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Abstract. In this paper a new tardigrade species, Macrobiotus azzunae sp. nov., from Tunisia, is
described. An integrative taxonomic approach was applied by combining morphological, morphometric
and molecular data. In particular, light and scanning electron microscopy observations, and four genetic
markers, three nuclear (18S rRNA, 28S rRNA and ITS-2) and one mitochondrial (COI) were used.
The analysis showed that M. azzunae sp. nov. belongs to the Macrobiotus hufelandi group and is most
similar to Macrobiotus sandrae Bertolani & Rebecchi, 1993. It differs from M. sandrae by a more
pronounced constriction of the first macroplacoid (hardly visible in M. sandrae) and for the eggshell
shape, with thinner wires of the reticulum and meshes around the processes larger than the inter-process
meshes in M. azzunae sp. nov., while all meshes are similar in size in M. sandrae. The species is
gonochoristic. With this discovery, there are 33 species of tardigrades identified in Tunisia, all non-
marine. This result, compared with nearby Sicily, where more research has been conducted, indicates
that there is a considerable potential for identification of new species. Further research will be most
informative if multiple habitats are explored and if carried out with an integrated approach as done in
this present work.
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Introduction

Tardigrades are hygrophilous micrometazoans whose outstanding resistance enables most of them to
inhabit a large variety of habitats from the greatest depths of oceans to the highest mountain peaks, as
well as extreme environments such as cryoconite holes. In terrestrial environments they colonize mosses,
lichens, leaf litter and soil which receive stochastic hydration (Nelson et al. 2015; Schill 2018). Much
research on the diversity and distribution of tardigrade fauna has been carried out in recent years in
various parts of the world, especially considering the terrestrial environment. This has led to a significant
increase in the number of known species: 531 in 1983 (Ramazzotti & Maucci 1983), about 960 in 2005
(Guidetti & Bertolani 2005) and more than 1300 species in 2020 (Degma et al. 2020). Nevertheless,
knowledge of the diversity and distribution of North African tardigrades is still very limited and in
particular in Tunisia, for which only three studies have been conducted. The first report on Tunisian
tardigrades comes from a survey by Iharos (1978) in Northern Tunisian regions in which eleven species of
tardigrades were detected. Then, Binda & Pilato (1987) studied the tardigrade fauna of Salambo (Tunis),
Tabarka and Ain Drahem (Jendouba), and recently Gasiorek et al. (2017) studied the tardigrade fauna of
Bni Mtir, Jendouba. Currently, the known Tunisian tardigrade fauna includes 32 species, of which one,
Bryodelphax maculatus Gasiorek, Stec, Morek, Marnissi, Michalczyk, 2017, was originally discovered
from the same region considered here, namely the Kroumirie Mountains. The Kroumirie Mountains are
located in Northern Tunisia near the Algerian boundary and are characterized by a climate which varies
from sub-humid to humid in winter. The Kroumirie forests are covered especially by cork oaks (Quercus
suber L.) and Algerian oaks (Quercus canariensis Willd.) (Stambouli-Essassi et al. 2007). The analysis
of the tardigrade fauna of a moss collected at the Kroumirie Mountains led us to find a new eutardigrade
species (Macrobiotus azzunae sp. nov.) belonging to the Macrobiotus hufelandi group, considered as one
of the most common groups of limnoterrestrial tardigrades on the planet (Mclnnes 1994; Kaczmarek &
Michalczyk 2017a; Mclnnes et al. 2017). In this study we combined classical morphological and
morphometric methods with modern molecular techniques in an integrative approach as suggested by
Cesari et al. (2009,2011, 2020), Stec et al. (2018b) and Kayastha et a/ (2020). Using phase contrast (PhC)
light microscopy (LM), differential interference contrast (DIC) and scanning electron microscopy (SEM),
we were able to describe the phenotypic characteristics of the new species whereas the amplification of
DNA markers (three nuclear, 18S rRNA, 28S rRNA and ITS-2, and one mitochondrial, COI) provided
barcodes for the genetic identification of this new species.

Material and methods

Tardigrade collection

The moss containing the new species was collected in April 2017 by the first author from Ain Soltan forest
in the North West of Tunisia (Fig. 1) on a trunk of an Algerian oak tree. The sample was stored dry in
a labeled paper bag and then sent to the Laboratory of Evolutionary Zoology at the Department of Life
Sciences, University of Modena and Reggio Emilia (UNIMORE), Italy. In order to extract tardigrades from
the sample, a small portion of the collected substrate was placed and maintained in tap water at room
temperature (20°C) for about half an hour. The sample was then sieved to separate tardigrades and their eggs
from the substrate, and both animals and eggs were isolated using a glass pipette under a stereo microscope.

