is a countable union of measurable sets. We just proved that A ∩ Z ′ ∈ A for
all Z ′ ∈ E . By hypothesis (C)(i), A ∈ A . Now assume that A ∩ Z ∈ N ,
for each Z ∈ E1, and let Z ′ and Z be as above. Since Z ′ is an N -essential
supremum of Z , it follows from Lemma 3.4 that A ∩ Z ′ is an N -essential
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supremum of {A∩Z ∩Z ′ : Z ∈ E1 and Z ∩Z ′ 6∈ N }. Therefore, A∩Z ′ ∈ N .
Since Z ′ is arbitrary, it follows that A ∈ N , by hypothesis (C)(ii).

Next we define E2 = {Θ(Z) : Z ∈ E1}. The family E2 is disjointed, for
Θ(Z)∩Θ(Z ′) = Θ(Z ∩Z ′) = ∅ for any distinct Z,Z ′ ∈ E1, since Z ∩Z ′ ∈ N .
We next claim that E (or, for that matter, E1) may be replaced by E2 in
hypothesis (C). Indeed, for every A ⊆ X and every Z ∈ E1,

(A ∩ Z)	 (A ∩Θ(Z)) ⊆ Z 	Θ(Z) ∈ N ,

therefore (i) A ∩ Z ∈ A if and only if A ∩ Θ(Z) ∈ A , and (ii) A ∩ Z ∈ N
if and only if A ∩ Θ(Z) ∈ N , since (X,A ,N ) is saturated. In particu-
lar, letting N := X \ ∪E2, we infer from (C)(ii) with E replaced by E2 that
N ∈ N . Finally, the conclusion follows from Proposition 5.1 applied to
F = E2 ∪ {N}.

Definition 10.3. Let (X,A ,N ) be a saturated MSN and E ⊆ A . A
compatible family of lower densities is a family 〈ΘZ〉Z∈E such that

(1) For all Z ∈ E , the map ΘZ : AZ → AZ is a lower density for (Z,AZ ,NZ);

(2) For all Z,Z ′ ∈ E and A ⊆ Z ∩ Z ′ a measurable set, ΘZ(A) = ΘZ′(A);

(3) ΘZ(Z) = Z for all Z ∈ E .

Condition (3) is merely of technical nature. If a family satisfies only (1) and
(2), we can enforce (3) by replacing E with {ΘZ(Z) : Z ∈ E } and observing
that ΘZ : AZ → AZ restricts to AΘZ(Z) → AΘZ(Z). This, indeed, follows
from the fact that ΘZ(A) ⊆ ΘZ(B), whenever A,B ∈ AZ and A ⊆ B, and
ΘZ ◦ΘZ = ΘZ , as one easily checks from the definition of lower density.

Definition 10.4. (Germ space) In the sequel, we consider a saturated
MSN (X,A ,N ) that has a compatible family of lower densities 〈ΘZ〉Z∈E ,
where E is a family such that

(1) E is N -generating;

(2) (Z,AZ ,NZ) is ccc for each Z ∈ E .

Under these assumptions, we will now construct a new MSN
(
X̂, Â , N̂

)
that

we call the germ space of (X,A ,N ) associated with E and 〈ΘZ〉Z∈E .
For every x ∈ X, we set Ex := E ∩ {Z : x ∈ Z} and we define the relation

∼x on Ex by Z ∼x Z ′ ⇐⇒ x ∈ ΘZ(Z∩Z ′). We claim that it is an equivalence
relation. Indeed, it is reflexive because of 10.3(3); it is symmetric because of
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the set equality ΘZ(Z ∩ Z ′) = ΘZ′(Z ∩ Z ′) implied by 10.3(2). Let us check
that it is transitive. For Z,Z ′, Z ′′ ∈ Ex such that Z ∼x Z ′ ∼x Z ′′, we have

x ∈ ΘZ′(Z ∩ Z ′) ∩ΘZ′(Z
′ ∩ Z ′′) = ΘZ′(Z ∩ Z ′ ∩ Z ′′) 10.1(4)

