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Accepted February 2, 2022

Abstract : Motivated by the classifications of extreme and exposed 2-homogeneous polynomials on

the plane with the hexagonal norm ‖(x, y)‖ = max{|y|, |x| + 1
2
|y|} (see [15, 16]), we classify all

smooth 2-homogeneous polynomials on R2 with the hexagonal norm.
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1. Introduction

One of the main results about smooth points is known as “the Mazur
density theorem”. Recall that the Mazur density theorem ([9, p. 71]) says that
the set of all the smooth points of a solid closed convex subset of a separable
Banach space is a residual subset of its boundary. We denote by BE the closed
unit ball of a real Banach space E and also by E∗ the dual space of E. We
recall that a point x ∈ BE is said to be an extreme point of BE if the equation
x = 1

2(y + z) for some y, z ∈ BE implies that x = y = z. A point x ∈ BE is
called an exposed point of BE if there is an f ∈ E∗ so that f(x) = 1 = ‖f‖
and f(y) < 1 for every y ∈ BE \ {x}. It is easy to see that every exposed
point of BE is an extreme point. A point x ∈ BE is called a smooth point
of BE if there is a unique f ∈ E∗ so that f(x) = 1 = ‖f‖. We denote by
extBE , expBE and smBE the set of extreme points, the set of exposed points
and the set of smooth points of BE , respectively. For n ∈ N, we denote by
L(nE) the Banach space of all continuous n-linear forms on E endowed with
the norm ‖T‖ = sup‖xk‖=1 |T (x1, · · · , xn)|. A n-linear form T is symmetric if
T (x1, . . . , xn) = T (xσ(1), . . . , xσ(n)) for every permutation σ on {1, 2, . . . , n}.
We denote by Ls(nE) the Banach space of all continuous symmetric n-linear
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forms on E. A mapping P : E → R is a continuous n-homogeneous polynomial
if there exists a unique T ∈ Ls(nE) such that P (x) = T (x, · · · , x) for every
x ∈ E. In this case it is convenient to write T = P̌ . We denote by P(nE)
the Banach space of all continuous n-homogeneous polynomials from E into
R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|. For more details about
the theory of multilinear mappings and polynomials on a Banach space, we
refer to [7].

Choi et al. [2, 3, 4, 5] initiated and characterized the smooth points,
extreme points and exposed points of the unit balls of P(2l21),P(2l22) and
P(2c0). Kim [10] and Choi and Kim [6] classified the exposed 2-homogeneous
polynomials on P(2l2p) (1 ≤ p ≤ ∞). Kim et al. [17] characterized the exposed
2-homogeneous polynomials on Hilbert spaces. Kim [11, 12, 14] classified
the smooth points, extreme points and exposed points of the unit ball of
P(2d∗(1, w)2), where d∗(1, w)2 = R2 with the octagonal norm of weight w.
For some applications of the classification of the extreme points of the unit
ball of P(2d∗(1, w)2), Kim [13] investigated polarization and unconditional
constants of P(2d∗(1, w)2). Thus we fully described the geometry of the unit
ball of P(2d∗(1, w)2). We refer to [1, 8, 18, 19] and references therein for some
recent work about extremal properties of homogeneous polynomials on some
classical Banach spaces.

We will denote by P (x, y) = ax2 + by2 + cxy a 2-homogeneous polynomial
on a real Banach space of dimension 2 for some a, b, c ∈ R. Let 0 < w < 1 be
fixed. We denote R2

h(w) = R2 with the hexagonal norm of weight w by

‖(x, y)‖h(w) := max
{
|y| , |x|+ (1− w)|y|

}
.

Throughout the paper we will denote R2
h( 1

2
)

by H. Kim [15, 16] classified the

extreme and exposed points of the unit ball of P(2H) as follows:

(a) extBP(2H) =
{
± y2,±

(
x2 +

1

4
y2 ± xy

)
, ±
(
x2 +

3

4
y2
)
,

±
[
x2 +

(c2

4
− 1
)
y2 ± cxy

]
(0 ≤ c ≤ 1) ,

±
[
ax2 +

(a+ 4
√

1− a
4

− 1
)
y2

± (a+ 2
√

1− a)xy
]

(0 ≤ a ≤ 1)
}

;

(b) expBP(2H) = extBP(2H).
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In this paper we classify smBP(2H) using the classifications of extBP(2H)

and expBP(2H).

2. Results

Theorem 2.1. ([15]) Let P (x, y) = ax2 + by2 + cxy ∈ P(2H) with a ≥ 0,
c ≥ 0 and a2 + b2 + c2 6= 0. Then:

Case 1: c < a.