Microscopy and imaging

The collected specimens (eggs and animals) were mounted on slides in Faure-Berlese fluid (permanent
slides) or fixed in Carnoy fixative (methanol: acetic acid, 3:1) and in the latter case then stained with a
drop of acetic-lactic orcein (Rebecchi & Bertolani 1988) for LM observations (not permanent slides).
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Observations and measurements of the sclerified parts of animals and eggshells were carried out with
LM under PhC and DIC up to the maximum magnification (100x oil objective) with a Leica DM
RB microscope equipped with a Nikon DS-Fi 1 digital camera, at the Department of Life Sciences,
UNIMORE. The species was identified by comparing the specimens with the original descriptions of
similar species of Macrobiotus (for references see Results: Differential diagnosis) and, when possible,
with the original type material of some of those species. In particular, we have examined the following
material from Maucci’s collection (thanks to the Civic Museum of Natural History of Verona, Italy): slides
CT14009 holotype and CT14015 egg of Macrobiotus madegassus Maucci, 1993; slide CT14701 one
animal and one egg (paratypes) of Macrobiotus personatus Biserov, 1990; from Bertolani’s collection of
the Department of Life Sciences, UNIMORE, Italy: slide C460—S97 holotype of Macrobiotus sandrae
Bertolani & Rebecchi, 1993 and for the same species slides from the type locality C442-S79 (Animal)
and C450-S01 and C2346-S2 (eggs). These specimens and eggs were analyzed under LM.

Measurements of animal length, claws and buccal-pharyngeal apparatus details were taken according to
Pilato (1981). The external buccal tube diameter was measured at the level of the stylet support insertion
point. We calculated the pr index which is the percentage ratio between the length of a structure and the
length of the buccal tube measured from the medio-dorsal ridge of the buccal armature to the base of the
pharyngeal apophyses (Pilato 1981). Single measurements are available in Supp. file 1.

Fifteen additional specimens were prepared for SEM analyses according to Bertolani et al. (2014),
and observed with a Philips SEM XL 40, available at the Centro Interdipartimentale Grandi Strumenti
(CIGS) of UNIMORE.

Molecular analysis

Before molecular analysis, each specimen was identified and photographed in vivo with LM using
the method described by Cesari ef al. (2011) in order to obtain voucher specimens. Supp. file 2 shows
the buccal-pharyngeal apparatus of a hologenophore voucher specimen, showing how it is possible to
obtain good morphological information on alive animals even when the entire animal has to be used

Ain Soltan forest, Jendouba
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Fig. 1. Map of the sampling locality (circle) in the North-West of Tunisia.
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Table 1. List of specimens of M. azzunae sp. nov. and M. sandrae Bertolani & Rebecchi, 1993 utilized
for molecular analyses. Abbreviation: N/A = not available. * These specimens were analyzed for the
COI gene in Bertolani et al. (2011b).

Specimen 18S 28S ITS-2 (6{0)]
Macrobiotus azzunae

C4218 V1 N/A N/A N/A MW698695
C4218 V2 N/A N/A N/A MW698696
C4218 V4 MW695447 MW695450 MW695454 MW698697
C4218 T5 MW695448 MW695451 MW695455 MW698698
C4218 T6 MW695449 MW695452 MW695456 N/A

