Smooth 2-homogeneous polynomials on the plane with a hexagonal norm

Sung Guen Kim
Department of Mathematics, Kyungpook National University Daegu 702-701, South Korea
sgk317@knu.ac.kr

Presented by Ricardo García
Accepted February 2, 2022

Abstract: Motivated by the classifications of extreme and exposed 2-homogeneous polynomials on the plane with the hexagonal norm $\|(x, y)\|=\max \left\{|y|,|x|+\frac{1}{2}|y|\right\}$ (see 15, 16), we classify all smooth 2-homogeneous polynomials on \mathbb{R}^{2} with the hexagonal norm.

Key words: The Krein-Milman theorem, smooth points, extreme points, exposed points, 2homogeneous polynomials on the plane with the hexagonal norm.
MSC (2020): 46A22.

1. Introduction

One of the main results about smooth points is known as "the Mazur density theorem". Recall that the Mazur density theorem ([9, p. 71]) says that the set of all the smooth points of a solid closed convex subset of a separable Banach space is a residual subset of its boundary. We denote by B_{E} the closed unit ball of a real Banach space E and also by E^{*} the dual space of E. We recall that a point $x \in B_{E}$ is said to be an extreme point of B_{E} if the equation $x=\frac{1}{2}(y+z)$ for some $y, z \in B_{E}$ implies that $x=y=z$. A point $x \in B_{E}$ is called an exposed point of B_{E} if there is an $f \in E^{*}$ so that $f(x)=1=\|f\|$ and $f(y)<1$ for every $y \in B_{E} \backslash\{x\}$. It is easy to see that every exposed point of B_{E} is an extreme point. A point $x \in B_{E}$ is called a smooth point of B_{E} if there is a unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. We denote by ext $B_{E}, \exp B_{E}$ and $\operatorname{sm} B_{E}$ the set of extreme points, the set of exposed points and the set of smooth points of B_{E}, respectively. For $n \in \mathbb{N}$, we denote by $\mathcal{L}\left({ }^{n} E\right)$ the Banach space of all continuous n-linear forms on E endowed with the norm $\|T\|=\sup _{\left\|x_{k}\right\|=1}\left|T\left(x_{1}, \cdots, x_{n}\right)\right|$. A n-linear form T is symmetric if $T\left(x_{1}, \ldots, x_{n}\right)=T\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for every permutation σ on $\{1,2, \ldots, n\}$. We denote by $\mathcal{L}_{s}\left({ }^{n} E\right)$ the Banach space of all continuous symmetric n-linear
forms on E. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a unique $T \in \mathcal{L}_{s}\left({ }^{n} E\right)$ such that $P(x)=T(x, \cdots, x)$ for every $x \in E$. In this case it is convenient to write $T=\check{P}$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [7].

Choi et al. [2, 3, 4, 5] initiated and characterized the smooth points, extreme points and exposed points of the unit balls of $\mathcal{P}\left({ }^{2} l_{1}^{2}\right), \mathcal{P}\left({ }^{2} l_{2}^{2}\right)$ and $\mathcal{P}\left({ }^{2} c_{0}\right)$. Kim [10] and Choi and Kim [6] classified the exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$. Kim et al. [17] characterized the exposed 2-homogeneous polynomials on Hilbert spaces. Kim [11, 12, 14 classified the smooth points, extreme points and exposed points of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with the octagonal norm of weight w. For some applications of the classification of the extreme points of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kim [13] investigated polarization and unconditional constants of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$. Thus we fully described the geometry of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$. We refer to [1, [8, 18, 19] and references therein for some recent work about extremal properties of homogeneous polynomials on some classical Banach spaces.

We will denote by $P(x, y)=a x^{2}+b y^{2}+c x y$ a 2 -homogeneous polynomial on a real Banach space of dimension 2 for some $a, b, c \in \mathbb{R}$. Let $0<w<1$ be fixed. We denote $\mathbb{R}_{h(w)}^{2}=\mathbb{R}^{2}$ with the hexagonal norm of weight w by

$$
\|(x, y)\|_{h(w)}:=\max \{|y|,|x|+(1-w)|y|\}
$$

Throughout the paper we will denote $\mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}$ by \mathcal{H}. Kim [15, 16] classified the extreme and exposed points of the unit ball of $\mathcal{P}\left({ }^{2} \mathcal{H}\right)$ as follows:
(a)

$$
\begin{gathered}
\operatorname{ext} B_{\mathcal{P}(2 \mathcal{H})}=\left\{ \pm y^{2}, \pm\left(x^{2}+\frac{1}{4} y^{2} \pm x y\right), \pm\left(x^{2}+\frac{3}{4} y^{2}\right)\right. \\
\pm\left[x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2} \pm c x y\right](0 \leq c \leq 1) \\
\pm\left[a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2}\right. \\
\quad \pm(a+2 \sqrt{1-a}) x y] \quad(0 \leq a \leq 1)\}
\end{gathered}
$$

(b)

$$
\exp B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)}=\operatorname{ext} B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)} .
$$

In this paper we classify $\operatorname{sm} B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)}$ using the classifications of ext $B_{\mathcal{P}\left({ }^{(} \mathcal{H}\right)}$ and $\exp B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)}$.