If a ≤ 4b, then

‖P‖ = max

{
a, b,

∣∣∣1
4
a+ b

∣∣∣+
1

2
c,

4ab− c2

4a
,

4ab− c2

2c+ a+ 4b
,

4ab− c2

|2c− a− 4b|

}
= max

{
a, b,

∣∣∣1
4
a+ b

∣∣∣+
1

2
c

}
.

If a > 4b, then ‖P‖ = max
{
a, |b|,

∣∣∣14a+ b
∣∣∣+ 1

2c,
|c2−4ab|

4a

}
.

Case 2: c ≥ a.

If a ≤ 4b, then ‖P‖ = max
{
a, b,

∣∣∣14a+ b
∣∣∣+ 1

2c,
|c2−4ab|
2c+a+4b

}
.

If a > 4b, then ‖P‖ = max
{
a, |b|,

∣∣∣14a+ b
∣∣∣+ 1

2c,
c2−4ab

2c−a−4b

}
.

Note that if ‖P‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 2.

Theorem 2.2. ([15, 16])

extBP(2H) = expBP(2H)

=

{
± y2 , ±

(
x2 +

1

4
y2 ± xy

)
, ±
(
x2 +

3

4
y2

)
,

±
[
x2 +

(
c2

4
− 1

)
y2 ± cxy

]
(0 ≤ c ≤ 1) ,

±
[
ax2 +

(
a+ 4

√
1− a

4
− 1

)
y2

± (a+ 2
√

1− a)xy

]
(0 ≤ a ≤ 1)

}
.

By the Krein-Milman theorem, a convex function (like a functional norm,
for instance) defined on a convex set (like the unit ball of a finite dimen-
sional polynomial space) attains its maximum at one extreme point of the
convex set.
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Theorem 2.3. ([16]) Let f ∈ P(2H)∗ with α = f(x2), β = f(y2),
γ = f(xy). Then

‖f‖ = max

{
|β|,

∣∣∣α+
1

4
β
∣∣∣+ |γ|,

∣∣∣α+
3

4
β
∣∣∣, ∣∣∣∣α+

(
c2

4
− 1

)
β

∣∣∣∣+ c|γ| (0 ≤ c ≤ 1),∣∣∣∣aα+

(
a+ 4

√
1− a

4
− 1

)
β

∣∣∣∣+ (a+ 2
√

1− a)|γ| (0 ≤ a ≤ 1)

}
.

Proof. It follows from Theorem 2.2 and the fact that ‖f‖ = sup
P∈extB

∣∣f(P )
∣∣,

where B := BP(2H).

Note that if ‖f‖ = 1, then |α| ≤ 1, |β| ≤ 1, |γ| ≤ 1
2 .

Remark. Let P (x, y) = ax2 + by2 + cxy ∈ P(2H) with ‖P‖ = 1. Then the
following are equivalent:

(1) P is smooth;

(2) −P (x, y) = −ax2 − by2 − cxy is smooth;

(3) P (x,−y) = ax2 + by2 − cxy is smooth.

As a consequence of the previous remark, our attention can be restricted
to polynomials Q(x, y) = ax2 + by2 + cxy ∈ P(2H) with a ≥ 0, c ≥ 0.

We are in position to prove the main result of this paper.

Theorem 2.4. Let P (x, y) = ax2 + by2 + cxy ∈ P(2H) with a ≥ 0, c ≥ 0,
‖P‖ = 1. Then P is a smooth point of the unit ball of P(2H) if and only if
one of the following mutually exclusive conditions holds:

(1) a = 0 , 0 < |b| < 1 ;

(2) a = 1 , b = −3
4 ,

1
4 , c < 1 ;

(3) a = 1 , −1 < b < −3
4 , b−

c
2 > −

5
4 ,

c2

4 − b < 1 ;

(4) a = 1 , −3
4 < b < 1

4 ;

(5) a = 1 , 1
4 ≤ b , b+ c

2 <
3
4 ;

(6) 0 < a < 1 , b = 0 ;

(7) 0 < a < 1 , c ≤ a , 0 6= 4b < a ;

(8) 0 < a < 1 , 0 < c ≤ a < 4b ;
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(9) 0 < a < 1 , 4b = a < c ;

(10) 0 < a < 1 , 0 6= 4b < a < c , c 6= a+ 2
√

1− a ;
(11) 0 < a < 1 , a < 4b , a < c .

Proof. Let Q(x, y) = ax2 + by2 + cxy ∈ P(2H) with a ≥ 0, c ≥ 0
and ‖Q‖ = 1.

Case 1: a = 0.

