On Jordan ideals with left derivations in 3-prime near-rings

A. En-guady, A. Boua ${ }^{\circledR}$
Department of Mathematics, Polydisciplinary Faculty of Taza Sidi Mohammed Ben Abdellah University, Fez, Morocco
adel.enguady@usmba.ac.ma, abdelkarimboua@yahoo.fr

Abstract: We will extend in this paper some results about commutativity of Jordan ideals proved in [2] and 6]. However, we will consider left derivations instead of derivations, which is enough to get good results in relation to the structure of near-rings. We will also show that the conditions imposed in the paper cannot be removed.
Key words: 3-prime near-rings, Jordan ideals, Left derivations.
MSC (2020): 16N60; 16W25; 16Y30.

1. Introduction

A right (resp. left) near-ring \mathcal{A} is a triple $(\mathcal{A},+,$.$) with two binary$ operations " + " and "." such that:
(i) $(\mathcal{A},+)$ is a group (not necessarily abelian),
(ii) $(\mathcal{A},$.$) is a semigroup,$
(iii) $(r+s) . t=r . t+s . t$ (resp. $r .(s+t)=r . s+r . t)$ for all $r ; s ; t \in \mathcal{A}$.

We denote by $Z(\mathcal{A})$ the multiplicative center of \mathcal{A}, and usually \mathcal{A} will be 3 -prime, that is, for $r, s \in \mathcal{A}, r \mathcal{A} s=\{0\}$ implies $r=0$ or $s=0$. A right (resp. left) near-ring \mathcal{A} is a zero symmetric if $r .0=0$ (resp. $0 . r=0$) for all $r \in \mathcal{A}$, (recall that right distributive yields $0 r=0$ and left distributive yields $r .0=0$). For any pair of elements $r, s \in \mathcal{A},[r, s]=r s-s r$ and $r \circ s=r s+s r$ stand for Lie product and Jordan product respectively. Recall that \mathcal{A} is called 2 -torsion free if $2 r=0$ implies $r=0$ for all $r \in \mathcal{A}$. An additive subgroup J of \mathcal{A} is said to be Jordan left (resp. right) ideal of \mathcal{A} if $r \circ i \in J$ (resp. $i \circ r \in J$) for all $i \in J, r \in \mathcal{A}$ and J is said to be a Jordan ideal of \mathcal{A} if $r \circ i \in J$ and $i \circ r \in J$ for all $i \in J, r \in \mathcal{N}$. An additive mapping

[^0]ISSN: 0213-8743 (print), 2605-5686 online)
(C) The author(s) - Released under a Creative Commons Attribution License (CC BY-NC 3.0)

$H: \mathcal{A} \rightarrow \mathcal{A}$ is a multiplier if $H(r s)=r H(s)=H(r) s$ for all $r, s \in \mathcal{A}$. An additive mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is a left derivation (resp. Jordan left derivation) if $d(r s)=r d(s)+s d(r)$ (resp. $d\left(r^{2}\right)=2 r d(r)$) holds for all $r, s \in \mathcal{A}$. The concepts of left derivations and Jordan left derivations were introduced by Breşar et al. in [7], and it was shown that if a prime ring \mathcal{R} of characteristic different from 2 and 3 admits a nonzero Jordan left derivation, then \mathcal{R} must be commutative. Obviously, every left derivation is a Jordan left derivation, but the converse need not be true in general (see [9, Example 1.1]). In [1], M. Ashraf et al. proved that the converse statement is true in the case when the underlying ring is prime and 2-torsion free. The study of left derivation was developed by S.M.A. Zaidi et al. in [9] and they showed that if J is a Jordan ideal and a subring of a 2 -torsion-free prime ring R admits a nonzero Jordan left derivation and an automorphism T such that $d\left(r^{2}\right)=2 T(r) d(r)$ holds for all $r \in J$, then either $J \subseteq Z(\mathcal{R})$ or $d(J)=\{0\}$. Recently, there have been many works concerning the Jordan ideals of near-rings involving derivations; see, for example, [4], [5], 6], etc. For more details, in [6, Theorem 3.6 and Theorem 3.12], we only manage to show the commutativity of the Jordan ideal, but we don't manage to show the commutativity of our studied near-rings, hence our goal to extend these results to the left derivations.

2. Some preliminaries

To facilitate the proof of our main results, the following lemmas are essential.

Lemma 2.1. Let \mathcal{N} be a 3 -prime near-ring.
(i) [3, Lemma 1.2 (iii)] If $z \in Z(\mathcal{N}) \backslash\{0\}$ and $x z \in Z(\mathcal{N})$ or $z x \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.
(ii) [2, Lemma 3 (ii)] If $Z(\mathcal{N})$ contains a nonzero element z of \mathcal{N} which $z+z \in Z(\mathcal{N})$, then $(\mathcal{N},+)$ is abelian.
(iii) [5, Lemma 3] If $J \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Lemma 2.2. ([8, Theorem 3.1]) Let \mathcal{N} be a 3 -prime right near-ring. If \mathcal{N} admits a nonzero left derivation d, then the following properties hold true:
(i) If there exists a nonzero element a such that $d(a)=0$, then $a \in Z(\mathcal{N})$,
(ii) $(\mathcal{N},+)$ is abelian, if and only if \mathcal{N} is a commutative ring.

Lemma 2.3. ([4, Lemma 2.2]) Let \mathcal{N} be a 3 -prime near-ring. If \mathcal{N} admits a nonzero Jordan ideal J, then $j^{2} \neq 0$ for all $j \in J \backslash\{0\}$.

Lemma 2.4. ([4, Theorem 3.1]) Let \mathcal{N} be a 2 -torsion free 3 -prime right near-ring and J a nonzero Jordan ideal of \mathcal{N}. If \mathcal{N} admits a nonzero left multiplier H, then the following assertions are equivalent:
(i) $H(J) \subseteq Z(\mathcal{N})$;
(ii) $H\left(J^{2}\right) \subseteq Z(\mathcal{N})$;
(iii) \mathcal{N} is a commutative ring.

