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Abstract. A new species, Cryptomonas uralensis Martynenko, Gusev, Kulizin & Guseva sp. nov., is 
described from western slopes of the Ural Mountains (Russia) based on morphological and molecular 
data. Phylogenetic relationships inferred from nuclear SSU and LSU rDNA sequences show that the new 
species forms a clade with C. tetrapyrenoidosa Skuja emend. Hoef-Emden & Melkonian. Comparison 
of secondary structures of nuclear rDNA ITS2, including analysis of Compensatory Base Changes 
(CBC), confirms the separation between C. uralensis sp. nov. and C. tetrapyrenoidosa. Cell morphology 
and sizes of C. uralensis sp. nov. are very similar to C. tetrapyrenoidosa and C. pyrenoidifera, and C. 
uralensis sp. nov. may thus represent a species that can only be reliably identified using molecular data.
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Introduction
Cryptophytes (also known as cryptomonads) are mostly photoautotrophic, unicellular, biflagellate, soft-
bodied protists distributed in diverse freshwater, brackish, and marine habitats. They are characterized 
by a number of morphological and ultrastructural features, including a distinct cellular asymmetry, 
presence of extrusive organelles (termed ejectosomes), cell-covering from organic compounds (termed 
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periplast), and a remnant nucleus of endosymbiotic origin in close association with the plastids (Hoef-
Emden & Archibald 2016). 

Recent research has shown that even in well-sampled geographical regions and habitats, the true diversity 
of cryptomonads is often unknown (Hoef-Emden 2007; Lane & Archibald 2008; Shalchian-Tabrizi et al. 
2008; Choi et al. 2013). Cryptomonas Ehrenb. (Ehrenberg 1831) is a diverse genus of cryptophytes, with 
about 70 morphospecies currently accepted (Hoef-Emden & Melkonian 2003). Species in the genus are 
restricted to freshwater, contain chloroplasts with the biliprotein phycoerythrin 566 or leucoplasts, and 
are characterized by a dimorphic life cycle (Hoef-Emden & Melkonian 2003). Species display two 
alternative cell morphotypes, which are related to the life cycle: 1) cryptomorph with an inner periplast 
composed of hexagonal to polygonal organic plates and a non-keeled posteriorly directed microtubular 
flagellar root, and 2) campylomorph with a sheet-like inner organic periplast component and keeled 
rhizostyle (Hill 1991; Hoef-Emden & Melkonian 2003). 

Molecular phylogenetic analyses based on nuclear and nucleomorph ribosomal RNA gene sequences 
demonstrated inconsistencies with traditional Cryptomonas taxonomy based on cell morphology 
studies by light microscopy (LM). Hoef-Emden & Melkonian (2003) revised the genus by combining 
phylogenetic analyses with morphological data, emended several species by including molecular data, 
and described two new species. DNA sequences of additional strains resulted in emendation of five 
species including one new combination (Hoef-Emden 2007). Identification of most Cryptomonas species 
may be possible only with molecular data. A total of 14 Cryptomonas species can now be identified by 
nuclear ITS2/partial LSU rDNA or by nucleomorph SSU rDNA sequences in molecular ecological 
surveys (Hoef-Emden & Melkonian 2003; Hoef-Emden 2007). It is worth mentioning that these taxa are 
phylogenetic species, which may not correspond to biological species limits.

Cryptomonads from some freshwater habitats in Russia have been studied morphologically, but molecular 
data is currently lacking. Data on taxonomic composition and ecology of this group are available mainly 
from phytoplankton studies. Cryptomonas marssonii Skuja, C. ovata Ehrenb. and C.  erosa Ehrenb. 
have been reported from the Urals based on morphological data (Tretyakova et al. 1988; Tretyakova 

Fig. 1. Map of the study area; created using SASPlanet (http://www.sasgis.org).

http://www.sasgis.org
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1989; Belyaeva 2013, 2015). A new species of Cryptomonas from Russia is here described based on 
combination of morphological and molecular data.

Material and methods
Study area
Samples were collected from an unnamed small lake in the Usolka River flood plain, located in 
Solikamsk town, Permskiy Krai, Russia (59°38′59″ N, 56°44′57″ E, Fig. 1). Permskiy Krai is located 
on the western slope of the Ural Mountains, in upper and middle reaches of Kama River basin. The 
climate is cold temperate, with an average January temperature of -18.9°С, and varies from +14.8°С in 
the north to +18.7°С in the south during July. The annual precipitation also varies, from 450–600 mm in 
the western plain to 700–1000 mm in eastern mountainous territories of the Northern Urals, with snow 
cover usually 160–170 days/year (Nazarov 2006).