Note that if b = 0 or ±1, then Q is not smooth. In fact, if b = 0, then
Q = 2xy. For j = 1, 2, let fj ∈ P(2H)∗ be such that

f1

(
x2
)

=
1

4
, f1

(
y2
)

= 1 , f1(xy) =
1

2
, f2

(
x2
)

= 0 = f2

(
y2
)
, f2(xy) =

1

2
.

By Theorem 2.3, fj(Q) = 1 = ‖fj‖ for j = 1, 2. Thus Q is not smooth. If
b = ±1, then P = ±y2. For j = 1, 2, let fj ∈ P(2H)∗ be such that

f1

(
x2
)

= ±1

4
, f1

(
y2
)

= ±1 , f1(xy) = ±1

2
,

f2

(
x2
)

= 0 = f2(xy) , f2

(
y2
)

= ±1 .

By Theorem 2.3, fj(Q) = 1 = ‖fj‖ for j = 1, 2. Thus Q is not smooth.

Claim: if a = 0, 0 < |b| < 1, then Q is smooth.

Without loss of generality, we may assume that 0 < b < 1. By Theorem
2.1, 1 = ‖Q‖ = b + 1

2c. Thus c = 2(1 − b), so 0 < c < 2. Let f ∈ P(2H)∗

be such that f(Q) = 1 = ‖f‖. Notice that 1 = bβ + cγ. We will show that
α = 1

4 , β = 1, γ = 1
2 . Since 0 < b < 1, 0 < c < 2, we can choose δ > 0 such

that

0 < 2(1− b) + t = c+ t < 2 , 0 < b− 1

2
t < 1 ,

for all t ∈ (−δ, δ). Let Qt(x, y) =
(
b − 1

2 t
)
y2 + (c + t)xy for all t ∈ (−δ, δ).

By Theorem 2.1, ‖Qt‖ = 1 for all t ∈ (−δ, δ). For all t ∈ (−δ, δ),

1 = bβ + cγ ≥ f(Qt) =

(
b− 1

2
t

)
β + (c+ t)γ ,

which shows that t
(
γ − 1

2β
)
≤ 0, for all t ∈ (−δ, δ). Thus γ = 1

2β. Since

1 = f(Q) = bβ + cγ = 2γ, we have β = 1, γ = 1
2 . By Theorem 2.3, 1 ≥
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∣∣∣α+ 1
4β
∣∣∣+ |γ| =

∣∣∣α+ 1
4

∣∣∣+ 1
2 , so

− 3

4
≤ α ≤ 1

4
. (1)

By Theorem 2.3, for 0 ≤ c̃ ≤ 1,

1 ≥
∣∣∣∣α+

(
c̃2

4
− 1

)∣∣∣∣+
c̃

2
= −

(
α+

(
c̃2

4
− 1

))
+
c̃

2
,

which implies that
4α ≥ sup

0≤c̃≤1
(2c̃− c̃2) = 1 . (2)

By (1) and (2), α = 1
4 . Therefore, Q is smooth.

Case 2: a = 1.

If b = −1, then Q = x2 − y2. For j = 1, 2, let fj ∈ P(2H)∗ be such that

f1(x2) = 1 , f1(y2) = 0 = f1(xy) ,

f2(x2) = 0 = f2(xy) , f2(y2) = −1 .

By Theorem 2.3, fj(Q) = 1 = ‖fj‖ for j = 1, 2. Hence, Q is not smooth.

Claim: if
(
a = 1, b = −3

4 , 1
4 , c < 1

)
,
(
a = 1, −1 < b < 1

4 , b 6= −3
4

)
or(

a = 1, 1
4 ≤ b, b+ c

2 <
3
4

)
, then Q is smooth.

Note that if a = 1, b = −3
4 , then c ≤ 1. Note also that if a = 1, b = −3

4 , c =
1, then Q is not smooth.

Suppose that a = 1, b = −3
4 , c < 1. Let f ∈ P(2H)∗ be such that

f(Q) = 1 = ‖f‖. Then 1 = α − 3
4β + cγ. We will show that α = 1,

β = γ = 0. Since 0 ≤ c < 1 and by Theorem 2.1, we can choose δ > 0
such that ‖Ru‖ = ‖Sv‖ = 1 for all u, v ∈ (−δ, δ), where

Ru(x, y) = x2 − 3

4
y2 + (c+ u)xy ,

Sv(x, y) = x2 −
(

3

4
+ v

)
y2 + cxy ∈ P(2H) .

It follows that, for all u, v ∈ (−δ, δ),

1 = α− 3

4
β + cγ ≥ f(Ru) = α− 3

4
β + (c+ u)γ ,

1 = α− 3

4
β + cγ ≥ f(Sv) = α−

(
3

4
+ v

)
β + cγ ,
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which shows that α = 1, β = γ = 0. Therefore, Q is smooth. By a similar
argument, if a = 1, b = 1

4 , c < 1, then Q is smooth.