2. Results

THEOREM 2.1. $([15])$ Let $P(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)$ with $a \geq 0$, $c \geq 0$ and $a^{2}+b^{2}+c^{2} \neq 0$. Then:
Case 1: $c<a$.
If $a \leq 4 b$, then

$$
\begin{aligned}
& \begin{aligned}
\|P\| & =\max \left\{a, b,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{4 a b-c^{2}}{4 a}, \frac{4 a b-c^{2}}{2 c+a+4 b}, \frac{4 a b-c^{2}}{|2 c-a-4 b|}\right\} \\
& =\max \left\{a, b,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c\right\}
\end{aligned} \\
& \text { If } a>4 b \text {, then }\|P\|=\max \left\{a,|b|,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{\left|c^{2}-4 a b\right|}{4 a}\right\} .
\end{aligned}
$$

Case 2: $c \geq a$.

$$
\begin{aligned}
& \text { If } a \leq 4 b \text {, then }\|P\|=\max \left\{a, b,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{\left|c^{2}-4 a b\right|}{2 c+a+4 b}\right\} . \\
& \text { If } a>4 b \text {, then }\|P\|=\max \left\{a,|b|,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{c^{2}-4 a b}{2 c-a-4 b}\right\} .
\end{aligned}
$$

Note that if $\|P\|=1$, then $|a| \leq 1,|b| \leq 1,|c| \leq 2$.
THEOREM 2.2. ([15, 16])

$$
\begin{aligned}
& \operatorname{ext} B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)}=\exp B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)} \\
& =\left\{ \pm y^{2}, \pm\left(x^{2}+\frac{1}{4} y^{2} \pm x y\right), \pm\left(x^{2}+\frac{3}{4} y^{2}\right)\right. \\
& \quad \pm\left[x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2} \pm c x y\right] \quad(0 \leq c \leq 1) \\
& \pm\left[a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2}\right. \\
& \quad \pm(a+2 \sqrt{1-a}) x y] \quad(0 \leq a \leq 1)\}
\end{aligned}
$$

By the Krein-Milman theorem, a convex function (like a functional norm, for instance) defined on a convex set (like the unit ball of a finite dimensional polynomial space) attains its maximum at one extreme point of the convex set.

Theorem 2.3. ([16]) Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ with $\alpha=f\left(x^{2}\right), \beta=f\left(y^{2}\right)$, $\gamma=f(x y)$. Then

$$
\begin{aligned}
\|f\|=\max \{ & |\beta|,\left|\alpha+\frac{1}{4} \beta\right|+|\gamma|,\left|\alpha+\frac{3}{4} \beta\right|,\left|\alpha+\left(\frac{c^{2}}{4}-1\right) \beta\right|+c|\gamma|(0 \leq c \leq 1), \\
& \left.\left|a \alpha+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) \beta\right|+(a+2 \sqrt{1-a})|\gamma|(0 \leq a \leq 1)\right\} .
\end{aligned}
$$

Proof. It follows from Theorem 2.2 and the fact that $\|f\|=\sup _{P \in \operatorname{ext} \mathbf{B}}|f(P)|$, where $\mathbf{B}:=B_{\mathcal{P}\left({ }^{2} \mathcal{H}\right)}$.

Note that if $\|f\|=1$, then $|\alpha| \leq 1,|\beta| \leq 1,|\gamma| \leq \frac{1}{2}$.
Remark. Let $P(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)$ with $\|P\|=1$. Then the following are equivalent:
(1) P is smooth;
(2) $-P(x, y)=-a x^{2}-b y^{2}-c x y$ is smooth;
(3) $P(x,-y)=a x^{2}+b y^{2}-c x y$ is smooth.

As a consequence of the previous remark, our attention can be restricted to polynomials $Q(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)$ with $a \geq 0, c \geq 0$.

We are in position to prove the main result of this paper.
Theorem 2.4. Let $P(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)$ with $a \geq 0, c \geq 0$, $\|P\|=1$. Then P is a smooth point of the unit ball of $\mathcal{P}\left({ }^{2} \mathcal{H}\right)$ if and only if one of the following mutually exclusive conditions holds:
(1) $a=0,0<|b|<1$;
(2) $a=1, b=-\frac{3}{4}, \frac{1}{4}, c<1$;
(3) $a=1,-1<b<-\frac{3}{4}, b-\frac{c}{2}>-\frac{5}{4}, \frac{c^{2}}{4}-b<1$;
(4) $a=1,-\frac{3}{4}<b<\frac{1}{4}$;
(5) $a=1, \frac{1}{4} \leq b, b+\frac{c}{2}<\frac{3}{4}$;
(6) $0<a<1, b=0$;
(7) $0<a<1, c \leq a, 0 \neq 4 b<a$;
(8) $0<a<1,0<c \leq a<4 b$;
(9) $0<a<1,4 b=a<c$;
(10) $0<a<1,0 \neq 4 b<a<c, c \neq a+2 \sqrt{1-a}$;
(11) $0<a<1, a<4 b, a<c$.

Proof. Let $Q(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)$ with $a \geq 0, c \geq 0$ and $\|Q\|=1$.

Case 1: $a=0$.
Note that if $b=0$ or ± 1, then Q is not smooth. In fact, if $b=0$, then $Q=2 x y$. For $j=1,2$, let $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that
$f_{1}\left(x^{2}\right)=\frac{1}{4}, \quad f_{1}\left(y^{2}\right)=1, \quad f_{1}(x y)=\frac{1}{2}, \quad f_{2}\left(x^{2}\right)=0=f_{2}\left(y^{2}\right), \quad f_{2}(x y)=\frac{1}{2}$.
By Theorem 2.3, $f_{j}(Q)=1=\left\|f_{j}\right\|$ for $j=1,2$. Thus Q is not smooth. If $b= \pm 1$, then $P= \pm y^{2}$. For $j=1,2$, let $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{aligned}
& f_{1}\left(x^{2}\right)= \pm \frac{1}{4}, \quad f_{1}\left(y^{2}\right)= \pm 1, \quad f_{1}(x y)= \pm \frac{1}{2} \\
& f_{2}\left(x^{2}\right)=0=f_{2}(x y), \quad f_{2}\left(y^{2}\right)= \pm 1
\end{aligned}
$$