Lemma 2.5. ([5, Theorem 1]) Let \mathcal{N} be a 2 -torsion free 3 -prime nearring and J a nonzero Jordan ideal of \mathcal{N}. Then \mathcal{N} must be a commutative ring if J satisfies one of the following conditions:
(i) $i \circ j \in Z(\mathcal{N})$ for all $i, j \in J$.
(ii) $i \circ j \pm[i, j] \in Z(\mathcal{N})$ for all $i, j \in J$.

Lemma 2.6. Let \mathcal{N} be a left near-ring. If \mathcal{N} admits a left derivation d, then we have the following identity:

$$
x y d\left(y^{n}\right)=y x d\left(y^{n}\right) \quad \text { for all } n \in \mathbb{N}, x, y \in \mathcal{N} .
$$

Proof. Using the definition of d. On one hand, we have

$$
\begin{aligned}
d\left(x y^{n+1}\right) & =x d\left(y^{n+1}\right)+y^{n+1} d(x) \\
& =x y^{n} d(y)+x y d\left(y^{n}\right)+y^{n+1} d(x) \quad \text { for all } n \in \mathbb{N}, x, y \in \mathcal{N} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
d\left(x y^{n+1}\right) & =x y^{n} d(y)+y d\left(x y^{n}\right) \\
& =x y^{n} d(y)+y x d\left(y^{n}\right)+y^{n+1} d(x) \quad \text { for all } n \in \mathbb{N}, x, y \in \mathcal{N} .
\end{aligned}
$$

Comparing the two expressions, we obtain the required result.

3. RESULTS CHARACTERIZING LEFT DERIVATIONS IN 3-PRIME NEAR-RINGS

In [2], the author proved that if \mathcal{N} is a 3-prime 2 -torsion-free near-ring which admits a nonzero derivation D for which $D(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring. In this section, we investigate possible analogs of these results, where D is replaced by a left derivation d and by integrating Jordan ideals.

Theorem 3.1. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathcal{N}. If \mathcal{N} admits a left derivation d, then the following assertions are equivalent:
(i) $d(J) \subseteq Z(\mathcal{N})$;
(ii) $d\left(J^{2}\right) \subseteq Z(\mathcal{N})$;
(iii) \mathcal{N} is a commutative ring or $d=0$.

Proof. Case 1: \mathcal{N} is a 3 -prime right near-ring. It is obvious that (iii) implies (i) and (ii). Therefore we only need to prove (i) \Rightarrow (iii) and (ii) \Rightarrow (iii).
(i) \Rightarrow (iii): Suppose that $Z(\mathcal{N})=\{0\}$, then $d(J)=\{0\}$. From Lemma 2.2 (i), we get $J \subseteq Z(\mathcal{N})$ and by Lemma 2.1 (i), we conclude that \mathcal{N} is a commutative ring. In this case, and by using the definition of d together with the 2 -torsion freeness of \mathcal{N}, the above equation leads to

$$
\begin{equation*}
j d(n)=0 \quad \text { for all } j \in J, n \in \mathcal{N} \tag{3.1}
\end{equation*}
$$

Taking $j \circ m$ of j, where $m \in \mathcal{N}$ in (3.1) and using it, we get $J \mathcal{N} d(n)=\{0\}$ for all $n \in \mathcal{N}$. Since \mathcal{N} is 3-prime and $J \neq\{0\}$, then $d=0$.

Now suppose $Z(\mathcal{N}) \neq\{0\}$. By assumption, we have $d(j \circ j) \in Z(\mathcal{N})$ for all $j \in J$, which gives $(4 j) d(j) \in Z(\mathcal{N})$ for all $j \in J$, that is $(d(4 j)) j \in Z(\mathcal{N})$ for all $j \in J$. Invoking Lemma 2.1 (i) and Lemma 2.2 (i) together with the 2-torsion freeness of \mathcal{N}, we obtain $J \subseteq Z(\mathcal{N})$, and Lemma 2.4 (i) forces that \mathcal{N} is a commutative ring.
(ii) \Rightarrow (iii): Suppose that $Z(\mathcal{N})=\{0\}$, then $d\left(J^{2}\right)=\{0\}$, which implies $J^{2} \subseteq Z(\mathcal{N})$ by Lemma 2.2 (ii), hence \mathcal{N} is a commutative ring by Lemma 2.4 (ii). Now using assumption, then we have $d\left(j^{2}\right)=0$ for all $j \in J$. By the 2 -torsion freeness of \mathcal{N}, it follows $j d(j)=0$ for all $j \in J$. Since \mathcal{N} is a commutative ring, we can write $j n d(j)=0$ for all $j \in J, n \in \mathcal{N}$, which implies that $j \mathcal{N} d(j)=\{0\}$ for all $j \in J$. By the 3 -primeness of \mathcal{N}, we conclude that $d(J)=\{0\}$. Using the same techniques as we have used in the proof of (i) \Rightarrow (iii) one can easily see that $d=0$.