Suppose that a = 1, −1 < b < 1
4 , b 6= −3

4 . Let a = 1, −1 < b < −3
4 . We

will show that c < 1. If not, then 1 ≤ c ≤ 2. By Theorem 2.1, b − c
2 ≥ −

5
4 ,

c2−4b
2c−1−4b ≤ 1, which shows that c = 1, b ≥ −3

4 . This is a contradiction. Hence,

by Theorem 2.1, b− c
2 ≥ −

5
4 , c2

4 − b ≤ 1. We claim that if

a = 1 , −1 < b < −3

4
, b− c

2
> −5

4
,

c2

4
− b < 1 ,

then Q is smooth. Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. Then,
1 = α + bβ + cγ. We will show that α = 1, β = γ = 0. By Theorem 2.1, we
can choose δ > 0 such that ‖Ru‖ = ‖Sv‖ = 1 for all u, v ∈ (−δ, δ), where

Ru(x, y) = x2 + by2 + (c+ u)xy ,

Sv(x, y) = x2 + (b+ v)y2 + cxy ∈ P(2H) .

Thus α = 1, β = γ = 0. Therefore, Q is smooth.

Note that if

a = 1 , −1 < b < −3

4
, b− c

2
≥ −5

4
,

c2

4
− b = 1 ,

then Q is not smooth letting fj ∈ P(2H)∗ be such that

f1(x2) = 1 , f1(y2) = 0 = f1(xy) ,

f2(x2) = −c
2

4
, f2(y2) = −1 , f2(xy) =

c

2
.

Thus x2 + ( c
2

4 − 1)y2 + cxy (0 ≤ c ≤ 1) is not smooth.

Note also that if

a = 1 , −1 < b < −3

4
, b− c

2
= −5

4
,

c2

4
− b ≤ 1 ,

then Q is not smooth letting fj ∈ P(2H)∗ be such that

f1(x2) = 1 , f1(y2) = 0 = f1(xy) ,

f2(x2) = −1

4
, f2(y2) = −1 , f2(xy) =

1

2
.



250 s.g. kim

Let a = 1, −3
4 < b < 1

4 . We will show that Q is smooth. First, suppose
that −3

4 < b < 0. Since ‖Q‖ = 1, by Theorem 2.1, we have 0 ≤ c ≤ 1. Let
f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. Then 1 = α + bβ + cγ. We will
show that α = 1, β = 0 = γ. Since −3

4 < b < 0, By Theorem 2.1, we can
choose δ > 0 such that ‖Ru‖ = ‖Sv‖ = 1 for all u, v ∈ (−δ, δ), where

Ru(x, y) = x2 + (b+ u)y2 + cxy ,

Sv(x, y) = x2 + by2 + (c+ v)xy ∈ P(2H) .

Thus α = 1, β = 0 = γ. Hence, Q is smooth.
Suppose that c = 1. Then 1 = α+ γ, α ≥ 0, γ ≥ 0. By Theorem 2.3,

1 ≥ sup
0≤ã≤1

ãα+ (ã+ 2
√

1− ã)γ

= sup
0≤ã≤1

2
√

1− ã(1− α) + ã = 1 + (1− α)2 ,

which implies that α = 1. Therefore, α = 1, β = 0 = γ. We have shown that
if 0 < c ≤ 1, then Q is smooth. Suppose that c = 0. Since 1 = α+ bβ, β = 0,

we have α = 1. By Theorem 2.3, 1 ≥
∣∣∣α+ 1

4β
∣∣∣+ |γ| = 1 +γ, which shows that

γ = 0. Hence, Q is smooth.
Suppose that 0 ≤ b < 1

4 . Since ‖Q‖ = 1, by Theorem 2.1, 0 ≤ c ≤ 1.
Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. We will show that α = 1,

β = 0 = γ. Since 1 = f(Q) = α + bβ + cγ, we have α > 0. Indeed, if α ≤ 0,
then

1 ≤ bβ + cγ ≤ b|β|+ c|γ| < 1

4
+

1

2
=

3

4
,

which is a contradiction. We also claim that α + 1
4β ≥ 0. If not, then

α < 1
4 |β| ≤

1
4 , which implies that

3

4
< 1− α = bβ + cγ ≤ b|β|+ c|γ| < 3

4
,

which is a contradiction. Note that

α+ bβ = 1− cγ ≥ 1− c|γ| ≥ 1− c

2
≥ 1

2
.