By Theorem 2.3, $f_{j}(Q)=1=\left\|f_{j}\right\|$ for $j=1,2$. Thus Q is not smooth.
Claim: if $a=0,0<|b|<1$, then Q is smooth.
Without loss of generality, we may assume that $0<b<1$. By Theorem 2.1. $1=\|Q\|=b+\frac{1}{2} c$. Thus $c=2(1-b)$, so $0<c<2$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Notice that $1=b \beta+c \gamma$. We will show that $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. Since $0<b<1,0<c<2$, we can choose $\delta>0$ such that

$$
0<2(1-b)+t=c+t<2, \quad 0<b-\frac{1}{2} t<1,
$$

for all $t \in(-\delta, \delta)$. Let $Q_{t}(x, y)=\left(b-\frac{1}{2} t\right) y^{2}+(c+t) x y$ for all $t \in(-\delta, \delta)$. By Theorem 2.1, $\left\|Q_{t}\right\|=1$ for all $t \in(-\delta, \delta)$. For all $t \in(-\delta, \delta)$,

$$
1=b \beta+c \gamma \geq f\left(Q_{t}\right)=\left(b-\frac{1}{2} t\right) \beta+(c+t) \gamma,
$$

which shows that $t\left(\gamma-\frac{1}{2} \beta\right) \leq 0$, for all $t \in(-\delta, \delta)$. Thus $\gamma=\frac{1}{2} \beta$. Since $1=f(Q)=b \beta+c \gamma=2 \gamma$, we have $\beta=1, \gamma=\frac{1}{2}$. By Theorem 2.3, $1 \geq$

$$
\begin{align*}
& \left|\alpha+\frac{1}{4} \beta\right|+|\gamma|=\left|\alpha+\frac{1}{4}\right|+\frac{1}{2}, \text { so } \\
& \qquad \quad-\frac{3}{4} \leq \alpha \leq \frac{1}{4} . \tag{1}
\end{align*}
$$

By Theorem 2.3, for $0 \leq \tilde{c} \leq 1$,

$$
1 \geq\left|\alpha+\left(\frac{\tilde{c}^{2}}{4}-1\right)\right|+\frac{\tilde{c}}{2}=-\left(\alpha+\left(\frac{\tilde{c}^{2}}{4}-1\right)\right)+\frac{\tilde{c}}{2},
$$

which implies that

$$
\begin{equation*}
4 \alpha \geq \sup _{0 \leq \tilde{c} \leq 1}\left(2 \tilde{c}-\tilde{c}^{2}\right)=1 \tag{2}
\end{equation*}
$$

By (1) and (2), $\alpha=\frac{1}{4}$. Therefore, Q is smooth.
CASE 2: $a=1$.
If $b=-1$, then $Q=x^{2}-y^{2}$. For $j=1,2$, let $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{aligned}
& f_{1}\left(x^{2}\right)=1, \quad f_{1}\left(y^{2}\right)=0=f_{1}(x y) \\
& f_{2}\left(x^{2}\right)=0=f_{2}(x y), \quad f_{2}\left(y^{2}\right)=-1
\end{aligned}
$$

By Theorem 2.3, $f_{j}(Q)=1=\left\|f_{j}\right\|$ for $j=1,2$. Hence, Q is not smooth.
Claim: if $\left(a=1, b=-\frac{3}{4}, \frac{1}{4}, c<1\right),\left(a=1,-1<b<\frac{1}{4}, b \neq-\frac{3}{4}\right)$ or $\left(a=1, \frac{1}{4} \leq b, b+\frac{c}{2}<\frac{3}{4}\right)$, then Q is smooth.

Note that if $a=1, b=-\frac{3}{4}$, then $c \leq 1$. Note also that if $a=1, b=-\frac{3}{4}, c=$ 1 , then Q is not smooth.

Suppose that $a=1, b=-\frac{3}{4}, c<1$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Then $1=\alpha-\frac{3}{4} \beta+c \gamma$. We will show that $\alpha=1$, $\beta=\gamma=0$. Since $0 \leq c<1$ and by Theorem 2.1, we can choose $\delta>0$ such that $\left\|R_{u}\right\|=\left\|S_{v}\right\|=1$ for all $u, v \in(-\delta, \delta)$, where

$$
\begin{aligned}
R_{u}(x, y) & =x^{2}-\frac{3}{4} y^{2}+(c+u) x y \\
S_{v}(x, y) & =x^{2}-\left(\frac{3}{4}+v\right) y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

It follows that, for all $u, v \in(-\delta, \delta)$,

$$
\begin{aligned}
& 1=\alpha-\frac{3}{4} \beta+c \gamma \geq f\left(R_{u}\right)=\alpha-\frac{3}{4} \beta+(c+u) \gamma \\
& 1=\alpha-\frac{3}{4} \beta+c \gamma \geq f\left(S_{v}\right)=\alpha-\left(\frac{3}{4}+v\right) \beta+c \gamma
\end{aligned}
$$

which shows that $\alpha=1, \beta=\gamma=0$. Therefore, Q is smooth. By a similar argument, if $a=1, b=\frac{1}{4}, c<1$, then Q is smooth.

Suppose that $a=1,-1<b<\frac{1}{4}, b \neq-\frac{3}{4}$. Let $a=1,-1<b<-\frac{3}{4}$. We will show that $c<1$. If not, then $1 \leq c \leq 2$. By Theorem 2.1, $b-\frac{c}{2} \geq-\frac{5}{4}$, $\frac{c^{2}-4 b}{2 c-1-4 b} \leq 1$, which shows that $c=1, b \geq-\frac{3}{4}$. This is a contradiction. Hence, by Theorem 2.1, $b-\frac{c}{2} \geq-\frac{5}{4}, \frac{c^{2}}{4}-b \leq 1$. We claim that if

$$
a=1, \quad-1<b<-\frac{3}{4}, \quad b-\frac{c}{2}>-\frac{5}{4}, \quad \frac{c^{2}}{4}-b<1
$$

then Q is smooth. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Then, $1=\alpha+b \beta+c \gamma$. We will show that $\alpha=1, \beta=\gamma=0$. By Theorem 2.1, we can choose $\delta>0$ such that $\left\|R_{u}\right\|=\left\|S_{v}\right\|=1$ for all $u, v \in(-\delta, \delta)$, where

$$
\begin{aligned}
R_{u}(x, y) & =x^{2}+b y^{2}+(c+u) x y \\
S_{v}(x, y) & =x^{2}+(b+v) y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