Now suppose $Z(\mathcal{N}) \neq\{0\}$. By our hypothesis, we have $d\left(\left(j \circ j^{2}\right) j\right) \in Z(\mathcal{N})$ for all $j \in J$, and by a simplification, we find $d\left(\left(j^{2} \circ j\right) j\right)=\left(j^{2}\right) d\left(4 j^{2}\right)$ for all $j \in J$:

$$
\begin{aligned}
d\left(\left(j^{2} \circ j\right) j\right) & =d\left(\left(j^{3}+j^{3}\right) j\right)=d\left(j^{4}+j^{4}\right)=d\left(2 j^{2} j^{2}\right) \\
& =2 j^{2} d\left(j^{2}\right)+j^{2} d\left(2 j^{2}\right)=2 j^{2} d\left(j^{2}\right)+d\left(2 j^{2}\right) j^{2} \\
& =2 j^{2} d\left(j^{2}\right)+2 j^{2} d\left(j^{2}\right)=4 j^{2} d\left(j^{2}\right)=j^{2} d\left(4 j^{2}\right)
\end{aligned}
$$

Hence, $j^{2} d\left(4 j^{2}\right) \in Z(\mathcal{N})$ for all $j \in J$, which implies $j^{2} d((4 j)(j)) \in Z(\mathcal{N})$ for all $j \in J$. Invoking Lemma 2.1(i), then $j^{2} \in Z(\mathcal{N})$ or $4 d\left(j^{2}\right)=0$ for all $j \in J$. In view of the 2 -torsion freeness of \mathcal{N} together with Lemma 2.2 (i), we can assure that

$$
\begin{equation*}
j^{2} \in Z(\mathcal{N}) \quad \text { for all } j \in J \tag{3.2}
\end{equation*}
$$

Applying the definition of d together with our hypothesis, and 3.2), we have for all $j \in J$ and $x \in \mathcal{N}$:

$$
\begin{aligned}
d\left(x j^{4}\right) & =d\left(x j^{2} j^{2}\right)=x j^{2} d\left(j^{2}\right)+j^{2} d\left(x j^{2}\right) \\
& =x j^{2} d\left(j^{2}\right)+d\left(x j^{2}\right) j^{2}=x j^{2} d\left(j^{2}\right)+x j^{2} d\left(j^{2}\right)+j^{4} d(x) \\
& =j^{2} d\left(j^{2}\right) x+j^{2} d\left(j^{2}\right) x+j^{4} d(x)=\left(2 j^{2} d\left(j^{2}\right)\right) x+j^{4} d(x) \\
d\left(x j^{4}\right) & =x d\left(j^{4}\right)+j^{4} d(x)=x\left(2 j^{2} d\left(j^{2}\right)\right)+j^{4} d(x)
\end{aligned}
$$

Comparing the two expressions, we obtain

$$
x\left(2 j^{2} d\left(j^{2}\right)\right)=\left(2 j^{2} d\left(j^{2}\right)\right) x \quad \text { for all } j \in J, x \in \mathcal{N} .
$$

Consequently, $2 j^{2} d\left(j^{2}\right) \in Z(\mathcal{N})$ for all $j \in J$. According to Lemma 2.1(i) and Lemma 2.2 (i), that follows $2 j^{2} \in Z(\mathcal{N})$ for all $j \in J$, which implies $(\mathcal{N},+)$ is abelian by Lemma 2.1 (ii), and Lemma 2.2(ii) assures that \mathcal{N} is a commutative ring.

CASE 2: \mathcal{N} is a 3 -prime left near-ring. It is obvious that (iii) implies (i) and (ii).
(i) \Rightarrow (iii): Suppose that $Z(\mathcal{N})=\{0\}$. Using our hypothesis, then we have $d(j \circ n)=0$ for all $j \in J, n \in \mathcal{N}$. Applying definition of d and using our assumption with the 2 -torsion freeness of \mathcal{N}, we get

$$
\begin{equation*}
j d(n)=0 \quad \text { for all } n \in \mathcal{N} \tag{3.3}
\end{equation*}
$$

Replacing n by $j n m$ in (3.3) and using it, then we get $j^{2} n d(m)=0$ for all $j \in J, n, m \in \mathcal{N}$, which implies that $j^{2} \mathcal{N} d(m)=\{0\}$ for all $j \in J, m \in \mathcal{N}$. Using Lemma 2.3 together with the 3 -primeness of \mathcal{N}, it follows that $d=0$.

Now assuming that $Z(\mathcal{N}) \neq\{0\}$. By Lemma 2.6, we can write $j n d(j)=$ $n j d(j)$ for all $j \in J, n \in \mathcal{N}$, which reduces to $d(j) \mathcal{N}[j, m]=\{0\}$ for all $j \in J$, $m \in \mathcal{N}$ and by the 3 -primeness of \mathcal{N}, we conclude that

$$
\begin{equation*}
j \in Z(\mathcal{N}) \text { or } d(j)=0 \quad \text { for all } j \in J \tag{3.4}
\end{equation*}
$$

Suppose that there is $j_{0} \in J$ such that $d\left(j_{0}\right)=0$. Using our hypothesis, then we have $d\left(j_{0}\left(j_{0} \circ n\right)\right) \in Z(\mathcal{N})$ for all $n \in \mathcal{N}$. Applying the definition of d and using our assumption, we get $j_{0} d\left(\left(j_{0} \circ n\right)\right) \in Z(\mathcal{N})$ for all $n \in \mathcal{N}$. By Lemma 2.1(i), we conclude

$$
\begin{equation*}
j_{0} \in Z(\mathcal{N}) \text { or } d\left(\left(j_{0} \circ n\right)\right)=0 \quad \text { for all } n \in \mathcal{N} . \tag{3.5}
\end{equation*}
$$

If $d\left(\left(j_{0} \circ n\right)\right)=0$ for all $n \in \mathcal{N}$, using the 2 -torsion freeness of \mathcal{N}, we get

$$
\begin{equation*}
j_{0} d(n)=0 \quad \text { for all } n \in \mathcal{N} \tag{3.6}
\end{equation*}
$$