By Theorem 2.3,

α+
1

4
β + |γ| =

∣∣∣α+
1

4
β
∣∣∣+ |γ| ≤ 1 = α+ bβ + cγ ≤ α+ bβ + c|γ| ,
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which shows that (
1

4
− b
)
β ≤ (c− 1)|γ| ≤ 0 .

Hence, β ≤ 0. By Theorem 2.3, for all 0 ≤ c̃ ≤ 1, it follows that

α+

(
1− c̃2

4

)
|β|+ c̃|γ| =

∣∣∣∣α+

(
c̃2

4
− 1

)
β

∣∣∣∣+ c̃|γ|

≤ 1 = α+ bβ + cγ

≤ α+ bβ + c|γ| = α− b|β|+ c|γ| ,

which implies that(
1− c̃2

4
+ b

)
|β| ≤ (c− c̃)|γ| (0 ≤ c̃ ≤ 1) .

Thus (
1− c2

4
+ b

)
|β| = lim

c̃→c−

(
1− c̃2

4
+ b

)
|β| ≤ lim

c̃→c−
(c− c̃)|γ| = 0 ,

so β = 0. Since 1 = f(Q) = α+ cγ, we have γ ≥ 0. By Theorem 2.3,

ãα+
(
ã+ 2

√
1− ã

)
γ ≤ 1 = α+ cγ (0 ≤ ã ≤ 1) ,

which implies that

(ã− c+ 2
√

1− ã)γ ≤ (1− ã)α (0 ≤ ã ≤ 1) . (3)

If c < 1, then

(1− c)γ = lim
ã→1−

(
ã− c+ 2

√
1− ã

)
γ ≤ lim

ã→1−
(1− ã)α = 0 ,

so γ = 0. Therefore, α = 1, β = 0. Suppose that c = 1. By (3),

(ã− 1 + 2
√

1− ã)γ ≤ (1− ã)α (0 ≤ ã ≤ 1) ,

which implies that

2γ = lim
ã→1−

(
2−
√

1− ã
)
γ ≤

(
lim
ã→1−

√
1− ã

)
α = 0 ,

so γ = 0. Therefore, α = 1, β = 0 = γ. Hence, Q is smooth.
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Suppose that a = 1, 1
4 ≤ b. Since ‖Q‖ = 1, we have b+ c

2 ≤
3
4 . If b+ c

2 = 3
4 ,

then Q is not smooth letting fj ∈ P(2H)∗ be such that

f1(x2) =
1

4
, f1(y2) = 1 , f1(xy) =

1

2
,

f2(x2) = 1 , f2(y2) = 0 = f2(xy) .

Let b+ c
2 <

3
4 . Note that if b = 1

4 , then Q = x2 + 1
4y

2 + cxy for 0 ≤ c < 1.
Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. Then α = 1, β = 0 = γ. Thus
Q is smooth.

Suppose that a = 1, 1
4 < b. Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖.

Then α = 1, β = 0 = γ. Thus Q is smooth.

Case 3: 0 < a < 1.

Suppose that b = 0. We will show that c > a. If not, then ‖Q‖ < 1,
which is a contradiction. Hence, c > a. We claim that Q is smooth. Let
f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. We will show that α = 1

c2
,

β = 4(1−a)
c2

, γ = 2(c−1)
c2

. Note that 1
4a + 1

2c < 1, 0 < c < 2. We may choose
δ > 0 such that ‖Ru‖ = ‖Sv‖ = 1 for all u, v ∈ (−δ, δ), where

Ru(x, y) =
(
a+ u(2− 2c− u)

)
x2 + (c+ u)xy ,

Sv(x, y) =

(
a+

4(a− 1)v

1− 4v

)
x2 + vy2 + cxy ∈ P(2H) .

Then γ = 2(c− 1)α, β = 4(1− a)α. It follows that

1 = aα+ cγ = c(2− c)α+ c(2c− 2)α = c2α ,

proving that α = 1
c2

, β = 4(1−a)
c2

, γ = 2(c−1)
c2

. Thus Q is smooth.
Suppose that b 6= 0. Let c ≤ a. Suppose that c ≤ a ≤ 4b. Notice that if

a = 4b, then ‖Q‖ < 1. Hence, Q is not smooth.
Suppose that a < 4b. Then, 0 < b ≤ 1. If b = 1, then ‖Q‖ > 1, which

is impossible. We claim that if c = a, 0 < b < 1, then Q is smooth. Let
0 < b < 1. By Theorem 2.1, 1 = ‖Q‖ = 3

4a+ b. Therefore,

Q = ax2 +

(
1− 3

4
a

)
y2 + axy

for 0 < a < 1. Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. Then

1 = aα +
(

1 − 3
4a
)
β + aγ. We will show that α = 1

4 , β = 1, γ = 1
2 . We can
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choose δ > 0 such that ‖Ru‖ = ‖Sv‖ = 1 for all u, v ∈ (−δ, δ), where

Ru(x, y) = ax2 +

(
1− 3a

4
+ u

)
y2 + (a− 2u)xy ,

Sv(x, y) = (a− 2v)x2 +

(
1− 3a

4

)
y2 + (a+ v)xy ∈ P(2H) .