Thus $\alpha=1, \beta=\gamma=0$. Therefore, Q is smooth.
Note that if

$$
a=1, \quad-1<b<-\frac{3}{4}, \quad b-\frac{c}{2} \geq-\frac{5}{4}, \quad \frac{c^{2}}{4}-b=1
$$

then Q is not smooth letting $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{aligned}
f_{1}\left(x^{2}\right)=1, & f_{1}\left(y^{2}\right)=0=f_{1}(x y), \\
f_{2}\left(x^{2}\right)=-\frac{c^{2}}{4}, & f_{2}\left(y^{2}\right)=-1, \quad f_{2}(x y)=\frac{c}{2}
\end{aligned}
$$

Thus $x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2}+c x y(0 \leq c \leq 1)$ is not smooth.
Note also that if

$$
a=1, \quad-1<b<-\frac{3}{4}, \quad b-\frac{c}{2}=-\frac{5}{4}, \quad \frac{c^{2}}{4}-b \leq 1
$$

then Q is not smooth letting $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{aligned}
f_{1}\left(x^{2}\right)=1, & f_{1}\left(y^{2}\right)=0=f_{1}(x y) \\
f_{2}\left(x^{2}\right)=-\frac{1}{4}, & f_{2}\left(y^{2}\right)=-1, \quad f_{2}(x y)=\frac{1}{2}
\end{aligned}
$$

Let $a=1,-\frac{3}{4}<b<\frac{1}{4}$. We will show that Q is smooth. First, suppose that $-\frac{3}{4}<b<0$. Since $\|Q\|=1$, by Theorem 2.1, we have $0 \leq c \leq 1$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Then $1=\alpha+b \beta+c \gamma$. We will show that $\alpha=1, \beta=0=\gamma$. Since $-\frac{3}{4}<b<0$, By Theorem 2.1, we can choose $\delta>0$ such that $\left\|R_{u}\right\|=\left\|S_{v}\right\|=1$ for all $u, v \in(-\delta, \delta)$, where

$$
\begin{aligned}
R_{u}(x, y) & =x^{2}+(b+u) y^{2}+c x y \\
S_{v}(x, y) & =x^{2}+b y^{2}+(c+v) x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

Thus $\alpha=1, \beta=0=\gamma$. Hence, Q is smooth.
Suppose that $c=1$. Then $1=\alpha+\gamma, \alpha \geq 0, \gamma \geq 0$. By Theorem 2.3,

$$
\begin{aligned}
1 & \geq \sup _{0 \leq \tilde{a} \leq 1} \tilde{a} \alpha+(\tilde{a}+2 \sqrt{1-\tilde{a}}) \gamma \\
& =\sup _{0 \leq \tilde{a} \leq 1} 2 \sqrt{1-\tilde{a}}(1-\alpha)+\tilde{a}=1+(1-\alpha)^{2},
\end{aligned}
$$

which implies that $\alpha=1$. Therefore, $\alpha=1, \beta=0=\gamma$. We have shown that if $0<c \leq 1$, then Q is smooth. Suppose that $c=0$. Since $1=\alpha+b \beta, \beta=0$, we have $\alpha=1$. By Theorem 2.3, $1 \geq\left|\alpha+\frac{1}{4} \beta\right|+|\gamma|=1+\gamma$, which shows that $\gamma=0$. Hence, Q is smooth.

Suppose that $0 \leq b<\frac{1}{4}$. Since $\|Q\|=1$, by Theorem 2.1, $0 \leq c \leq 1$.
Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=1$, $\beta=0=\gamma$. Since $1=f(Q)=\alpha+b \beta+c \gamma$, we have $\alpha>0$. Indeed, if $\alpha \leq 0$, then

$$
1 \leq b \beta+c \gamma \leq b|\beta|+c|\gamma|<\frac{1}{4}+\frac{1}{2}=\frac{3}{4}
$$

which is a contradiction. We also claim that $\alpha+\frac{1}{4} \beta \geq 0$. If not, then $\alpha<\frac{1}{4}|\beta| \leq \frac{1}{4}$, which implies that

$$
\frac{3}{4}<1-\alpha=b \beta+c \gamma \leq b|\beta|+c|\gamma|<\frac{3}{4}
$$

which is a contradiction. Note that

$$
\alpha+b \beta=1-c \gamma \geq 1-c|\gamma| \geq 1-\frac{c}{2} \geq \frac{1}{2}
$$

By Theorem 2.3 ,

$$
\alpha+\frac{1}{4} \beta+|\gamma|=\left|\alpha+\frac{1}{4} \beta\right|+|\gamma| \leq 1=\alpha+b \beta+c \gamma \leq \alpha+b \beta+c|\gamma|
$$

which shows that

$$
\left(\frac{1}{4}-b\right) \beta \leq(c-1)|\gamma| \leq 0
$$

Hence, $\beta \leq 0$. By Theorem 2.3, for all $0 \leq \tilde{c} \leq 1$, it follows that

$$
\begin{aligned}
\alpha+\left(1-\frac{\tilde{c}^{2}}{4}\right)|\beta|+\tilde{c}|\gamma| & =\left|\alpha+\left(\frac{\tilde{c}^{2}}{4}-1\right) \beta\right|+\tilde{c}|\gamma| \\
& \leq 1=\alpha+b \beta+c \gamma \\
& \leq \alpha+b \beta+c|\gamma|=\alpha-b|\beta|+c|\gamma|
\end{aligned}
$$

which implies that

$$
\left(1-\frac{\tilde{c}^{2}}{4}+b\right)|\beta| \leq(c-\tilde{c})|\gamma| \quad(0 \leq \tilde{c} \leq 1)
$$

Thus

$$
\left(1-\frac{c^{2}}{4}+b\right)|\beta|=\lim _{\tilde{c} \rightarrow c-}\left(1-\frac{\tilde{c}^{2}}{4}+b\right)|\beta| \leq \lim _{\tilde{c} \rightarrow c-}(c-\tilde{c})|\gamma|=0
$$

so $\beta=0$. Since $1=f(Q)=\alpha+c \gamma$, we have $\gamma \geq 0$. By Theorem 2.3.