C4218 V7 N/A MW695453 MW695457 MW698699
Macrobiotus sandrae

C2945b MW695445 N/A N/A HQ876573*
C2945 ¢ MW695446 N/A N/A HQ876577*

for molecular analysis. Table 1 lists the specimens utilized. Genomic DNA was extracted from six
Tunisian single animals using a rapid salt and ethanol precipitation following the protocol described
by Cesari et al. (2009). We amplified four DNA fragments: the small ribosome subunit (18S rRNA),
the large ribosome subunit (28S rRNA), the internal transcribed spacer (ITS-2), and the cytochrome
oxidase subunit [ (COI), using the primers and protocols described by Bertolani et al. (2014), Cesari
et al. (2016), Stec et al. (2018d) and Cesari et al. (2009), respectively. Additionally, a portion of the
18S gene was sequenced for two additional specimens of M. sandrae sampled in the locus typicus of
the species (Black Forest, Germany). GenBank accession numbers of obtained sequences are listed in
Table 1. The amplified products were gel purified using the Wizard Gel and PCR cleaning (Promega)
kit, and fragments were sequenced according to the protocols described in Bertolani et al. (2014). All
COI sequences were translated into protein sequences in MEGAX (Kumar et al. 2018) to check for
the presence of stop codons, and therefore for the presence of pseudogenes. Sequences of the four
genes pertaining to species of the hufelandi group were used for molecular comparisons (Table 2)
and aligned with the newly produced sequences using the MAFFT algorithm (Katoh et al. 2002)
as implemented in the MAFFT online service (Katoh ef al. 2017) and checked by visual inspection
(Supp. file 3, Supp. file 4, Supp. file 5, Supp. file 6). Uncorrected pairwise distances were computed
using MEGAX (Supp. file 7, Supp. file 8, Supp. file 9, Supp. file 10). Furthermore, relationships between
COI haplotypes pertaining to the clade A nested in the M. hufelandi complex sensu Stec et al. (2021)
were estimated using a parsimony network, by applying the method described in Templeton et al.
(1992), as implemented in TCS ver. 1.21 (Clement et al. 2000) and visualized using tcsBU (Murias dos
Santos et al. 2016). A 95% connection limit was employed, as it has been suggested as a useful general
tool in species assignments and discovery (Hart & Sunday 2007). Putative species were also inferred
by using the Poisson Tree Process (PTP; Zhang ef al. 2013) and the Automatic Barcode Gap Discovery
method (ABGD; Puillandre et al. 2012). PTP is a coalescent-based species delimitation method that
uses non-ultrameric gene trees as input, and utilizes heuristic algorithms to identify speciation events
relative to numbers of substitutions. The PTP method produces robust diversity estimates, in some
cases more robust than those estimated under the generalized mixed Yule coalescent model (Tang
et al. 2014). The starting gene tree was a maximum likelihood (ML) tree computed using RAXML
ver. 7.2.4 (Stamatakis 2006), as implemented in CIPRES (Miller et al. 2010), under the GTR+I+G
model, as inferred by using the Akaike Information Criterion on jModelTest2 (Guindon & Gascuel
2003; Darriba et al. 2012). A sequence of Mesobiotus hilariae Vecchi, Cesari, Bertolani, Jonsson,
Rebecchi & Guidetti, 2016 (GenBank accession number: KT226108) was used as outgroup. Bootstrap
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resampling with 1000 replicates was undertaken via the rapid bootstrap procedure of Stamatakis et al.
(2008) to assign support to branches in the ML tree. In order to consider different evolutionary models
for the three COI codons, a Bayesian tree was computed using the following models, as inferred by
MrModeltest ver. 2 (Nylander 2004): SYM+I+G for the first position of the codon, GTR+I+G for the
second position of the codon and GTR+G for the third position of the codon. The Bayesian dendrogram
was computed with the program MrBayes ver. 3.2.7a (Huelsenbeck & Ronquist 2001; Ronquist &
Huelsenbeck 2003), as implemented in CIPRES. Two independent runs, each of four Metropolis-
coupled Markov chains Monte Carlo method, were launched for 2 x 107 generations, and trees were
sampled every 1000 generations. Convergence of runs was assessed by tracking average standard
deviation of split frequencies between runs and by plotting the log likelihood of sampled trees in
TRACER ver. 1.7 (Rambaut et al. 2018) and the first 2x 10° sampled generations were discarded
as burn-in. In the distance-based ABGD method, the sequences are sorted into hypothetical species
based on the barcode gap (i.e., whenever the divergence among organisms belonging to the same
species is smaller than divergence among organisms from different species). The method first detects
the barcode gap as the first significant gap beyond a model-based one-sided confidence limit for
intraspecific divergence, and then uses it to partition the data. ABGD settings for the COI dataset were:
prior minimum divergence of intraspecific diversity (Pmin) = 0.001; prior maximum divergence of
intraspecific diversity (Pmax) = 0.1; Steps = 10 and gap width = 1.5. The analysis was performed on
the ABGD website (https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html).