Replacing n by $j_{0} n m$ in (3.6) and using it, then we get $j_{0}^{2} n d(m)=0$ for all $n, m \in \mathcal{N}$. Since $d \neq 0$, the 3 -primeness of \mathcal{N} gives $j_{0}^{2}=0$, which is a contradiction with Lemma 2.3. Then (3.4) becomes $J \subseteq Z(\mathcal{N})$, which forces that \mathcal{N} is commutative ring by Lemma 2.1 (iii).
(ii) \Rightarrow (iii): Suppose that $Z(\mathcal{N})=\{0\}$, then $d\left(j^{2}\right)=0$ for all $j \in J$, by the 2-torsion freeness of \mathcal{N}, we get

$$
\begin{equation*}
j d(j)=0 \quad \text { for all } j \in J \tag{3.7}
\end{equation*}
$$

Using Lemma 2.6, we can write $j n d(j)=n j d(j)$ for all $j \in J, n \in \mathcal{N}$, from (3.7), we get $j n d(j)=0$ for all $j \in J, n \in \mathcal{N}$, which implies $j \mathcal{N} d(j)=$ $\{0\}$ for all $j \in J, n \in \mathcal{N}$ and by the 3 -primeness of \mathcal{N}, we deduce that $d(J)=\{0\}$. Using the same techniques as used in the proof of $(\mathrm{i}) \Rightarrow$ (iii), we conclude that $d=0$.

Assuming that $Z(\mathcal{N}) \neq\{0\}$. By Lemma 2.5, we can write

$$
\begin{equation*}
j n d\left(j^{2}\right)=n j d\left(j^{2}\right) \quad \text { for all } x, y \in \mathcal{N}, \tag{3.8}
\end{equation*}
$$

which implies that

$$
d\left(j^{2}\right) \mathcal{N}[j, m]=\{0\} \quad \text { for all } j \in J, m \in \mathcal{N}
$$

By the 3 -primeness of \mathcal{N}, we conclude that

$$
\begin{equation*}
j \in Z(\mathcal{N}) \text { or } d\left(j^{2}\right)=0 \quad \text { for all } j \in J \tag{3.9}
\end{equation*}
$$

If there exists $j_{0} \in J$ such that $d\left(j_{0}^{2}\right)=0$, using the definition of d and the 2 -torsion freeness of \mathcal{N}, then we have

$$
\begin{equation*}
j_{0} d\left(j_{0}\right)=0 \tag{3.10}
\end{equation*}
$$

By Lemma 2.6, we can write $j_{0} \mathcal{N} d\left(j_{0}\right)=\{0\}$. In view of the 3 -primeness of \mathcal{N}, that follows $d\left(j_{0}\right)=0$. Using our hypothesis, we have $d\left(j_{0}\left(2 i^{2}\right)\right) \in Z(\mathcal{N})$ for all $i \in J$. Applying the definition of d and using our assumption, we get $j_{0} d\left(2 i^{2}\right) \in Z(\mathcal{N})$ for all $i \in J$. By the 2 -torsion freeness of \mathcal{N} and Lemma 2.1(i) we conclude

$$
\begin{equation*}
j_{0} \in Z(\mathcal{N}) \text { or } i d(i)=0 \quad \text { for all } i \in J \tag{3.11}
\end{equation*}
$$

If $i d(i)=0$ for all $i \in J$. Using the same techniques as used in the proof of (ii) \Rightarrow (iii), we conclude that $d=0$. Then 3.9 becomes

$$
J \subseteq Z(\mathcal{N}) \text { or } d=0
$$

Corollary 3.2. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring. If \mathcal{N} admits a left derivation d, then the following assertions are equivalent:
(i) $d(\mathcal{N}) \subseteq Z(\mathcal{N})$;
(ii) $d\left(\mathcal{N}^{2}\right) \subseteq Z(\mathcal{N})$;
(iii) \mathcal{N} is a commutative ring or $d=0$.

The following example proves that the 3-primeness of \mathcal{N} in Theorem 3.1 cannot be omitted.

Example 3.3. Let \mathcal{R} be a 2 -torsion right or left near-ring which is not abelian. Define \mathcal{N}, J and d by:

$$
\begin{gathered}
\mathcal{N}=\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
r & 0 & 0 \\
s & t & 0
\end{array}\right): r, s, t, 0 \in \mathcal{R}\right\}, J=\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
p & 0 & 0
\end{array}\right): p, 0 \in \mathcal{R}\right\} \\
d\left(\begin{array}{lll}
0 & 0 & 0 \\
r & 0 & 0 \\
s & t & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & t & 0
\end{array}\right)
\end{gathered}
$$

Then \mathcal{N} is a right or left near-ring which is not 3 -prime, J is a nonzero Jordan ideal of \mathcal{N} and d is a nonzero left derivation of \mathcal{N} which is not a derivation. It is easy to see that
(i) $d(J) \subseteq Z(\mathcal{N})$.
(ii) $d\left(J^{2}\right) \subseteq Z(\mathcal{N})$.

However, neither $d=0$ nor \mathcal{N} is a commutative ring.

4. Some polynomial identities in right near-Rings involving left derivations

This section is motivated by [6, Theorem 3.6 and Theorem 3.12]. Our aim in the current paper is to extend these results of Jordan ideals on 3-prime near-rings admitting a nonzero left derivation.

Theorem 4.1. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring and J be a nonzero Jordan ideal of \mathcal{N}. If \mathcal{N} admits a nonzero left derivation d and a multiplier H satisfying $d(x \circ j)=H(x \circ j)$ for all $j \in J, x \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Proof. Assume that $d(x \circ j)=H(x \circ j)$ for all $j \in J, x \in \mathcal{N}$. If $H=0$, the last equation becomes $d(x \circ j)=0$ for all $j \in J, x \in \mathcal{N}$. And recalling Lemma 2.2 (ii), then $(x \circ j) \in Z(\mathcal{N})$ for all $j \in J, x \in \mathcal{N}$, so \mathcal{N} is a commutative ring by Lemma 2.5(i).