$$
\tilde{a} \alpha+(\tilde{a}+2 \sqrt{1-\tilde{a}}) \gamma \leq 1=\alpha+c \gamma \quad(0 \leq \tilde{a} \leq 1)
$$

which implies that

$$
\begin{equation*}
(\tilde{a}-c+2 \sqrt{1-\tilde{a}}) \gamma \leq(1-\tilde{a}) \alpha \quad(0 \leq \tilde{a} \leq 1) \tag{3}
\end{equation*}
$$

If $c<1$, then

$$
(1-c) \gamma=\lim _{\tilde{a} \rightarrow 1-}(\tilde{a}-c+2 \sqrt{1-\tilde{a}}) \gamma \leq \lim _{\tilde{a} \rightarrow 1-}(1-\tilde{a}) \alpha=0
$$

so $\gamma=0$. Therefore, $\alpha=1, \beta=0$. Suppose that $c=1$. By (3),

$$
(\tilde{a}-1+2 \sqrt{1-\tilde{a}}) \gamma \leq(1-\tilde{a}) \alpha \quad(0 \leq \tilde{a} \leq 1)
$$

which implies that

$$
2 \gamma=\lim _{\tilde{a} \rightarrow 1-}(2-\sqrt{1-\tilde{a}}) \gamma \leq\left(\lim _{\tilde{a} \rightarrow 1-} \sqrt{1-\tilde{a}}\right) \alpha=0
$$

so $\gamma=0$. Therefore, $\alpha=1, \beta=0=\gamma$. Hence, Q is smooth.

Suppose that $a=1, \frac{1}{4} \leq b$. Since $\|Q\|=1$, we have $b+\frac{c}{2} \leq \frac{3}{4}$. If $b+\frac{c}{2}=\frac{3}{4}$, then Q is not smooth letting $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{array}{ll}
f_{1}\left(x^{2}\right)=\frac{1}{4}, & f_{1}\left(y^{2}\right)=1, \quad f_{1}(x y)=\frac{1}{2} \\
f_{2}\left(x^{2}\right)=1, & f_{2}\left(y^{2}\right)=0=f_{2}(x y)
\end{array}
$$

Let $b+\frac{c}{2}<\frac{3}{4}$. Note that if $b=\frac{1}{4}$, then $Q=x^{2}+\frac{1}{4} y^{2}+c x y$ for $0 \leq c<1$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Then $\alpha=1, \beta=0=\gamma$. Thus Q is smooth.

Suppose that $a=1, \frac{1}{4}<b$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Then $\alpha=1, \beta=0=\gamma$. Thus Q is smooth.

Case 3: $0<a<1$.
Suppose that $b=0$. We will show that $c>a$. If not, then $\|Q\|<1$, which is a contradiction. Hence, $c>a$. We claim that Q is smooth. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=\frac{1}{c^{2}}$, $\beta=\frac{4(1-a)}{c^{2}}, \gamma=\frac{2(c-1)}{c^{2}}$. Note that $\frac{1}{4} a+\frac{1}{2} c<1,0<c<2$. We may choose $\delta>0$ such that $\left\|R_{u}\right\|=\left\|S_{v}\right\|=1$ for all $u, v \in(-\delta, \delta)$, where

$$
\begin{aligned}
R_{u}(x, y) & =(a+u(2-2 c-u)) x^{2}+(c+u) x y \\
S_{v}(x, y) & =\left(a+\frac{4(a-1) v}{1-4 v}\right) x^{2}+v y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

Then $\gamma=2(c-1) \alpha, \beta=4(1-a) \alpha$. It follows that

$$
1=a \alpha+c \gamma=c(2-c) \alpha+c(2 c-2) \alpha=c^{2} \alpha
$$

proving that $\alpha=\frac{1}{c^{2}}, \beta=\frac{4(1-a)}{c^{2}}, \gamma=\frac{2(c-1)}{c^{2}}$. Thus Q is smooth.
Suppose that $b \neq 0$. Let $c \leq a$. Suppose that $c \leq a \leq 4 b$. Notice that if $a=4 b$, then $\|Q\|<1$. Hence, Q is not smooth.

Suppose that $a<4 b$. Then, $0<b \leq 1$. If $b=1$, then $\|Q\|>1$, which is impossible. We claim that if $c=a, 0<b<1$, then Q is smooth. Let $0<b<1$. By Theorem 2.1. $1=\|Q\|=\frac{3}{4} a+b$. Therefore,

$$
Q=a x^{2}+\left(1-\frac{3}{4} a\right) y^{2}+a x y
$$

for $0<a<1$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Then $1=a \alpha+\left(1-\frac{3}{4} a\right) \beta+a \gamma$. We will show that $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. We can
choose $\delta>0$ such that $\left\|R_{u}\right\|=\left\|S_{v}\right\|=1$ for all $u, v \in(-\delta, \delta)$, where

$$
\begin{aligned}
& R_{u}(x, y)=a x^{2}+\left(1-\frac{3 a}{4}+u\right) y^{2}+(a-2 u) x y \\
& S_{v}(x, y)=(a-2 v) x^{2}+\left(1-\frac{3 a}{4}\right) y^{2}+(a+v) x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

Then $\beta=2 \gamma, \gamma=2 \alpha$. Therefore, $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. Thus Q is smooth.
Notice that if $0=c<a<4 b$, then Q is not smooth letting $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{aligned}
& f_{1}\left(x^{2}\right)=\frac{1}{4}=f_{2}\left(x^{2}\right), \quad f_{1}\left(y^{2}\right)=1=f_{2}\left(y^{2}\right) \\
& f_{1}(x y)=\frac{1}{2}, \quad f_{2}(x y)=0
\end{aligned}
$$