Abbreviations

DIC = Differential Interference Contrast light Microscopy
LM Light Microscopy

PhC = Phase Contrast light Microscopy

SEM = Scanning Electron Microscopy

Repository

UNIMORE = Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi
213/d, Modena, Italy

Results

Taxonomic account of the new species

Phylum Tardigrada Doyére, 1840
Class Eutardigrada Richters, 1926
Order Parachela Schuster, Nelson, Grigarick & Christenberry, 1980
Superfamily Macrobiotoidea Thulin, 1928 in Marley et al. 2011
Family Macrobiotidae Thulin, 1928
Genus Macrobiotus C.A.S. Schultze, 1834

Macrobiotus azzunae sp. nov.
urn:1sid:zoobank.org:act:933CCC06-F69D-49E2-AF4F-0C042D8F5C99
Figs 1-4,5A,C, 7
Etymology

The new species is dedicated in honor of Atf Azzouna, professor in the Faculty of Mathematical,
Physical and Natural Sciences of Tunis and supervisor of the PhD thesis of Jamila Ben Marnissi.
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Type material

Holotype
TUNISIA - spec. of unidentified sex; North-West Tunisia, Kroumiri Mountains, Ain Soltan forest,
Jendouba; 36°31'21.788" N, 8°19'57.741" E; 893 m a.s.l.; Apr. 2017; Marnissi leg.; moss on trunk of
Quercus canariensis; UNIMORE, slide code C4218-S32.

Paratypes
TUNISIA -« 17 specs, sex unidentified; same collection data as for holotype; UNIMORE, slide codes
C4218-S2 to C4218-S7, C4218-S9, C4218-S17, C4218-S30, C4218-S31, C4218-S33 to C4218—
S35 « 3 eggs; same collection data as for holotype; UNIMORE, slide codes C4218-S10, C4218-S11,
C4218-S25.

Type depositories

The holotype (slide: C4218-S32), 17 paratypes (slides C4218-S2 to C4218-S7, C4218-S17, C4128—
S30, C4218-S31, C4218-S33 to C4218-S35), 3 eggs (slides: C4218-S10/11/25) and two vouchers
(slides SP04 and SP07, corresponding to specimens C4218 V4 and C4218 V7, respectively) mounted
in Faure-Berlese fluid, are deposited in the Bertolani collection at the Department of Life Science,
UNIMORE, Modena, Italy.

Type locality

NW Tunisia, Kroumrie mountains, Ain Soltan forest, Jendouba, 36°31'21.788" N, 8°19'57.741" E.
Altitude 893 m a.s.l.

Description

Adult specimens
Body white, transparent after mounting in Faure-Berlese, from 162.2 to 410.3 pm in length (Fig. 2A,
Table 3; structures measured only in the animals more than 200 pm in length). Eye spots present, even
after mounting. Cuticle smooth but with small round or oval pores, 1-1.5 um in diameter (Fig. 2B),
better visible after fixation in Carnoy and orcein staining (Fig. 3C), scattered randomly on the entire
cuticle, including the dorsal surface of all legs. With SEM, pores look oval or in the shape of a seed
(Fig. 3A, D) with the largest diameter of 0.7-0.8 pm. Weak cuticular granulation also present on the
lateral surface of all legs and specially on legs IV (Fig. 2B, arrow). Only with SEM is it possible to
define the shape of the granulation on the legs, which looks as a regular disposition of star-shaped
protuberances (about 0.3 um; Fig. 3F). Six buccal sensory lobes around the mouth, well recognizable
with SEM. Mouth antero-ventral; buccal-pharyngeal apparatus of the Macrobiotus type (sensu Pilato &
Binda 2010), with ventral lamina and ten small peribuccal lamellae (in the holotype, after mounting,
separated from the mouth). Buccal armature, corresponding to oral cavity armature, OCA, according to
Michalczyk & Kaczmarek (2003), without an anterior band of teeth visible, corresponding to the first
band of teeth according to Michalczyk & Kaczmarek (2003), and to the anterior band of the buccal
ring according to Guidetti ef al. (2012); posterior band of teeth poorly visible, corresponding to second
band of teeth, according to Michalczyk & Kaczmarek (2003), followed by three dorsal and three ventral
crests, corresponding to third band of teeth according to Michalczyk & Kaczmarek (2003); the dorsal
crests (Fig. 2D) are distinct transverse ridges, whereas the ventral crests (Fig. 2E) appear as two separate
lateral transverse ridges and a roundish median tooth. The posterior band of teeth and the transverse
ridges are part of the buccal tube, according to Guidetti et al. (2012). Buccal tube narrow; pharyngeal
bulb spherical with triangular apophyses, two rod-shaped macroplacoids, relatively short, the first longer
than the second and evidently but not deeply narrowed at its middle (Fig. 2C), the second with a not
particularly evident subterminal constriction. Microplacoid present. Slender claws of the hufelandi type
(sensu Pilato & Binda 2010); the external claw longer than the internal one and the posterior longer than
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Fig. 2. Macrobiotus azzunae sp. nov., holotype (UNIMORE, slide C4218-S32). A. In toto animal.
B. Cuticular pores and leg granulation (arrow) on the hind legs. C. Buccal-pharyngeal apparatus.
D. Buccal armature: dorsal crests (arrow). E. Buccal armature: ventral crests (arrow). F. Claw and
lunulae of the third pair of legs. G. Claw and lunulae of the fourth pair of legs. A—G: PhC.
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Fig. 3. Macrobiotus azzunae sp. nov., paratypes. A. In toto animal. B-D. Cuticular pores. E. Fourth pair
of legs with smooth lunules and peculiar granulation on the legs. F. Granulation on the legs with a star-
shaped organization. G. Male with testis full of mature spermatozoa with elongate, helicoidal nucleus.
A, D-F: SEM (stub-C4218); B: in vivo DIC; C, G: orcein (not permanent slide TN02—04) PhC.
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Table 3. Measurements (in pm) and pz of selected morphological structures of individuals of Macrobiotus
azzunae sp. nov. mounted in Faure-Berlese. Abbreviations: Nr = number of specimens/structures
measured; Range = smallest—largest value; SD = standard deviation. * Three animals below 200 um in
length were not considered in the analysis. Two were not measurable, while data of the only measurable
animal below 200 um is available in the supplementary material (Supp. file 1).