= ΘZ(Z ∩ Z ′ ∩ Z ′′) 10.3(2)

⊆ ΘZ(Z ∩ Z ′′),

hence Z ∼x Z ′′.
We define the quotient set Γx := Ex/ ∼x. The equivalence class of Z ∈ Ex

is denoted [Z]x ∈ Γx. Next we define the set X̂ :=
{

(x, [Z]x) : x ∈ X and

[Z]x ∈ Γx
}

and the projection map p : X̂ → X which assigns (x,Z) to x. For

each Z ∈ E , we define the map γZ : Z → X̂ by γZ(x) = (x, [Z]x) for x ∈ Z.
We define a σ-algebra Â and a σ-ideal N̂ on X̂ by

Â := P(X̂) ∩
{
A : γ−1

Z (A) ∈ AZ , ∀Z ∈ E
}
,

N̂ := P(X̂) ∩
{
N : γ−1

Z (N) ∈ NZ ,∀Z ∈ E
}
.

Actually, Â and N̂ are the finest σ-algebra and σ-ideal such that the maps
γZ become [(AZ ,NZ), (Â , N̂ )]-measurable. Clearly,

(
X̂, Â , N̂

)
is saturated.

Let us check that the projection map p : X̂ → X is [(Â , N̂ ), (A ,N )]-
measurable. If A ∈ A then for any Z ∈ E we have

γ−1
Z

(
p−1(A)

)
= (p ◦ γZ)−1(A) = Z ∩A ∈ AZ ,

so by definition p−1(A) ∈ Â . One proves similarly that p−1(N) ∈ N̂ for
all N ∈ N .

Theorem 10.5. Let (X,A ,N ) be a saturated MSN that has a compati-
ble family of lower density 〈ΘZ〉Z∈E , where E ⊆ A is a family such that con-
ditions (1) and (2) of definition 10.4 hold. Then the germ space

(
X̂, Â , N̂

)
constructed in definition 10.4 together with p is the 4c version of (X,A ,N ).
It is also its lld version in case card E 6 c and (Z,AZ) is countably separated
for all Z ∈ E .

Proof. The second conclusion is a consequence of the first and of
Theorem 7.6.

Step 1: we prove that (X̂, Â , N̂ ) possesses a lower density Θ, obtained
by “patching together” the lower densities ΘZ for Z ∈ E . For every A ∈ Â ,
we set

Θ(A) := X̂ ∩
{

(x, [Z]x) : x ∈ ΘZ

(
γ−1
Z (A)

)}
.
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The condition x ∈ ΘZ

(
γ−1
Z (A)

)
does not depend on the representative Z of

[Z]x. Indeed, if Z ′ ∼x Z for some Z ′ ∈ Ex, then

x ∈ ΘZ

(
γ−1
Z (A)

)
∩ΘZ(Z ∩ Z ′) = ΘZ

(
γ−1
Z (A) ∩ Z ′

)
.

Note that the sets γ−1
Z (A)∩Z ′ and γ−1

Z′ (A)∩Z coincide N -almost every-
where, as(

γ−1
Z (A) ∩ Z ′

)
	
(
γ−1
Z′ (A) ∩ Z

)
⊆ Z ∩ Z ′ ∩

{
y : [Z]y 6= [Z ′]y

}
⊆ Z ∩ Z ′ \ΘZ(Z ∩ Z ′)

is negligible by 10.1(2). Consequently,

ΘZ

(
γ−1
Z (A) ∩ Z ′

)
= ΘZ

(
γ−1
Z′ (A) ∩ Z

)
10.1(2)

= ΘZ′
(
γ−1
Z′ (A) ∩ Z

)
10.3(2)

⊆ ΘZ′
(
γ−1
Z′ (A)

)
and in turn x ∈ ΘZ′

(
γ−1
Z′ (A)

)
, as expected.