Then β = 2γ, γ = 2α. Therefore, α = 1
4 , β = 1, γ = 1

2 . Thus Q is smooth.

Notice that if 0 = c < a < 4b, then Q is not smooth letting fj ∈ P(2H)∗

be such that

f1(x2) =
1

4
= f2(x2) , f1(y2) = 1 = f2(y2) ,

f1(xy) =
1

2
, f2(xy) = 0 .

Claim: if 0 < c < a < 4b, then Q is smooth.

By Theorem 2.1, 1 = ‖Q‖ = 1
4a+ b+ 1

2c. Thus 0 < b < 1. Let f ∈ P(2H)∗

be such that f(Q) = 1 = ‖f‖. We will show that α = 1
4 , β = 1, γ = 1

2 . We
choose δ > 0 such that ‖Ru,v‖ = 1 for all u, v ∈ (−δ, δ), where

Ru,v(x, y) = (a+ u)x2 + (b+ v)y2 +

(
c− 1

2
u− 2v

)
xy ∈ P(2H) .

Thus α = 1
4 , β = 1, γ = 1

2 . Therefore, Q is smooth.

Claim: if c ≤ a, 4b < a, then Q is smooth.

Suppose that c = a, 4b < a. By Theorem 2.1, 1 = ‖Q‖ =
∣∣∣14a + b

∣∣∣ + 1
2a.

Notice that 1
4a+ b < 0. Thus

Q = ax2 +

(
1

4
a− 1

)
y2 + axy

for 0 < a < 1. We will show that Q is smooth. Let f ∈ P(2H)∗ be such
that f(Q) = 1 = ‖f‖. We will show that α = −1

4 , β = −1, γ = 1
2 . Choose

0 < δ < 1 such that

0 < a+ 2v < a+ v < 1 ,
(a+ v)2 − 4a

(
1
4a− 1

)
2(a+ v)− a− 4

(
1
4a− 1

) < 1
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for all v ∈ (−δ, 0). Let

Rv = (a+ 2v)x2 +

(
1

4
a− 1

)
y2 + (a+ v)xy

for v ∈ (−δ, 0). By Theorem 2.1, 1 = ‖Rv‖. Thus γ ≥ −2α. Choose
0 < δ1 < 1 such that

0 < a+ v < 1 ,
a2 − 4(a+ v)

(
1
4a− 1− 1

4v
)

2a− (a+ v)− 4
(

1
4a− 1− 1

4v
) < 1

for all v ∈ (−δ1, 0). Let

Sv = (a+ v)x2 +

(
1

4
a− 1− 1

4
v

)
y2 + axy

for v ∈ (−δ1, 0). By Theorem 2.1, 1 = ‖Sv‖. Thus α ≥ 1
4β. Choose 0 < δ2 < 1

such that
(a+ 2v)2 − 4a

(
1
4a− 1 + v

)
2(a+ 2v)− a− 4

(
1
4a− 1 + v

) < 1

for all v ∈ (0, δ2). Let

Wu = ax2 +

(
1

4
a− 1 + u

)
y2 + (a+ 2u)xy

for u ∈ (0, δ2). By Theorem 2.1, 1 = ‖Wu‖. Thus β ≤ −2γ. Let β = −1 + ε
for some 0 ≤ ε < 1. By Theorem 2.3, it follows that

1 ≥ sup
0≤c≤1

∣∣∣∣α+

(
c2

4
− 1

)
(−1 + ε)

∣∣∣∣+ cγ

= sup
0≤c≤1

−1

4
(c− 2γ)2 + γ2 − γ +

5

4
+ ε

(
1

a
− 5

4
+
c2

4

)
≥ max

{
γ2 − γ +

5

4
+ ε

(
1

a
− 5

4
+

(2γ)2

4

)
,

− 1

4
(1− 2γ)2 + γ2 − γ +

5

4
+ ε

(
1

a
− 1

)}
= max

{(
γ − 1

2

)2

+ 1 + ε

(
1

a
− 5

4
+ γ2

)
, 1 + ε

(
1

a
− 1

)}
≥ 1 + ε

(
1

a
− 1

)
≥ 1 ,
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which shows that ε = 0 = (γ − 1
2)2. Thus α = −1

4 , β = −1, γ = 1
2 . Hence, Q

is smooth.
Suppose that c < a, 4b < a. Note that −1 ≤ b < 0. If b = −1, then

Q = ax2 − y2. We will show that it is smooth. Let f ∈ P(2H)∗ be such that
f(Q) = 1 = ‖f‖. Notice that α = 0, β = −1, γ = 0. Hence, Q is smooth.