Samples and collections
Planktonic samples were collected by the first author using a plankton net with 20 μm mesh size. Water 
mineralization and temperature measurements were performed using the Hanna device (HI 9828, Hanna 
Instruments, Inc., Woonsocket, RI, USA). Strains were isolated and cultures perpetually transferred to 
IPPAS (Culture Collection of Microalgae at the K.A. Timiryazev Institute of Plant Physiology of the 
Russian Academy of Sciences).

Culturing
Monoclonal strains were established by examination of micropipetted single cells under an inverted 
microscope. Non-axenic unialgal cultures were maintained in WC and Waris-H liquid medium 
(Andersen 2005; McFadden & Melkonian 1986) at 10°C in a growth chamber with a 12:12 h light:dark 
photoperiod.

Light microscopy
For light microscopy, living cells were immobilized by embedment in ultra-low gelling agarose (Sigma-
Aldrich, A4018, USA) and examined by Nomarski differential interference contrast (DIC) with an oil 
immersion lens (Plan-Apochromat 100x/1.40 Oil DIC M27; microscope Zeiss AxioScope A1; Carl Zeiss 
AG, Oberkochem, Germany). Cell shape, size, shape of the furrow–gullet system and cell plastids, and 
presence, number and position of pyrenoids were examined (88 cells). The morphological description 
follows the nomenclature of Hoef-Emden & Melkonian (2003) (ventral side corresponds to the opening 
side of the furrow–gullet system). Calibration of magnification was done with a grated micrometer. 
Light micrographs were taken with an AxioCam ERc 5s Rev.2.

DNA extraction and amplification
Total DNA was extracted from monoclonal cultures using InstaGeneTM Matrix according to 
manufacturer’s protocol. Fragments of SSU (length 1533 bp) and LSU rDNA (length 946 bp) and 
ITS2 rDNA (402 bp) were amplified using primers from Choi et al. (2013): 18S_CrN1F, 18S_826F, 
18S_956R, 18S_BRK for nuclear SSU rDNA, crLSU_29F and crLSU_942R for partial nuclear LSU 
rDNA, and crITS_03F and crITS_05R for nuclear ITS2 rDNA. Amplification of all studied fragments 
was carried out using the premade mix ScreenMix (Evrogen, Russia) for the polymerase chain reaction 
(PCR). The conditions of amplification for SSU rDNA, LSU rDNA and ITS2 rDNA fragments were: 
an initial denaturation of 5 min at 95°C, followed by 35 cycles at 94°C for denaturation (30 s), 52°C 
for annealing (30 s) and 72°C for extension (50–80 s), and a final extension step of 10 min at 72°C. 
The resulting amplicons were visualized by horizontal agarose gel electrophoresis (1.5%), colored with 
SYBR Safe (Life Technologies, Carlsbad, CA, USA). Purification of DNA fragments was performed 
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with the ExoSAP-IT kit (Affymetrix, Santa Clara, CA, USA) according to manufacturer’s protocol. 
SSU rDNA, LSU rDNA and ITS2 rDNA fragments were decoded from two sides using forward and 
reverse PCR primers and the Big Dye system (Applied Biosystems, Foster City, CA, USA), followed by 
electrophoresis using a Genetic Analyzer 3500 sequencer (Applied Biosystems, Foster City, CA, USA).

Phylogenetic analysis
Electropherograms were verified by eye and sequences were assembled using BioEdit ver. 7.1.3 
and MegaX (Kumar et al. 2018). Newly determined sequences and GenBank sequences of 45 other 
cryptomonads from different morphological groups were included in the alignments. The species 
Rhodomonas sp. strain M1480 and Chroomonas sp. strain SAG 980-1 were chosen as outgroup taxa. 
Sequences were aligned using MAFFT ver. 7 with model EINS-i (Katoh & Toh 2010), refined by eye 
and difficult to align regions were excluded from the analysis. jModelTest ver. 2.1.1 indicated that the 
GTR model of nucleotide substitution, with Gamma (G) distributed rates across sites and a proportion 
of invariable sites (I), was the most appropriate evolutionary model for the SSU rDNA and LSU rDNA 
alignments separately and combined (Posada 2006). Finally, we constructed the concatenated SSU + 
LSU rDNA alignment of 47 taxa. The SSU and LSU sequences were combined from the same strain. 
Phylogenies were constructed based on this model for the concatenated alignment using a single partition 
Bayesian Inference (BI) and Maximum Likelihood (ML) analyses. BI analysis was conducted with 
MrBayes ver. 3.2.5 (Ronquist & Huelsenbeck 2003). Three “hot” and one “cold” Markov chains were 
run for 1 × 106 cycles in two repetitions with the selection of each 200th generated tree. Phylogenetic tree 
and posterior probabilities were obtained after discarding the first 25% to produce estimate parameter 
models of nucleotide substitutions and likelihood. ML-analysis was performed using MegaX (Kumar et 
al. 2018). Branch support was estimated using bootstrap analysis with 1000 replicas. Viewing and editing 
of trees were performed in FigTree ver. 1.4.2 (FigTree 2014) and Adobe Photoshop CC (ver. 19.0). 