Next we show that Θ satisfies the four properties required to be a lower
density:

• Let A,B ∈ Â such that A	 B ∈ N̂ . Then γ−1
Z (A)	 γ−1

Z (B) ∈ N for
all Z ∈ E , which implies

(x, [Z]x) ∈ Θ(A) ⇐⇒ x ∈ ΘZ(γ−1
Z (A))

⇐⇒ x ∈ ΘZ(γ−1
Z (B)) 10.1(1)

⇐⇒ (x, [Z]x) ∈ Θ(B)

and we conclude that Θ(A) = Θ(B).

• Let A ∈ Â . By construction, γ−1
Z (Θ(A)) = ΘZ

(
γ−1
Z (A)

)
, for all Z ∈ E .

This gives that γ−1
Z (A	Θ(A)) = γ−1

Z (A)	 γ−1
Z (Θ(A)) ∈ N . By defini-

tion of the σ-ideal N̂ , we infer that A	Θ(A) ∈ N̂ .

• That Θ(∅) = ∅ is straightforward.

• Let A,B ∈ Â . We have

(x, [Z]x) ∈ Θ(A ∩B) ⇐⇒ x ∈ ΘZ

(
γ−1
Z (A ∩B)

)
⇐⇒ x ∈ ΘZ

(
γ−1
Z (A) ∩ γ−1

Z (B)
)

⇐⇒ x ∈ ΘZ

(
γ−1
Z (A)

)
∩ΘZ

(
γ−1
Z (B)

)
⇐⇒ (x, [Z]x) ∈ Θ(A) ∩Θ(B).
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Step 2: we establish that p is a “local isomorphism”. Set Ẑ := p−1(Z)
for all Z ∈ E . We also call pZ and sZ the respective restrictions of p and γZ
to Ẑ → Z and Z → Ẑ. First, we remark that pZ ◦ sZ = idZ .

Let us show that Ẑ \ sZ(Z) ∈ N̂ . For Z ′ ∈ E , we find that

x ∈ γ−1
Z′ (Ẑ \ sZ(Z)) ⇐⇒ x ∈ Z ′ and (x, [Z ′]x) ∈ Ẑ \ sZ(Z)

⇐⇒ x ∈ Z ∩ Z ′ and [Z ′]x 6= [Z]x

⇐⇒ x ∈ Z ∩ Z ′ \ΘZ′(Z ∩ Z ′).

So γ−1
Z′
(
Ẑ \ sZ(Z)

)
∈ NZ′ . As this holds for all Z ′ ∈ E , we deduce that

Ẑ \ sZ(Z) is N̂ -negligible.
Since Ẑ ∩ {ξ : (sZ ◦ pZ)(ξ) 6= ξ} = Ẑ \ sZ(Z), this shows that sZ ◦ pZ and

idẐ coincide N̂ -almost everywhere. As a consequence, the morphisms pZ
and sZ induced by pZ and sZ are reciprocal isomorphisms of MSN between
(Z,AZ ,NZ) and

(
Ẑ, ÂẐ , N̂Ẑ

)
. They are supremum preserving, according to

Proposition 3.7(A).
Step 3:

(
X̂, Â , N̂

)
is “locally determined” (in the sense of Proposition

10.2(C)) by the family Ê :=
{
Ẑ : Z ∈ E

}
. Let A a subset of X̂. By definition

of Â , we have

A ∈ Â ⇐⇒ ∀Z ∈ E : γ−1
Z (A) ∈ AZ

⇐⇒ ∀Z ∈ E : s−1
Z (A ∩ Ẑ) ∈ AZ

⇐⇒ ∀Z ∈ E : A ∩ Ẑ ∈ ÂẐ .