Now assume that $H \neq 0$ and $d(x \circ j)=H(x \circ j)$ for all $j \in J, x \in \mathcal{N}$. Replacing x by $x j$ and using the fact that $(x j \circ j)=(x \circ j) j$, we get

$$
d((x \circ j) j)=H((x \circ j) j) \quad \text { for all } i, j \in J, x \in \mathcal{N} .
$$

By the definition of d and H, we obtain

$$
(x \circ j) d(j)+j d(x \circ j)=H(x \circ j) j \quad \text { for all } i, j \in J, x \in \mathcal{N} .
$$

Replacing j by $(y \circ i)$, where $i \in J, y \in \mathcal{N}$, in the preceding expression, we can see that

$$
(x \circ(y \circ i)) d((y \circ i))+(y \circ i) d(x \circ(y \circ i))=H(x \circ(y \circ i))(y \circ i)
$$

for all, $i, j \in J, x, y \in \mathcal{N}$.
By a simplification, we thereby obtain

$$
\begin{equation*}
(y \circ i) H(x \circ(y \circ i))=0 \quad \text { for all } i, j \in J, x, y \in \mathcal{N} . \tag{4.1}
\end{equation*}
$$

Applying H on (4.1), it follows that

$$
\begin{equation*}
(y \circ i) H(H(x \circ(y \circ i)))=0 \quad \text { for all } i, j \in J, x, y \in \mathcal{N} . \tag{4.2}
\end{equation*}
$$

Applying d on (4.1) and recalling (4.2), we get

$$
\begin{equation*}
H(x \circ(y \circ i)) H(y \circ i)=0 \quad \text { for all } x, y \in \mathcal{N} \tag{4.3}
\end{equation*}
$$

which gives

$$
x H(y \circ i) H(y \circ i)=-H(y \circ i) x H(y \circ i) \quad \text { for all } x, y \in \mathcal{N}
$$

Substituting $x z$ instead of x in preceding equation and applying it, we obviously obtain

$$
\begin{aligned}
x z H(y \circ i) H(y \circ i) & =(-H(y \circ i)) x z H(y \circ i) \\
& =x(-H(y \circ i)) z H(y \circ i) \quad \text { for all } x, y, z \in \mathcal{N}
\end{aligned}
$$

This forces that

$$
[x,(-H(y \circ i))] z H(y \circ i)=0 \quad \text { for all } x, y, z \in \mathcal{N}
$$

Then $[x,(-H(y \circ i))] \mathcal{N} H(y \circ i)=\{0\}$ for all $x, y \in \mathcal{N}$. By the 3-primeness of \mathcal{N}, we get

$$
\begin{equation*}
(-H(y \circ i)) \in Z(\mathcal{N}) \quad \text { for all } i \in J, y \in \mathcal{N} \tag{4.4}
\end{equation*}
$$

Substituting $y i$ instead y in (4.4), $(-H(y \circ i)) i \in Z(\mathcal{N})$ for all $i \in J, y \in \mathcal{N}$. It follows that Lemma 2.1 (i)

$$
\begin{equation*}
H(y \circ i)=0 \quad \text { or } \quad i \in Z(\mathcal{N}) \quad \text { for all } i \in J, y \in \mathcal{N} \tag{4.5}
\end{equation*}
$$

Suppose that there exists an element $i_{0} \in J$ such that

$$
\begin{equation*}
H\left(y \circ i_{0}\right)=0 \quad \text { for all } y \in \mathcal{N} \tag{4.6}
\end{equation*}
$$

which implies $\left(-i_{0}\right) H(y)=H(y) i_{0}$ for all $y \in \mathcal{N}$. Replacing y by $x y z$ in the last equation, we get

$$
\left(-i_{0}\right) H(x y z)=H(x y z) i_{0} \quad \text { for all } x, y, z \in \mathcal{N}
$$

which means that

$$
\left(-i_{0}\right) x y H(z)=x\left(-i_{0}\right) y H(z) \quad \text { for all } x, y, z \in \mathcal{N}
$$

so $\left[x,-i_{0}\right] \mathcal{N} H(z)=\{0\}$ for all $x, z \in \mathcal{N}$. Since $H \neq 0$ and \mathcal{N} is 3-prime, we get $-i_{0} \in Z(\mathcal{N})$. Now substituting $-i_{0}$ instead i in (4.4), we obtain
$-H\left(y \circ\left(-i_{0}\right)\right) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$, which implies $(-H(2 y))\left(-i_{0}\right) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$, using Lemma 2.1(i), we get $-2 H(y) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$ or $i_{0}=0$. Thus 4.5 becomes

$$
\begin{equation*}
-2 H(y) \in Z(\mathcal{N}) \text { for all } y \in \mathcal{N} \quad \text { or } \quad J \subseteq Z(\mathcal{N}) . \tag{4.7}
\end{equation*}
$$

Case 1: If $-2 H(y) \in Z(\mathcal{N})$ for all $y \in \mathcal{N}$. Replacing y by $z t$ in the last equation, we obtain $(-2 H(z)) t \in Z(\mathcal{N})$ for all $z, t \in \mathcal{N}$. Since \mathcal{N} is 2 -torsion free and $H \neq 0$, we obtain $\mathcal{N} \subseteq Z(\mathcal{N})$ by Lemma 2.1(ii). Which assures that \mathcal{N} is a commutative ring by Lemma 2.1(iii).

CASE 2: If $J \subseteq Z(\mathcal{N})$, then $\overline{\mathcal{N}}$ is a commutative ring by virtue of Lemma 2.1 (iii).

The next result is an immediate consequence of Theorem 3.1, just to take $H=i d_{\mathcal{N}}$ in Theorem 4.1.