Let −1 < b < 0. Then c > 0.

Claim: 1 = |c2−4ab|
4a = c2−4ab

4a .

First, suppose that 1
4a ≥ |b|. Then

∣∣1
4a+b

∣∣+ 1
2c = 1

4a+b+ 1
2c < a < 1. By

Theorem 2.1, 1 = ‖Q‖ = |c2−4ab|
4a . Let 1

4a < |b|. Notice that
∣∣1

4a + b
∣∣ + 1

2c <
c2+4a|b|

4a , so 1 = |c2−4ab|
4a = c2−4ab

4a . Suppose that 0 < c < 1. We will show that
Q is smooth. Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. We will show

that α = − c2

4a2
, β = −1, γ = c

2a . We choose δ > 0 such that ‖Rv‖ = ‖Sw‖ = 1
for all v, w ∈ (−δ, δ), where

Rv(x, y) =

(
a− av

1 + b+ v

)
x2 + (b+ v)y2 + cxy ,

Sw(x, y) = ax2 +

(
b+

w(2c+ w)

4a

)
y2 + (c+ w)xy ∈ P(2H) .

Notice that β = a
1+bα, γ = − c

2aβ. Therefore, α = − c2

4a2
, β = −1, γ = c

2a .
Hence, Q is smooth.

Suppose that c = 0. Then Q = ax2 − y2 for 0 < a < 1, which is smooth.
Suppose that c > a.

Claim: if c > a = 4b, then Q is smooth.

Notice that Q = ax2 + a
4y

2 + (2 − a)xy. Let f ∈ P(2H)∗ be such
that f(Q) = 1 = ‖f‖. By the previous arguments, α = 1

4 , β = 1, γ = 1
2 .

Thus Q is smooth.

Claim: if c > a > 4b, c 6= a+ 2
√

1− a, then Q is smooth.

By Theorem 2.1, −1 < b < 1
4 , 0 < c < 2. Notice that∣∣∣∣14a+ b

∣∣∣∣+
1

2
c < 1 and

c2 − 4ab

2c− a− 4b
= 1 ,

or

c2 − 4ab

2c− a− 4b
< 1 and

∣∣∣∣14a+ b

∣∣∣∣+
1

2
c = 1 .
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First, suppose that
∣∣1

4a + b
∣∣ + 1

2c < 1, c2−4ab
2c−a−4b = 1. Let f ∈ P(2H)∗ be such

that f(Q) = 1 = ‖f‖. We will show that α = (c−4b)2

(2c−a−4b)2
, β = 4(c−a)2

(2c−a−4b)2
,

γ = 2(c−a)(c−4b)
(2c−a−4b)2

. We may choose δ > 0 such that

0 < 1− 4b− 4v , 0 < a+
4(a− 1)v

1− 4b− 4v
< 1 , −1 < b+ v <

1

4
,

4(b+ v) < a+
4(a− 1)v

1− 4b− 4v
< c ,

∣∣∣∣14
(
a+

4(a− 1)v

1− 4b− 4v

)
+ b+ v

∣∣∣∣+
1

2
c < 1

for all v ∈ (−δ, δ). Let

Rv(x, y) =

(
a+

4(a− 1)v

1− 4b− 4v

)
x2 + (b+ v)y2 + cxy

for all v ∈ (−δ, δ). By Theorem 2.1,

‖Rv‖ =
c2 − 4

(
a+ 4(a−1)v

1−4b−4v

)
(b+ v)

2c−
(
a+ 4(a−1)v

1−4b−4v

)
− 4(b+ v)

= 1

for all v ∈ (−δ, δ). Notice that

β =
4(1− a)

1− 4b
α . (4)

We may choose ε > 0 such that

−1 < b+
w(2c− 2 + w)

4(a− 1)
<

1

4
, 4

(
b+

w(2c− 2 + w)

4(a− 1)

)
< a < c+ w < 2 ,∣∣∣∣14a+ b+

w(2c− 2 + w)

4(a− 1)

∣∣∣∣+
1

2
(c+ w) < 1

for all w ∈ (−ε, ε). Let

Sw(x, y) = ax2 +

(
b+

w(2c− 2 + w)

4(a− 1)