The direct implication of the last equivalence is justified as follows:
if s−1

Z

(
A ∩ Ẑ

)
is measurable, then so is p−1

Z

(
s−1
Z (A ∩ Ẑ)

)
, from which A ∩ Ẑ

differs only by an N̂ negligible set. We prove analogously that a set N ⊆ X̂
is negligible if and only if N ∩ Ẑ ∈ N̂ for all Z ∈ E .

Step 4: p is supremum preserving. Let F ⊆ A be a collection which
has an N -essential supremum denoted S. Clearly, p−1(S) is an N̂ -essential
upper bound of p−1(F ) :=

{
p−1(F ) : F ∈ F

}
. Let U be an arbitrary

N̂ -essential upper bound of p−1(F ). We need to prove that p−1(S)\U ∈ N̂ ,
that is, γ−1

Z

(
p−1(S) \ U

)
∈ N̂ for all Z ∈ E . But

γ−1
Z

(
p−1(S) \ U

)
= (p ◦ γZ)−1(S) \ γ−1

Z (U) = Z ∩ S \ γ−1
Z (U).

By Lemma 3.4 we recognize Z∩S as an N -essential supremum of {Z∩F :
F ∈ F}. This last collection can be also written

{
γ−1
Z (p−1(F )) : F ∈ F

}
, of

which γ−1
Z (U) is an N -essential upper bound, leading to Z∩S \γ−1

Z (U) ∈ N .
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Step 5:
(
X̂, Â , N̂

)
is 4c. This is an application of Proposition 10.2

with the collection Ê . We check that all the hypotheses are satisfied. For
Z ∈ E , the subMSN

(
Ẑ, ÂẐ , N̂Ẑ

)
is ccc because of the isomorphism

pZ :
(
Ẑ, ÂẐ , N̂Ẑ

)
→ (Z,AZ ,NZ). Since p is supremum preserving, X̂ is an

N̂ -essential supremum of Ê . The “local determination” property was estab-
lished in step 3.

Step 6: The pair
((
X̂, Â , N̂

)
,p
)

satisfies the universal property of Defi-
nition 4.11. We finish the proof in a way similar to the proof of Theorem 7.1.
Let (Y,B,M ) a 4c MSN and q : (Y,B,M ) → (X,A ,N ) a supremum pre-
serving morphism, represented by a map q ∈ q. For every Z ∈ E , we define
qZ = γZ ◦

(
q q−1(Z)

)
: q−1(Z)→ X̂. We claim that 〈qZ〉Z∈E is a compatible

family subordinated to
〈
q−1(Z)

〉
Z∈E

. Indeed, for distinct Z,Z ′ ∈ E ,

q−1(Z) ∩ q−1(Z ′) ∩ {qZ 6= qZ′} = q−1
(
Z ∩ Z ′ ∩ {γZ 6= γZ′}

)
= q−1

(
Z ∩ Z ′ \ΘZ(Z ∩ Z ′)

)
is negligible, using that ΘZ is a lower density and q is [(B,M ), (A ,N )]-
measurable. Then, by Proposition 6.4, the family 〈qZ〉Z∈E has a gluing that
we denote r : Y → X̂. That r is [(B,M ), (Â , N̂ )]-measurable and supremum
preserving follows from Lemma 6.2. Indeed, each γZ is supremum preserv-
ing. This follows from the same property of sZ , proved in Step 2, and the
Distributivity Lemma 3.4.

We need to show that {p ◦ r 6= q} is M -negligible. In fact, for any
Z ∈ E and y ∈ q−1(Z), we note that p(qZ(y)) = p(γZ(q(y)) = q(y), so
q−1(Z)∩{p◦r 6= q} ⊆

(
q−1(Z) ∩ {r 6= qZ}

)
is M -negligible. We then use that

(Y,B,M ) has locally determined negligible sets (see Proposition 5.3(E) and
the preceding Paragraph 5.2) to conclude that p◦r = q almost everywhere. We
have found a supremum preserving morphism r : (Y,B,M ) →

(
X̂, Â , N̂

)
,

namely the one induced from r, such that p ◦ r = q.