Corollary 4.2. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring and J be a nonzero Jordan ideal of \mathcal{N}. If \mathcal{N} admits a nonzero left derivation d such that $d(x \circ j)=x \circ j$ for all $j \in J, x \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Theorem 4.3. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring and J be a nonzero right Jordan ideal of \mathcal{N}. If \mathcal{N} admits a left derivation d and a nonzero multiplier H satisfying any one of the following identities:
(i) $d(H(J))=\{0\}$;
(ii) $d\left(H\left(J^{2}\right)\right)=\{0\}$;
(iii) $d(H(n \circ j))=d(H([n, j]))$ for all $j \in J, n \in \mathcal{N}$;
(iv) $d(H(n j))=H(j) d(n)$ for all $j \in J, n \in \mathcal{N}$,
then $d=0$.
Proof. (i) Assume that $d(H(J))=\{0\}$. Therefore, by Lemma 2.2(i) and Lemma 2.4 (i), \mathcal{N} is a commutative ring. Using our hypothesis and by the 2 -torsion freeness of \mathcal{N}, we can see $d(H(j) n)=0$ for all $j \in J, n \in \mathcal{N}$. Applying the definition of d, we obtain

$$
\begin{equation*}
H(j) d(n)=0 \quad \text { for all } j \in J, n \in \mathcal{N} . \tag{4.8}
\end{equation*}
$$

Replacing j by $j \circ m$, where $m \in \mathcal{N}$ in (4.8) and using it, we can easily arrive at $H(J) \mathcal{N} d(n)=\{0\}$ for all $n \in \mathcal{N}$. By the 3-primeness of \mathcal{N}, we conclude
that $d(\mathcal{N})=\{0\}$ or $H(J)=\{0\}$. If $H(J)=\{0\}$, then $H((j \circ m) \circ n))=0$ for all $j \in J, n, m \in \mathcal{N}$. In view of the 2 -torsion freeness of \mathcal{N}, we get $J \mathcal{N} H(n)=\{0\}$ and by the 3 -primeness of \mathcal{N}, we obtain $J=\{0\}$ or $H(n)=\{0\}$, that would contradict with our hypothesis, then $d=0$.
(ii) Suppose that $d\left(H\left(J^{2}\right)\right)=\{0\}$, according to Lemma 2.2 (i) and Lemma $2.4(\mathrm{i}), \mathcal{N}$ is a commutative ring. Now using our hypothesis, $d(H(i(j \circ n)))=0$ for all $i, j \in J, n \in \mathcal{N}$, by the 2 -torsion freeness of \mathcal{N}, we can see $d(H(i j n))=0$ for all $i, j \in J, n \in \mathcal{N}$. Applying the definition of d, we obtain

$$
\begin{equation*}
i H(j) d(n)=0 \quad \text { for all } i, j \in J, n \in \mathcal{N} . \tag{4.9}
\end{equation*}
$$

Substituting $j \circ m$ for j, where $m \in \mathcal{N}$ and $i \circ t$ for j, where $t \in \mathcal{N}$ in (4.9) and using it, we can easily arrive at $J \mathcal{N} H(J) \mathcal{N} d(n)=\{0\}$ for all $n \in \mathcal{N}$. By the 3-primeness of \mathcal{N}, we conclude that $d(\mathcal{N})=\{0\}$ or $H(J)=\{0\}$ or $J=\{0\}$. If $H(J)=\{0\}$, using the same techniques as we have used in the proof of (i), one can easily find $d=0$.
(iii) Suppose that $d(H(n \circ j))=d(H([n, j]))$ for all $j \in J, n \in \mathcal{N}$. Taking $n j$ instead of n, we obtain

$$
d(H((n \circ j) j))=d(H([n, j] j)) \quad \text { for all } j \in J, n \in \mathcal{N} .
$$

Using the definition of d, we get

$$
H(n \circ j) d(j)+j d(H(n \circ j))=H([n, j]) d(j)+j d(H([n, j]))
$$

for all $j \in J, n \in \mathcal{N}$.
By a simplification, we can rewrite this equation as

$$
2 j H(n) d(j)=0 \quad \text { for all } j \in J, n \in \mathcal{N} .
$$

Substituting $z y t$ for n, where $x, y, z \in \mathcal{N}$ in last equation, we can see

$$
2 j y H(z) t d(j)=0 \quad \text { for all } j \in J, y, z, t \in \mathcal{N} .
$$

By the 2 -torsion freeness of \mathcal{N}, the above equation becomes $j \mathcal{N} H(z) \mathcal{N} d(j)$ $=\{0\}$ for all $j \in J, z \in \mathcal{N}$. Since \mathcal{N} is 3 -prime and $H \neq 0$, it follows that $d(J)=\{0\}$, which forces that $d=0$ by (i).
(iv) Suppose that $d(H(n j))=H(j) d(n)$ for all $j \in J, n \in \mathcal{N}$. From this equation we obtain

$$
d(n H(j))=H(j) d(n) \quad \text { for all } j \in J, n \in \mathcal{N} .
$$

Using the definition of d, we have

$$
n d(H(j))+H(j) d(n)=H(j) d(n) \quad \text { for all } j \in J, n \in \mathcal{N}
$$

Then $n d(H(j))=0$ for all $j \in J, n \in \mathcal{N}$, which implies that $d(H(J))=\{0\}$ by invoking the 3 -primeness of \mathcal{N}, and consequently $d=0$ by (i).

The next result is an immediate consequence of Theorem 3.1, just to take $H=i d_{\mathcal{N}}$ in Theorem 4.6.

Corollary 4.4. Let \mathcal{N} be a 2 -torsion free 3 -prime near-ring and J be a nonzero right Jordan ideal of \mathcal{N}. If \mathcal{N} admits a left derivation d and a nonzero multiplier H satisfying any one of the following identities:
(i) $d(J)=\{0\}$;
(ii) $d\left(J^{2}\right)=\{0\}$;
(iii) $d(n \circ j)=d([n, j])$ for all $j \in J, n \in \mathcal{N}$,
(iv) $d(n j)=j d(n)$ for all $j \in J, n \in \mathcal{N}$;
then $d=0$.
The following example proves that the 3 -primeness of \mathcal{N} in Theorem 4.1 and Theorem 4.3 cannot be omitted.