Claim: if $0<c<a<4 b$, then Q is smooth.
By Theorem 2.1. $1=\|Q\|=\frac{1}{4} a+b+\frac{1}{2} c$. Thus $0<b<1$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. We choose $\delta>0$ such that $\left\|R_{u, v}\right\|=1$ for all $u, v \in(-\delta, \delta)$, where

$$
R_{u, v}(x, y)=(a+u) x^{2}+(b+v) y^{2}+\left(c-\frac{1}{2} u-2 v\right) x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
$$

Thus $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. Therefore, Q is smooth.
Claim: if $c \leq a, 4 b<a$, then Q is smooth.
Suppose that $c=a, 4 b<a$. By Theorem 2.1. $1=\|Q\|=\left|\frac{1}{4} a+b\right|+\frac{1}{2} a$. Notice that $\frac{1}{4} a+b<0$. Thus

$$
Q=a x^{2}+\left(\frac{1}{4} a-1\right) y^{2}+a x y
$$

for $0<a<1$. We will show that Q is smooth. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=-\frac{1}{4}, \beta=-1, \gamma=\frac{1}{2}$. Choose $0<\delta<1$ such that

$$
0<a+2 v<a+v<1, \quad \frac{(a+v)^{2}-4 a\left(\frac{1}{4} a-1\right)}{2(a+v)-a-4\left(\frac{1}{4} a-1\right)}<1
$$

for all $v \in(-\delta, 0)$. Let

$$
R_{v}=(a+2 v) x^{2}+\left(\frac{1}{4} a-1\right) y^{2}+(a+v) x y
$$

for $v \in(-\delta, 0)$. By Theorem 2.1, $1=\left\|R_{v}\right\|$. Thus $\gamma \geq-2 \alpha$. Choose $0<\delta_{1}<1$ such that

$$
0<a+v<1, \quad \frac{a^{2}-4(a+v)\left(\frac{1}{4} a-1-\frac{1}{4} v\right)}{2 a-(a+v)-4\left(\frac{1}{4} a-1-\frac{1}{4} v\right)}<1
$$

for all $v \in\left(-\delta_{1}, 0\right)$. Let

$$
S_{v}=(a+v) x^{2}+\left(\frac{1}{4} a-1-\frac{1}{4} v\right) y^{2}+a x y
$$

for $v \in\left(-\delta_{1}, 0\right)$. By Theorem 2.1, $1=\left\|S_{v}\right\|$. Thus $\alpha \geq \frac{1}{4} \beta$. Choose $0<\delta_{2}<1$ such that

$$
\frac{(a+2 v)^{2}-4 a\left(\frac{1}{4} a-1+v\right)}{2(a+2 v)-a-4\left(\frac{1}{4} a-1+v\right)}<1
$$

for all $v \in\left(0, \delta_{2}\right)$. Let

$$
W_{u}=a x^{2}+\left(\frac{1}{4} a-1+u\right) y^{2}+(a+2 u) x y
$$

for $u \in\left(0, \delta_{2}\right)$. By Theorem 2.1, $1=\left\|W_{u}\right\|$. Thus $\beta \leq-2 \gamma$. Let $\beta=-1+\epsilon$ for some $0 \leq \epsilon<1$. By Theorem 2.3 , it follows that

$$
\begin{aligned}
1 \geq & \sup _{0 \leq c \leq 1}\left|\alpha+\left(\frac{c^{2}}{4}-1\right)(-1+\epsilon)\right|+c \gamma \\
= & \sup _{0 \leq c \leq 1}-\frac{1}{4}(c-2 \gamma)^{2}+\gamma^{2}-\gamma+\frac{5}{4}+\epsilon\left(\frac{1}{a}-\frac{5}{4}+\frac{c^{2}}{4}\right) \\
\geq & \max \left\{\gamma^{2}-\gamma+\frac{5}{4}+\epsilon\left(\frac{1}{a}-\frac{5}{4}+\frac{(2 \gamma)^{2}}{4}\right),\right. \\
& \left.\quad-\frac{1}{4}(1-2 \gamma)^{2}+\gamma^{2}-\gamma+\frac{5}{4}+\epsilon\left(\frac{1}{a}-1\right)\right\} \\
= & \max \left\{\left(\gamma-\frac{1}{2}\right)^{2}+1+\epsilon\left(\frac{1}{a}-\frac{5}{4}+\gamma^{2}\right), 1+\epsilon\left(\frac{1}{a}-1\right)\right\} \\
\geq & 1+\epsilon\left(\frac{1}{a}-1\right) \geq 1
\end{aligned}
$$

which shows that $\epsilon=0=\left(\gamma-\frac{1}{2}\right)^{2}$. Thus $\alpha=-\frac{1}{4}, \beta=-1, \gamma=\frac{1}{2}$. Hence, Q is smooth.

Suppose that $c<a, 4 b<a$. Note that $-1 \leq b<0$. If $b=-1$, then $Q=a x^{2}-y^{2}$. We will show that it is smooth. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. Notice that $\alpha=0, \beta=-1, \gamma=0$. Hence, Q is smooth.

Let $-1<b<0$. Then $c>0$.
Claim: $1=\frac{\left|c^{2}-4 a b\right|}{4 a}=\frac{c^{2}-4 a b}{4 a}$.
First, suppose that $\frac{1}{4} a \geq|b|$. Then $\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=\frac{1}{4} a+b+\frac{1}{2} c<a<1$. By Theorem 2.1. $1=\|Q\|=\frac{\left|c^{2}-4 a b\right|}{4 a}$. Let $\frac{1}{4} a<|b|$. Notice that $\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<$ $\frac{c^{2}+4 a|b|}{4 a}$, so $1=\frac{\left|c^{2}-4 a b\right|}{4 a}=\frac{c^{2}-4 a b}{4 a}$. Suppose that $0<c<1$. We will show that Q is smooth. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=-\frac{c^{2}}{4 a^{2}}, \beta=-1, \gamma=\frac{c}{2 a}$. We choose $\delta>0$ such that $\left\|R_{v}\right\|=\left\|S_{w}\right\|=1$ for all $v, w \in(-\delta, \delta)$, where

$$
\begin{aligned}
& R_{v}(x, y)=\left(a-\frac{a v}{1+b+v}\right) x^{2}+(b+v) y^{2}+c x y \\
& S_{w}(x, y)=a x^{2}+\left(b+\frac{w(2 c+w)}{4 a}\right) y^{2}+(c+w) x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

Notice that $\beta=\frac{a}{1+b} \alpha, \gamma=-\frac{c}{2 a} \beta$. Therefore, $\alpha=-\frac{c^{2}}{4 a^{2}}, \beta=-1, \gamma=\frac{c}{2 a}$. Hence, Q is smooth.