We now prove that this factorization is unique. Let r be a supremum
preserving morphism such that p ◦ r = q and r ∈ r. For Z ∈ E and almost
every y ∈ q−1(Z), we have p(r(y)) = q(y) ∈ Z. Therefore r(y) ∈ Ẑ for almost
all y ∈ q−1(Z). For such a y, we have q(y) = p(r(y)) = pZ(r(y)), which implies
that qZ(y) = γZ(q(y)) = sZ(q(y)) = sZ(pZ(r(y)). But sZ◦pZ and idẐ coincide

almost everywhere on Ẑ as we saw in Step 2. This implies that r(y) = qZ(y)
for almost all y ∈ q−1(Z). The map r must be a gluing of 〈qZ〉Z∈E , so it is
unique up to equality almost everywhere according to Proposition 6.4.
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11. Applications

Here, we apply Theorem 10.5 to two different situations. For this result
to apply to an MSN (X,A ,N ), the following conditions need to be met:

(i) (X,A ,N ) is saturated.

(ii) An N -generating family E ⊆ A is given.

(iii) For every Z ∈ E , the MSN (Z,AZ ,NZ) is ccc.

(iv) For every Z ∈ E , the measurable space (Z,AZ) is countably separated.

(v) card E 6 c.

(vi) For every Z ∈ E , a lower density ΘZ is given for (Z,AZ ,NZ), so that
ΘZ(Z) = Z.

(vii) For every Z,Z ′ ∈ E and A ∈ A such that A ⊆ Z ∩ Z ′, one has
ΘZ(A) = ΘZ′(A).

In that case, the corresponding germ space
(
X̂, Â , N̂

)
constructed in 10.4

is the 4c version and the lld version of (X,A ,N ).

11.1. (Purely unrectifiable negligibles) Fix integers 1 6 k 6
m − 1. Recall [4, 3.2.14] that a subset N ⊆ Rm is called purely (H k, k)-
unrectifiable whenever H k(N ∩M) = 0 for every k-rectifiable set M ⊆ Rm.
This is equivalent to H k(N ∩M) = 0 for every k-dimensional embedded sub-
manifold M ⊆ Rm of class C1 with H k(M) < ∞, by [4, 3.1.15]. We denote
by Npu,k the collection of purely (H k, k)-unrectifiable subsets of Rm. It is a
σ-ideal of P(Rm). We also introduce the Borel σ-algebra B(Rm) of Rm and
its completion B(Rm) :=

{
B 	N : B ∈ B(Rm), N ∈ Npu,k

}
. We shall show

that the MSN (Rm,B(Rm),Npu,k) can be associated with a germ space, as
in 10.4. We notice that, by definition, this MSN is saturated. We let E be
the collection of all k-dimensional (embedded) submanifolds M ⊆ Rm of class
C1, [4, 3.1.19], such that H k M is locally finite (that is H k(M ∩ B) < ∞
for every bounded Borel set B ⊆ Rm). Clearly, each member of E is Borel.

(ii) We now show that E is Npu,k-generating. Let U ∈ B(Rm) be such
that Rm \ U 6∈ Npu,k. By definition of this σ-ideal, there exists M ∈ E such
that H k((Rm \U)∩M) > 0. In other words, M \U 6∈ Npu,k, i.e. U is not an
Npu,k-essential upper bound of E .

(iii) We next claim that (M,B(Rm)M , (Npu,k)M ) is ccc, for every M ∈ E .
To this end, we notice that for every M ∈ E the following holds:

For every S ⊆M : S ∈ Npu,k if and only if H k(S) = 0. (F)
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In other words,
(
M,B(Rm)M , (Npu,k)M

)
is the saturation of the MSN as-

sociated with the measure space
(
M,B(M),H k M

)
. Since the latter is

σ-finite, the claim follows from Proposition 4.5.