Example 4.5. Let \mathcal{S} be a 2 -torsion right near ring which is not abelian. Define \mathcal{N}, J, d and H by:

$$
\begin{gathered}
\mathcal{N}=\left\{\left(\begin{array}{lll}
0 & 0 & p \\
0 & q & 0 \\
0 & 0 & 0
\end{array}\right): p, q, 0 \in \mathcal{S}\right\}, \quad J=\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 0
\end{array}\right): s, 0 \in \mathcal{S}\right\}, \\
d\left(\begin{array}{lll}
0 & 0 & p \\
0 & q & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } H\left(\begin{array}{lll}
0 & 0 & p \\
0 & q & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & q & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Then \mathcal{N} is a right near-ring which is not 3 -prime, J is a nonzero Jordan ideal of \mathcal{N}, d is a nonzero left derivation of \mathcal{N}, and H is a nonzero multiplier of \mathcal{N}, such that
(i) $d(x \circ j)=H(x \circ j)$ for all $j \in J, x \in \mathcal{N}$;
(ii) $d(H(J))=\{0\}$;
(iii) $d\left(H\left(J^{2}\right)\right)=\{0\}$;
(iv) $d(H(n \circ j))=d(H([n, j]))$ for all $j \in J, n \in \mathcal{N}$;
(v) $d(H(n j))=H(j) d(n)$ for all $j \in J, n \in \mathcal{N}$.

However, neither $d=0$ nor \mathcal{N} is a commutative ring.
Theorem 4.6. Let \mathcal{N} be a 2 -torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathcal{N} and let H a nonzero multiplier on \mathcal{N}. Then there is no nonzero left derivation d such that $d(x \circ j)=H([x, j])$ for all $j \in J$, $x \in \mathcal{N}$.

Proof. Assume that

$$
\begin{equation*}
d(x \circ j)=H([x, j]) \quad \text { for all } j \in J, x \in \mathcal{N} . \tag{4.10}
\end{equation*}
$$

Replacing x by j, in 4.10), we get

$$
2 d\left(j^{2}\right)=d\left(j^{2}+j^{2}\right)=d(j \circ j)=0 \quad \text { for all } j \in J
$$

By the 2 -torsion freeness of \mathcal{N}, we get

$$
\begin{equation*}
0=d\left(j^{2}\right)=2 j d(j) \quad \text { for all } j \in J \tag{4.11}
\end{equation*}
$$

In view of the 2 -torsion freeness of \mathcal{N}, this easily yields

$$
\begin{equation*}
j d(j)=0 \quad \text { for all } j \in J . \tag{4.12}
\end{equation*}
$$

Replacing x by $x j$ in 4.10, we get

$$
d(x j \circ j)=H([x j, j]) \quad \text { for all } j \in J, x \in \mathcal{N} .
$$

Using the fact that $(x j \circ j)=(x \circ j) j$ and $[x j, j]=[x, j] j$, we obtain

$$
d((x \circ j) j)=H([x, j] j) \quad \text { for all } j \in J, x \in \mathcal{N} .
$$

By the definition of d, the last equation is expressible as

$$
(x \circ j) d(j)=[H([x, j]), j] \quad \text { for all } j \in J, x \in \mathcal{N} .
$$

Substituting $x j$ instead x, it follows from (4.12) that

$$
\begin{equation*}
[H([x j, j]), j]=0 \quad \text { for all } j \in J, x \in \mathcal{N} . \tag{4.13}
\end{equation*}
$$

Replacing x by $d(j) x$ in 4.13) and using (4.12), we can easily arrive at

$$
\left[d(j) H(x) j^{2}, j\right]=0 \quad \text { for all } j \in J, x \in \mathcal{N}
$$

Which reduces to

$$
d(j) H(x) j^{3}=0 \quad \text { for all } j \in J, x \in \mathcal{N}
$$

Substituting rst instead x where $r, s, t \in \mathcal{N}$ in the last equation, we get $d(j) r H(s) t j^{3}=0$ for all $j \in J, r, s, t \in \mathcal{N}$, which implies $d(j) \mathcal{N} H(s) \mathcal{N} j^{3}=$ $\{0\}$ for all $j \in J, s \in \mathcal{N}$. Since $H \neq 0$ and using the 3 -primeness hypothesis, it follows that

$$
\begin{equation*}
d(j)=0 \quad \text { or } j^{3}=0 \quad \text { for all } j \in J \tag{4.14}
\end{equation*}
$$

Suppose that there exists an element $j_{0} \in J \backslash\{0\}$ such that $j_{0}^{3}=0$. Replacing j by j_{0} and x by $x j_{0}^{2}$ in 4.10 and using 4.12, then

$$
d\left(x j_{0}^{2} \circ j_{0}\right)=H\left(\left[x j_{0}^{2}, j_{0}\right] \quad \text { for all } x \in \mathcal{N}\right.
$$

Using our assumption, we find that

$$
d\left(j_{0} x j_{0}^{2}\right)=H\left(-j_{0} x j_{0}^{2}\right) \quad \text { for all } x \in \mathcal{N}
$$

By the definition of d, we get

$$
j_{0} d\left(x j_{0}^{2}\right)+x j_{0}^{2} d\left(j_{0}\right)=-j_{0} H(x) j_{0}^{2} \quad \text { for all } x \in \mathcal{N}
$$

In light of equation 4.12, it follows easily that

$$
j_{0} d\left(x j_{0}^{2}\right)=-j_{0} H(x) j_{0}^{2} \quad \text { for all } x \in \mathcal{N}
$$

So, by (4.14) and 4.12), we get

$$
-j_{0} H(x) j_{0}^{2}=0 \quad \text { for all } x \in \mathcal{N}
$$

Substituting r st instead x gives $-j_{0} r H(s) t j_{0}^{2}=0$ for all $r, s, t \in \mathcal{N}$, which implies $\left(-j_{0}\right) \mathcal{N} H(s) \mathcal{N} j_{0}^{2}=\{0\}$ for all $s \in \mathcal{N}$. Since $H \neq 0$, by the 3 -primeness of \mathcal{N} and Lemma 2.3, the preceding expression leads to $j_{0}=0$.