Suppose that $c=0$. Then $Q=a x^{2}-y^{2}$ for $0<a<1$, which is smooth.
Suppose that $c>a$.
Claim: if $c>a=4 b$, then Q is smooth.
Notice that $Q=a x^{2}+\frac{a}{4} y^{2}+(2-a) x y$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. By the previous arguments, $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. Thus Q is smooth.

Claim: if $c>a>4 b, c \neq a+2 \sqrt{1-a}$, then Q is smooth.
By Theorem 2.1. $-1<b<\frac{1}{4}, 0<c<2$. Notice that

$$
\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<1 \quad \text { and } \quad \frac{c^{2}-4 a b}{2 c-a-4 b}=1
$$

or

$$
\frac{c^{2}-4 a b}{2 c-a-4 b}<1 \quad \text { and } \quad\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=1
$$

First, suppose that $\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<1, \frac{c^{2}-4 a b}{2 c-a-4 b}=1$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=\frac{(c-4 b)^{2}}{(2 c-a-4 b)^{2}}, \beta=\frac{4(c-a)^{2}}{(2 c-a-4 b)^{2}}$, $\gamma=\frac{2(c-a)(c-4 b)}{(2 c-a-4 b)^{2}}$. We may choose $\delta>0$ such that

$$
\begin{gathered}
0<1-4 b-4 v, \quad 0<a+\frac{4(a-1) v}{1-4 b-4 v}<1, \quad-1<b+v<\frac{1}{4}, \\
4(b+v)<a+\frac{4(a-1) v}{1-4 b-4 v}<c, \quad\left|\frac{1}{4}\left(a+\frac{4(a-1) v}{1-4 b-4 v}\right)+b+v\right|+\frac{1}{2} c<1
\end{gathered}
$$

for all $v \in(-\delta, \delta)$. Let

$$
R_{v}(x, y)=\left(a+\frac{4(a-1) v}{1-4 b-4 v}\right) x^{2}+(b+v) y^{2}+c x y
$$

for all $v \in(-\delta, \delta)$. By Theorem 2.1,

$$
\left\|R_{v}\right\|=\frac{c^{2}-4\left(a+\frac{4(a-1) v}{1-4 b-4 v}\right)(b+v)}{2 c-\left(a+\frac{4(a-1) v}{1-4 b-4 v}\right)-4(b+v)}=1
$$

for all $v \in(-\delta, \delta)$. Notice that

$$
\begin{equation*}
\beta=\frac{4(1-a)}{1-4 b} \alpha \tag{4}
\end{equation*}
$$

We may choose $\epsilon>0$ such that

$$
\begin{gathered}
-1<b+\frac{w(2 c-2+w)}{4(a-1)}<\frac{1}{4}, \quad 4\left(b+\frac{w(2 c-2+w)}{4(a-1)}\right)<a<c+w<2 \\
\left|\frac{1}{4} a+b+\frac{w(2 c-2+w)}{4(a-1)}\right|+\frac{1}{2}(c+w)<1
\end{gathered}
$$

for all $w \in(-\epsilon, \epsilon)$. Let

$$
S_{w}(x, y)=a x^{2}+\left(b+\frac{w(2 c-2+w)}{4(a-1)}\right) y^{2}+(c+w) x y
$$

for all $w \in(-\epsilon, \epsilon)$. By Theorem 2.1,

$$
\left\|S_{w}\right\|=\frac{(c+w)^{2}-4 a\left(b+\frac{w(2 c-2+w)}{4(a-1)}\right)}{2(c+w)-a-4\left(b+\frac{w(2 c-2+w)}{4(a-1)}\right)}=1
$$

for all $w \in(-\epsilon, \epsilon)$. Notice that $\gamma=\frac{(c-1)}{2(1-a)} \beta$ and by (4), $\gamma=\frac{2(c-1)}{1-4 b} \alpha$. It follows that

$$
1=a \alpha+b \beta+c \gamma=\alpha\left(a+\frac{4 b(1-a)}{1-4 b}+\frac{2 c(c-1)}{1-4 b}\right)=\alpha\left(\frac{2 c-a-4 b}{1-4 b}\right)
$$

which implies that $\alpha=\frac{1-4 b}{2 c-a-4 b}$ and $\frac{1-4 b}{2 c-a-4 b}=\frac{(c-4 b)^{2}}{(2 c-a-4 b)^{2}}$. Therefore,

$$
\alpha=\frac{(c-4 b)^{2}}{(2 c-a-4 b)^{2}}, \quad \beta=\frac{4(c-a)^{2}}{(2 c-a-4 b)^{2}}, \quad \gamma=\frac{2(c-a)(c-4 b)}{(2 c-a-4 b)^{2}} .
$$

Thus Q is smooth.
Suppose that $\frac{c^{2}-4 a b}{2 c-a-4 b}<1,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=1$. Note that $\frac{1}{4} a+b \neq 0$. First, suppose that $\frac{1}{4} a+b>0$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. We will show that $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. We choose $\delta>0$ such that

$$
\begin{aligned}
R_{u}(x, y) & =(a+u) x^{2}+\left(b-\frac{1}{4} u\right) y^{2}+c x y \\
S_{v}(x, y) & =a x^{2}+\left(b-\frac{v}{2}\right) y^{2}+(c+v) x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)
\end{aligned}
$$

for all $u, v \in(-\delta, \delta)$. Notice that $\gamma=\frac{1}{2} \beta, \gamma=2 \alpha$. Thus $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. Hence, Q is smooth.