We also record the following useful consequence of (F), for M ∈ E :

If S ∈B(Rm)M then S = B 	N for some

B ∈B(M) and N ⊆M with H k(N) = 0.
(�)

Indeed, S = B′ 	N ′, B′ ∈ B(Rm), N ′ ∈ Npu,k.

Thus S = M∩S = (M∩B′)	(M∩N ′), which proves (�). In particular, S is
H k-measurable, even though some S ∈ B(Rm) may not be H k-measurable.

(iv) Consider M ∈ E . We observe that the canonical embedding(
M,B(Rm)M

)
→
(
Rm,B(Rm)

)
is, indeed, injective and measurable. There-

fore,
(
M,B(Rm)M

)
is countably separated, according to Proposition 6.7.

(v) Since E ⊆ B(Rm) we infer that card E 6 c, according to [17, 3.3.18].

(vi) In order to define lower densities, we recall [4, 2.10.19] the density
numbers Θk

∗(φ, x) and Θ∗ k(φ, x), defined by means of closed Euclidean balls,
associated with an outer measure φ on Rm and x ∈ Rm. Given M ∈ E we
abbreviate φM = H k M and we define

ΘM (A) = M ∩
{
x : Θk

∗(φM , x) = 1
}
,

whenever A ∈ B(Rm)M . Given x ∈ Rm, the function r 7→ φM (B(x, r)) is right
continuous, since φM is locally finite. It easily follows that x 7→ Θk

∗(φM , x)
is Borel measurable and, in turn, that ΘM (A) ∈ B(Rm). In particular, ΘM

maps B(Rm)M to itself. The following is the main point of the construction:

For every x ∈M : Θm
∗ (φM , x) = 1. (♣)

See for instance the proof of [3, 3.6.1]. For instance, it follows that
ΘM (M) = M . We now turn to checking that ΘM is a lower density. If
A,B ⊆ M are such that A 	 B ∈ Npu,k then H k(A 	 B) = 0, recall (iii).
Consequently, φM (A ∩B(x, r)) = φM (B ∩B(x, r)) for all x ∈ Rm and r > 0.
Thus, Θk

∗(A, x) = Θk
∗(B, x). Since x is arbitrary, ΘM (A) = ΘM (B). This

proves condition of 10.1. Condition (3) of 10.1 is trivial. In view of proving
10.1(3) we let A ∈ B(Rm)M . According to condition (1) just proved and (�),
there is no restriction to assume that A is Borel. We ought to show that the
equation Θk

∗(φM A, x) = 1A(x) holds for H k-almost every x ∈ M . Letting
ψ = φM A, we infer from the Besicovitch Covering Theorem as in [11, 2.12]
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that limr→0+
ψ(B(x,r))
φM (B(x,r)) = 1A(x) for φM -almost every every x ∈ Rn. In view

of (♣), it ensues that the sought for equation holds H k-almost everywhere
on M . To establish that ΘM is a lower density, it remains to proves 10.1(4).
Let A,B ∈ B(Rm)M . We observe that

Θk
∗
(
φM (A ∩B), x

)
> Θk

∗(φM , x)−Θ∗ k
(
φM (M \A), x

)
−Θ∗ k

(
φM (M \B), x

)
for all x ∈ M . Now, as A and B are φM -measurable, according to (�), if
x ∈ ΘM (A) ∩ΘM (B), then it follows from (♣) that

Θ∗ k
(
φM (M \A), x

)
= Θ∗ k

(
φM (M \B), x

)
= 0

and, in turn, referring to (♣) again, that Θk
∗
(
φM (A ∩ B), x

)
= 1. Thus,

x ∈ ΘM (A ∩ B). We have shown that ΘM (A) ∩ ΘM (B) ⊆ ΘM (A ∩ B). The
other inclusion is trivial, so that ΘM is, indeed, a lower density.