RNA secondary structure prediction
Nuclear ITS2 sequences were folded using the mfold server 
(http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form) (Zuker 2003) with default values. Hoef-
Emden (2007) provided a complete RNA secondary structure graph of the nuclear ITS2 rDNA of 
Cryptomonas sp. M1634, which was used as a template and assisted in inference of common stems, 
loops, and bulges. 
Results
Molecular phylogeny
The new species, Cryptomonas uralensis sp. nov., represents a separate clade with high statistical 
support, sister to Cryptomonas tetrapyrenoidosa Skuja emend. Hoef-Emden & Melkonian (Fig. 13). 
Cryptomonas uralensis sp. nov. differs from the type strain of C. tetrapyrenoidosa by the SSU rDNA, 
LSU rDNA and ITS2 rDNA sequences as well as in the secondary structure of ITS2 (Fig. 14). For ITS2 
sequence of C. uralensis sp. nov. four-helix structures could be inferred with long third helices (Fig. 
15). An unpaired U-U was found in Helix II. The length of the helices was different between two taxa 
(Fig. 15). For the new species, length of ITS2 was 402 nt, while for C. tetrapyrenoidosa was 370 nt. 
Three Compensatory Base Changes (CBCs) between C. uralensis sp. nov. and C. tetrapyrenoidosa were 
observed in Helix III (Fig. 15). 

http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form
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Phylum Cryptophyta Cavalier-Smith
Class Cryptophyceae F.E.Fritsch
Order Cryptomonadales Pascher

Genus Cryptomonas Ehrenb.

Cryptomonas uralensis Martynenko, Gusev, Kulizin & Guseva sp. nov.
Figs 2–12

Diagnosis
Cells (absolute minimal and maximal values of strain UR168) 15–26 µm long, 8–17 µm wide, 8–12 µm 
thick. Cells more or less flattened in dorso-ventral plane, in ventral view elliptical to ovoid. In lateral 
view with oblique or rounded apex and rounded antapex. One plastid with two to four pyrenoids. Species 
differs from other species of the genus by the order of nucleotides in nuclear ITS2, LSU and SSU rDNA 
gene sequences. 

Etymology
The species name derived from “Ural”, the region from which this taxon was described.

Type material
Holotype

RUSSIA • Solikamsk town, water-body in the Usolka River flood plain; 59°38′59″ N, 56°44′57″ E; 2014; 
collected by N.A. Martynenko; strain UR168; GenBank MN509781, MN509779; MHA[Cryptomonas 
uralensis Russia Martynenko 20-2 MHA, strain UR168].

The holotype is a large drop of unfixed dried cells of the strain UR168 (=IPPAS H-2046) on water colour 
paper (hic designatus), deposited at MHA (Herbarium, Main Botanical Garden, Botanicheskaya Str. 4, 
Moscow, 127276, Russia) under the designation Cryptomonas uralensis Russia Martynenko 20-2 MHA, 
strain UR168. Representative living strain and DNA sample are kept at IPPAS. 

Representative DNA sequences
GenBank accession numbers MN509781 (nuclear ITS2 and partial nuclear LSU rDNA), and MN509779 
(nuclear SSU rDNA). 

Authentic strain
UR168 (=IPPAS H-2046).

Type locality
A water-body in the Usolka River flood plain, Solikamsk town, Russia. Latitude/Longitude 59°38′59″ N, 
56°44′57″ E, collected by N.A. Martynenko in 2014.

Other representative culture
UR167, GenBank accession numbers MN509780 (nuclear ITS2 and partial nuclear LSU rDNA), and 
MN509778 (nuclear SSU rDNA).

Geographical distribution
To date, Cryptomonas uralensis sp. nov. has only been observed at the type locality. At the time of 
collection, the pH was 6.5, temperature 18°C.