Next, suppose that $\frac{1}{4} a+b<0$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=$ $\|f\|$. By the previous argument, $\alpha=-\frac{1}{4}, \beta=-1, \gamma=\frac{1}{2}$. Thus Q is smooth.

Suppose that $c>a>4 b, c=a+2 \sqrt{1-a}$. We will show that Q is not smooth. By Theorem $2.1,1=\|Q\| \geq \frac{(a+2 \sqrt{1-a})^{2}-4 a b}{2(a+2 \sqrt{1-a})-a-4 b}$. Thus $-1<b \leq$ $\frac{a+4 \sqrt{1-a}}{4}-1<0$, so $\frac{1}{4} a+b<0$. Since

$$
1 \geq\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=-\left(\frac{1}{4} a+b\right)+\frac{1}{2} c,
$$

which implies that $b \geq \frac{a+4 \sqrt{1-a}}{4}-1$, so $b=\frac{a+4 \sqrt{1-a}}{4}-1$ and

$$
Q=a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2}+(a+2 \sqrt{1-a}) x y \quad(0<a<1)
$$

For $j=1,2$, let $f_{j} \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that

$$
\begin{aligned}
f_{1}\left(x^{2}\right)=-\frac{1}{4}, \quad f_{1}\left(y^{2}\right)=-1, \quad f_{1}(x y)=\frac{1}{2}, \quad f_{2}\left(x^{2}\right)=\frac{(2-\sqrt{1-a})^{2}}{4} \\
f_{2}\left(y^{2}\right)=1-a, \quad f_{2}(x y)=\frac{\sqrt{1-a}(2-\sqrt{1-a})}{2}
\end{aligned}
$$

Clearly $f_{j}(Q)=1=\left\|f_{1}\right\|$ for $j=1,2$. We claim that $\left\|f_{2}\right\|=1$. Indeed, for $P=a^{\prime} x^{2}+b^{\prime} y^{2}+c^{\prime} x y \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)$, we have

$$
\begin{aligned}
\delta_{\left(\frac{2-\sqrt{1-a}}{2}, \sqrt{1-a}\right)} & (P)=P\left(\frac{2-\sqrt{1-a}}{2}, \sqrt{1-a}\right) \\
& =a^{\prime}\left(\frac{2-\sqrt{1-a}}{2}\right)^{2}+b^{\prime}(\sqrt{1-a})^{2}+c^{\prime}\left(\frac{2-\sqrt{1-a}}{2}\right) \sqrt{1-a} \\
& =f_{2}(P),
\end{aligned}
$$

which implies that $f_{2}=\delta_{\left(\frac{2-\sqrt{1-a}}{2}, \sqrt{1-a}\right)}$. Thus

$$
\left\|f_{2}\right\|=\left\|\delta_{\left(\frac{2-\sqrt{1-a}}{2}, \sqrt{1-a}\right)}\right\| \leq\left\|\left(\frac{2-\sqrt{1-a}}{2}, \sqrt{1-a}\right)\right\|_{h\left(\frac{1}{2}\right)}=1
$$

Since $f_{2}(Q)=1,\left\|f_{2}\right\|=1$. Therefore, Q is not smooth.
Claim: if $c>a, a<4 b$, then Q is smooth.
By Theorem 2.1, $0<b<1,0<c<2$. Let $f \in \mathcal{P}\left({ }^{2} \mathcal{H}\right)^{*}$ be such that $f(Q)=1=\|f\|$. By the previous arguments, $\alpha=\frac{1}{4}, \beta=1, \gamma=\frac{1}{2}$. Thus Q is smooth.

Therefore, we complete the proof.

Acknowledgements

The author is thankful to the referee for the careful reading and considered suggestions leading to a better presented paper.

References

[1] R.M. Aron, M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001), 73-80.
[2] Y.S. Choi, H. Ki, S.G. Kim, Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl. 228 (1998), 467-482.
[3] Y.S. Choi, S.G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) $\mathbf{7 1}$ (1998), $472-480$.
[4] Y.S. Choi, S.G. Kim, Extreme polynomials on c_{0}, Indian J. Pure Appl. Math. 29 (1998), 983-989.
[5] Y.S. Choi, S.G. Kim, Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math. 36 (1999), 26-33.
[6] Y.S. Choi, S.G. Kim, Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)$ ($p=1,2, \infty$), Indian J. Pure Appl. Math. 35 (2004), 37-41.
[7] S. Dineen, "Complex Analysis on Infinite Dimensional Spaces", SpringerVerlag, London, 1999.
[8] B.C. Grecu, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, The unit ball of the complex $\mathcal{P}\left({ }^{3} H\right)$, Math. Z. 263 (2009), 775-785.
[9] R.B. Holmes, "Geometric Functional Analysis and its Applications", Springer-Verlag, New York-Heidelberg, 1975.
[10] S.G. Kim, Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)$ for $\left.1 \leq p \leq \infty\right)$, Math. Proc. R. Ir. Acad. 107 (2007), 123-129.
[11] S.G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} D_{*}(1, W)^{2}\right)$, Math. Proc. R. Ir. Acad. 111A (2) (2011), $79-94$.
[12] S.G. Kim, Smooth polynomials of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad. 113A (1) (2013), 45-58.
[13] S.G. KIm, Polarization and unconditional constants of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Commun. Korean Math. Soc. 29 (2014), 421-428.
[14] S.G. KIM, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), 2827-2839.
[15] S.G. KIM, Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), 362-393.
[16] S.G. KIM, Exposed polynomials of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, Extracta Math. 33(2) (2018), 127-143.
[17] S.G. Kim, S.H. LEe, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), 449-453.
[18] G.A. Muñoz-Fernández, S.Gy. RÉvész, J.B. Seoane-Sepúlveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), 147-160.
[19] R.A. Ryan, B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), 698-711.