(vii) Let M,M ′ ∈ E and A ∈ B(Rm) be such that A ⊆ M ∩M ′. Notice
that A = A ∩M ′ = A ∩M and φM A ∩M ′ = φM ′ A ∩M . Therefore, if
x ∈ ΘM (A), then

1 = Θk
∗
(
φM A, x

)
= Θk

∗
(
φM A ∩M,x

)
= Θk

∗
(
φM ′ A ∩M,x

)
= Θk

∗
(
φM ′ A, x

)
.

Since also x ∈ M ′, we conclude that x ∈ ΘM ′(A). Switching the rôles of
M and M ′ we conclude that ΘM (A) = ΘM ′(A).

It is interesting to try to understand the corresponding germ space. Each
(x,M) ∈ R̂m consists of a pair where x ∈ Rm belongs to the base space
Rm and M is an equivalence class of a k-dimensional submanifolds passing
through x. If M 3 x ∈ M ′ are two such submanifolds, then M ∼x M ′ if and
only if

lim
r→0+

H k
(
M ∩M ′ ∩B(x, r)

)
α(k)rk

= 1.

This relation is finer than the usual notion of a germ of a k-dimensional
submanifold passing through x. Of course if M and M ′ belong to the same,
classically defined, germ, i.e. if there exists a neighborhood V of x in Rm such
that M∩V = M ′∩V , then M ∼x M ′. Notwithstanding, the following example
illustrates the difference. Let x ∈ Rm, let W ⊆ Rm be a k-dimensional affine
subspace containing x, and let C ⊆W be closed with empty interior and such
that Θk

∗(φW C, x) = 1. Choose a k-dimensional submanifold M ⊆ Rm of
class C1 “that sticks to W exactly along C”, that is W ∩M = C. It follows
that W ∼x M , yet M ∩V 6= W ∩V , for every neighborhood V of x. We note,
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however, that if M ∼x M ′, then Tan(M,x) = Tan(M ′, x).

The construction here could be repeated by replacing E by E ′, the collec-
tion of all Borel measurable, countably (H k,k)-rectifiable subsets M of X such
that H k M is locally finite, and Θk

∗(φM , x)=1 for every x∈M . The latter
does not hold in general for rectifiable sets, unlike the case of (embedded)
submanifolds. It is critical when establishing that condition 10.1(4) holds.

11.2. (Integral geometric measure) Here, we show that the meth-
ods of 11.1 apply, in fact, to a special measure space. We keep the same nota-
tions as in 11.1 and we let I k

∞ be the integral geometric outer measure on Rm
defined in [4, 2.10.5(1)] or [11, 5.14]. The measure space

(
Rm,B(Rm),I k

∞
)

is not semi-finite (for the case 1 = k = m− 1, see [4, 3.3.20]). Thus, recalling
8.8, we introduce the following:

Ǐ k
∞(A) = sup

{
I k
∞(A ∩B) : B ∈ B(Rm), B ⊆ A and I k

∞(B) <∞
}
,

for A ∈ B(Rm). The measure space
(
Rm,B(Rm), Ǐ k

∞
)

is semi-finite, and

Ǐ k
∞(A) = 0 whenever A ∈ B(Rm) is purely I k

∞-infinite, i.e. A itself and
all its Borel subsets of nonzero measure have infinite measure. We denote

by
(
Rm, B̃(Rm), Ĩ k

∞

)
its completion. Our goal is to describe its 4c, lld, and

strictly localizable version. The corresponding MSN
(
Rm, B̃(Rm),NĨ k

∞

)
is

readily saturated. We will check conditions (ii) through (vii) at the beginning
of this section.

(ii) We claim that E is NĨ k
∞

-generating in the MSN
(
Rm, B̃(Rm),NĨ k

∞

)
,

where E is as in 11.1.