European Journal of Taxonomy 649: 1–12 (2020)

6

Figs 2–12. Light micrographs of Cryptomonas uralensis Martynenko, Gusev, Kulizin & Guseva sp. nov. 
(strain UR168). 2–3. Lateral view (left side). 4–5. Lateral view (right side). 6–8. Ventral view. 9. Dorsal 
view. 10–11. Apical view. 12. Cells of the strain UR168 in mucilage. Scale bars: 10 µm.
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Discussion
Cryptomonas uralensis sp. nov. represents a distinct clade with high statistical support, sister to 
C. tetrapyrenoidosa, but no obvious morphological characters distinguishing the two taxa were found. 
Initially C. tetrapyrenoidosa was described based on LM studies of populations from Sweden and 
Latvia (Skuja 1948). Later, the strain M1092 from Germany (Remscheid) was chosen as the epitype 
and sequenced (Hoef-Emden & Melkonian 2003). To date, C. tetrapyrenoidosa has not been recorded 
in the Urals, thus areals of this species and C. uralensis sp. nov. do not overlap. Mention should be 
made that there were no previous intensive molecular studies of cryptophytes in the Urals. Recent 
studies of cryptomonads of South Korea, region remote from Europe, revealed several strains from the 
Cryptomonas tetrapyrenoidosa clade that showed SSU rDNA, LSU rDNA and ITS2 rDNA nucleotide 
differences from the type specimen and formed two subclades (Choi et al. 2013). However, no formal 
taxonomic descriptions have been made. In our opinion, these are very likely a new species. Thus, the 
C. tetrapyrenoidosa clade requires further study. 

Fig. 13. Bayesian phylogenetic tree of the partial small subunit rDNA (SSU rDNA) and large subunit 
ribosomal DNA (LSU rDNA) combined data set. The Bayesian posterior probability (left) and maximum 
likelihood bootstrap value (right) are shown. Scale bar represents estimated number of substitution per 
site.
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Previous studies have suggested that the nuclear internal transcribed spacer 2 (ITS2) is a good marker 
to identify biological species using degree of conservation. Coleman (2000) and Müller et al. (2007) 
have proposed that CBCs in the ITS2 correlate with speciation and thus can be used to distinguish 
species. The CBC species concept states that two organisms/strains whose ITS2 sequences differ by 
even a single CBC in the conserved regions of Helix II and Helix III represent two different biological 
species (Coleman 2000). According to Müller et al. (2007) and Wolf et al. (2013) the presence of any 
CBC in the whole ITS2 molecule is sufficient for distinguishing species. Later, Caisová et al. (2013) 
identified consensus structure model of the ITS2 molecule that can be applied to two classes of green 
algae. Also was reported that CBCs in the ITS2 of four orders of the green algal class Chlorophyceae  
Wille in Warming were mostly associated with higher order taxonomic levels like genera, families 
and orders, and CBC concept for species delimitation have some constraints in chlorophycean algae 
(Caisová et al. 2013). Dimorphic strains and a few reports of sexual reproduction indicate the presence 
of biological species also in cryptophyte taxa (Hoef-Emden 2007). The nuclear ITS2 was successfully 
used to predict putative biological species in the last revision of Cryptomonas (Hoef-Emden 2007). 
Here, comparison of the secondary structures of ITS2 confirms separation between C. uralensis sp. nov. 
and C. tetrapyrenoidosa. 

Fig. 14. Predicted secondary structure of the nuclear internal transcribed spacer 2 of the strain UR168 
(from 5’ to 3’ terminus in clockwise direction).
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Fig. 15. Predicted secondary structures of the nuclear internal transcribed spacer 2 helix II and helix 
III (clockwise from 5’ to 3’ termini) of Cryptomonas uralensis Martynenko, Gusev, Kulizin & Guseva 
sp. nov. (a, strain UR168) and C. tetrapyrenoidosa Skuja emend. Hoef-Emden & Melkonian (b, strain 
M1092, GenBank accession number AJ566146). CBCs are marked by rectangular boxes. In both helices 
II, the conserved unpaired U-U motif was found. 
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Cryptomonas pyrenoidifera Geitler emend. Hoef-Emden & Melkonian was found to be sister to the clade 
containing C. uralensis sp. nov. and C. tetrapyrenoidosa. Cryptomonas pyrenoidifera is known from 
Germany, United Kingdom, Czech Republic and Australia based on molecular data. The morphology 
and cell sizes of C. uralensis sp. nov. are very similar to cryptomorphs of C. pyrenoidifera, as well as 
C. tetrapyrenoidosa. Cryptomonas curvata Ehrenberg emend. Hoef-Emden & Melkonian is one more 
species which has cryptomorph cells with the same morphological features (shape, size, number of 
pyrenoids), but placed distantly on phylogenetic tree from C. uralensis sp. nov. Incongruences between 
classical morphospecies and molecular phylogenetic trees have previously been reported for many 
species in the genus Cryptomonas (Hoef-Emden 2007). Morphological species descriptions of this 
genus are often ambiguous because of microscopic cells and only few visible characters. The most 
recent revisions of the genus show that correct identification of most Cryptomonas species may be 
possible only with molecular data (Hoef-Emden & Melkonian 2003, Hoef-Emden 2007). In the case of 
C. uralensis sp. nov., no sufficiently distinct morphological characters could be identified. The species 
can only be distinguished by molecular characters. 
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