Hence, (4.14) becomes $d(J)=\{0\}$, which leads to $d=0$ by Theorem 3.1 (i); a contradiction.

Corollary 4.7. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathcal{N}. Then there is no nonzero left derivation d such that $d(x \circ j)=[x, j]$ for all $j \in J, x \in \mathcal{N}$.

Theorem 4.8. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and J be a nonzero Jordan ideal of \mathcal{N}. Then \mathcal{N} admits no nonzero left derivation d such that $d([x, j])=d(x) j$ for all $j \in J, x \in \mathcal{N}$.

Proof. Assume that

$$
\begin{equation*}
d([x, j])=d(x) j \quad \text { for all } x \in \mathcal{N}, j \in J \tag{4.15}
\end{equation*}
$$

Replacing x by j in 4.15), we get

$$
\begin{equation*}
d(j) j=0 \quad \text { for all } j \in J \tag{4.16}
\end{equation*}
$$

Substituting $x j$ instead of x in 4.15), we obtain

$$
d([x j, j])=d(x j) j \quad \text { for all } j \in J, x \in \mathcal{N}
$$

Notice that $[x j, j]=[x, j] j$, the last relation can be rewritten as

$$
d([x, j] j)=(x d(j)+j d(x)) j \quad \text { for all } j \in J, x \in \mathcal{N}
$$

The definition of d gives us

$$
[x, j]) d(j)+j d([x, j])=j d(x) j \quad \text { for all } j \in J, x \in \mathcal{N}
$$

Using our assumption, we obviously obtain

$$
\begin{equation*}
x j d(j)=j x d(j) \quad \text { for all } j \in J, x \in \mathcal{N} \tag{4.17}
\end{equation*}
$$

Replacing x by $y t$ in 4.17) and invoking it, we can see that

$$
y j t d(j)=j y t d(j) \quad \text { for all } j \in J, y, t \in \mathcal{N}
$$

The last equation gives us $[y, j] \mathcal{N} d(j)=\{0\}$ for all $j \in J, x \in \mathcal{N}$. By the 3 -primeness of \mathcal{N}, we get

$$
\begin{equation*}
j \in Z(\mathcal{N}) \text { or } d(j)=0 \quad \text { for all } j \in J \tag{4.18}
\end{equation*}
$$

If there exists $j_{0} \in J$ such that $d\left(j_{0}\right)=0$. Using Lemma 2.4, we obtain $j_{0} \in Z(\mathcal{N})$. In this case, 4.18) becomes $J \subseteq Z(\mathcal{N})$ which forces that \mathcal{N} is a commutative ring by Lemma 2.1(i). Hence (4.6) implies that $d(x) j=0$ for all $j \in J, x \in \mathcal{N}$. Replacing j by $j \circ t$ in the last equation, it is obvious that $2 d(x) t j=0$ for all $j \in J, t, x \in \mathcal{N}$. It follows from the 2 -torsion freeness of \mathcal{N} that $d(x) \mathcal{N} j=\{0\}$ for all $j \in J, x \in \mathcal{N}$. By the 3 -primeness of \mathcal{N}, we conclude that $d=0$ or $J=\{0\}$; a contradiction.

5. Conclusion

In this paper, we study the 3-prime near-rings with left derivations. We prove that a 3 -prime near-ring that admits a left derivation satisfying certain differential identities on Jordan ideals becomes a commutative ring. In comparison to some recent studies that used derivations, these results are considered more developed. In future research, one can discuss the following issues:
(i) Theorem 3.1 , Theorem 4.1 , Theorem 4.3 and Theorem 4.6 can be proven by replacing left derivation d by a generalized left derivation.
(ii) The study of 3-prime near-rings that admit generalized left derivations satisfying certain differential identities on Lie ideals is another interesting work for the future.

References

[1] M. Ashraf, N. Rehman, On Lie ideals and Jordan left derivation of prime rings, Arch. Math. (Brno) 36 (2000), 201-206.
[2] H.E. Bell, G. Mason, On derivations in near-rings, in "Near-rings and near-fields", North Holland Math. Stud. 137, North-Holland, Amsterdam, 1987, 31-35.
[3] H.E. Bell, On derivations in near-rings II, in "Nearrings, nearfields and Kloops", Math. Appl. 426, Kluwer Acad. Publ., Dordrecht, 1997, 191-197.
[4] A. Boua, H.E. Bell, Jordan ideals and derivations satisfying algebraic identities, Bull. Iranian Math. Soc. 44 (2018), 1543-1554.
[5] A. Boua, L. Oukhtitei, A. Rajı, Jordan ideals and derivations in prime near-rings, Comment. Math. Univ. Carolin. 55 (2) (2014), 131-139.
[6] A. Boua, Commutativity of near-rings with certain constrains on Jordan ideals, Bol. Soc. Parana. Mat. (3) 36 (4) (2018), $159-170$.
[7] M. Brešar, J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1) (1990), 7-16.
[8] A. Enguady, A. Boua, On Lie ideals with left derivations in 3-prime nearrings, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 68 (1) (2022), 123-132.
[9] S.M.A. Zaidi, M. Ashraf, A. Shakir, On Jordan ideals and left (θ, θ)-derivations in prime rings, Int. J. Math. Math. Sci. 37-40 (2004), 1957-1964.

[^0]: @ Corresponding author