We know that the collection A := B̃(Rm) ∩
{
A : Ĩ k

∞(A) < ∞
}

is
NĨ k

∞
-generating, by 4.2. It is easy to check that it suffices to establish the

following: For every A ∈ A there is a sequence 〈Mn〉n∈N in E such that
A \

⋃
n∈NMn ∈ NĨ k

∞
. Let A ∈ A . By definition of completion of a measure

space, there are B ∈ B(Rm), N ∈ NǏ k
∞

, and N ′ ⊆ N such that A = B 	N ′.
Since Ĩ k

∞(N ′) = 0, it suffices to prove the existence of a sequence 〈Mn〉n∈N in
E such that B \

⋃
n∈NMn ∈ NĨ k

∞
. Since Ǐ k

∞(B) = Ĩ k
∞(B) = Ĩ k

∞(A) < ∞,

there are Borel sets F and N such that B = F ∪ N , I k
∞(F ) < ∞, and

Ǐ k
∞(N) = 0, by 8.8(3). It follows from the Besicovitch Structure Theorem [4,

3.3.14] that F is (I k
∞, k)-rectifiable. In particular, there is a sequence 〈Mn〉n∈N

in E such that F \
⋃
n∈NMn ∈ NH k ⊆ NI k

∞
. Since B \ F ∈ NǏ k

∞
⊆ NĨ k

∞
,

the proof is complete.
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In order to establish (iii) through (vii), it suffices to observe that for each

M ∈ E the MSNs
(
M,B(Rm)M , (Npu,k)M

)
and

(
M, B̃(Rm)M , (NĨ k

∞
)M

)
are the same. We recall from 11.1(iii) that the former is the saturation of
(M,B(Rm)M ,H

k M). Let us prove that the latter has the same property.

Let S ∈ B̃(Rm)M . There are B ∈ B(Rm) and N ∈ NĨ k
∞

such that S = B	N .

Since S = S ∩M = (B ∩M) 	 (M ∩ N), there is no restriction to assume
that both B and N are contained in M . Therefore, we ought to show that
H k(N) = 0. There exists a Borel set N ′ ⊆M containing N and such that
Ǐ k
∞(N ′) = 0. We observe that Ǐ k

∞ M = I k
∞ M = H k M , where the

second equality follows from [4, 3.2.26], and the first follows from 8.8(2) and
the fact that M has σ-finite I k

∞ measure. Thus, H k(N ′)=0 and we are done.

It follows that the germ space
(
R̂m, Â , N̂

)
constructed in 11.1 is, in

fact, also the 4c and lld version of the MSN
(
Rm, B̃(Rm),NĨ k

∞

)
. Further-

more, if Î k
∞ denotes the pre-image measure of Ĩ k

∞ along the projection map

p : R̂m → Rm, then

(
R̂m,

̂̃
B(Rm), Î k

∞

)
is the strictly localizable version of(

Rm, B̃(Rm), Ĩ k
∞

)
.

11.3. (Hausdorff measures) Here, we briefly comment on why the
lower densities set up so far in this section do not help to describe explic-
itly the 4c and lld version of the saturation of the MSN

(
Rm,B(Rm),NH k

)
.

The main reason is that we would need to enlarge the collection E for it to
be generating, since there are (much) less H k-negligible sets than there are
purely k-unrectifiable sets. In doing so we loose (♣), which was critical for
implementing the techniques of the previous section. In fact, if M ⊆ Rm is
Borel, φM = H k M is locally finite, and Θk(φM , x) = 1 for H k-almost
every x ∈ M , then M is countably (H k, k)-rectifiable, see e.g. [11, 17.6(1)].
Since we ought to include non H k-negligible, purely k-unrectifiable sets in an
NH k -generating family, our only choice is, if possible, to change the definition
of the lower densities ΘM . So far, we do not know how to construct, in this
case, a compatible family of lower densities.
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