)
y2 + (c+ w)xy

for all w ∈ (−ε, ε). By Theorem 2.1,

‖Sw‖ =
(c+ w)2 − 4a

(
b+ w(2c−2+w)

4(a−1)

)
2(c+ w)− a− 4

(
b+ w(2c−2+w)

4(a−1)

) = 1
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for all w ∈ (−ε, ε). Notice that γ = (c−1)
2(1−a)β and by (4), γ = 2(c−1)

1−4b α. It follows
that

1 = aα+ bβ + cγ = α

(
a+

4b(1− a)

1− 4b
+

2c(c− 1)

1− 4b

)
= α

(
2c− a− 4b

1− 4b

)
,

which implies that α = 1−4b
2c−a−4b and 1−4b

2c−a−4b = (c−4b)2

(2c−a−4b)2
. Therefore,

α =
(c− 4b)2

(2c− a− 4b)2
, β =

4(c− a)2

(2c− a− 4b)2
, γ =

2(c− a)(c− 4b)

(2c− a− 4b)2
.

Thus Q is smooth.
Suppose that c2−4ab

2c−a−4b < 1,
∣∣1

4a+ b
∣∣+ 1

2c = 1. Note that 1
4a+ b 6= 0. First,

suppose that 1
4a+ b > 0. Let f ∈ P(2H)∗ be such that f(Q) = 1 = ‖f‖. We

will show that α = 1
4 , β = 1, γ = 1

2 . We choose δ > 0 such that

Ru(x, y) = (a+ u)x2 +

(
b− 1

4
u

)
y2 + cxy ,

Sv(x, y) = ax2 +

(
b− v

2

)
y2 + (c+ v)xy ∈ P(2H)

for all u, v ∈ (−δ, δ). Notice that γ = 1
2β, γ = 2α. Thus α = 1

4 , β = 1, γ = 1
2 .

Hence, Q is smooth.
Next, suppose that 1

4a+ b < 0. Let f ∈ P(2H)∗ be such that f(Q) = 1 =
‖f‖. By the previous argument, α = −1

4 , β = −1, γ = 1
2 . Thus Q is smooth.

Suppose that c > a > 4b, c = a + 2
√

1− a. We will show that Q is not

smooth. By Theorem 2.1, 1 = ‖Q‖ ≥
(
a+2
√

1−a
)2
−4ab

2
(
a+2
√

1−a
)
−a−4b

. Thus −1 < b ≤

a+4
√

1−a
4 − 1 < 0, so 1

4a+ b < 0. Since

1 ≥
∣∣∣∣14a+ b

∣∣∣∣+
1

2
c = −

(
1

4
a+ b

)
+

1

2
c ,

which implies that b ≥ a+4
√

1−a
4 − 1, so b = a+4

√
1−a

4 − 1 and

Q = ax2 +

(
a+ 4

√
1− a

4
− 1

)
y2 +

(
a+ 2

√
1− a

)
xy (0 < a < 1) .

For j = 1, 2, let fj ∈ P(2H)∗ be such that

f1

(
x2
)

= −1

4
, f1

(
y2
)

= −1 , f1(xy) =
1

2
, f2

(
x2
)

=

(
2−
√

1− a
)2

4
,

f2

(
y2
)

= 1− a , f2(xy) =

√
1− a

(
2−
√

1− a
)

2
.
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Clearly fj(Q) = 1 = ‖f1‖ for j = 1, 2. We claim that ‖f2‖ = 1. Indeed, for
P = a′x2 + b′y2 + c′xy ∈ P(2H), we have

δ( 2−
√
1−a
2

,
√

1−a
)(P ) = P

(
2−
√

1− a
2

,
√

1− a
)

= a′
(

2−
√

1− a
2

)2

+ b′
(√

1− a
)2

+ c′
(

2−
√

1− a
2

)√
1− a

= f2(P ) ,

which implies that f2 = δ( 2−
√
1−a
2

,
√

1−a
). Thus

‖f2‖ =

∥∥∥∥δ( 2−
√

1−a
2

,
√

1−a
)∥∥∥∥ ≤ ∥∥∥∥(2−

√
1− a

2
,
√

1− a
)∥∥∥∥

h( 1
2

)

= 1 .

Since f2(Q) = 1, ‖f2‖ = 1. Therefore, Q is not smooth.

Claim: if c > a, a < 4b, then Q is smooth.

By Theorem 2.1, 0 < b < 1, 0 < c < 2. Let f ∈ P(2H)∗ be such
that f(Q) = 1 = ‖f‖. By the previous arguments, α = 1

4 , β = 1, γ = 1
2 . Thus

Q is smooth.
Therefore, we complete the proof.
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