Character Nr Range pm Mean + SD Holotype pm
Body length 10" 246.0-410.3 374.0
Buccal tube length 13 29.4-38.5 36.6
pt nm pt
Buccal tube external width 13 11.6-15.9 13.3+1.2 5.8 15.9
Stylet support insertion point 13 75.1-80.5 76.7+ 1.5 27.9 76.1
Placoid row 13 50.1-57.7 51.8+24 18.9 515
Macroplacoid row 13 37.7-48.7 44.6 £ 3.1 15.7 42.7
First macroplacoid 13 24.3-29.7 26.6+2.2 9.3 25.5
Second macroplacoid 13 16.0-20.7 183+1.5 6.6 18.1
Microplacoid 13 5.9-8.6 6.9+ 1.0 2.6 7.0
External Claws III main branch 13 27.1-31.3 29.8+1.3 11.5 31.3
External Claws III secondary branch 13 20.1-25.8 225+ 1.6 8.1 22.1
Internal Claws I1I main branch 13 24.9-30.2 27.7+1.6 10.2 27.9
Internal Claws III secondary branch 13 18.8-24.2 214+ 1.7 7.2 19.7
Posterior Claws IV main branch 9 29.1-34.6 327+ 1.8 12.2 33.2
Posterior Claws IV secondary branch 9 21.6-24.9 23.8+1.6 9.1 24.9
Anterior Claws IV main branch 10 28.2-32.5 30.1+1.9 1.1 30.3
Anterior Claws IV secondary branch 10 20.4-26.2 232+ 1.7 8.8 24.0

the anterior. Primary branches of each claw with distinct accessory points (Fig. 2F), a common tract of
medium length (about a third of the total claw length) and an evident stalk connecting the claw to the
lunule. Lunules under all claws, smooth, larger on the hind legs (Figs 2G, 3E). Cuticular bars under
claws absent.

The population is dioecious (gonochoristic). Males were recognized using orcein staining, which
revealed that the testis is filled with spermatozoa with a coiled head (Fig. 3G) and spermatids. No
morphological secondary sexual dimorphism, such as gibbosities on legs IV in males, was identified.

Eggs
Eggs are laid freely, and are white, spherical or slightly oval. One egg containing a fully developed
embryo showed the shape of the buccal-pharyngeal apparatus (Fig. 4A). Processes of the eggshell are in
the shape of inverted goblets (Fig. 4B) with conical trunks and well-defined distal discs as large as the
process bases (for measurements see Table 4). Distal discs concave, with a median small protuberance
and, using PhC, with border often smooth, or sometimes slightly jagged, or slightly ragged (Fig. 4C),
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Table 4. Measurements (in um) of selected morphological structures of the eggs of Macrobiotus azzunae
sp. nov. mounted in Faure-Berlese. Abbreviations: Nr = number of eggs/structures measured; Range =
smallest—largest value; SD = standard deviation.

Character Nr Range Mean + SD
Egg diameter without processes 2 64.7-80.6 -

Egg diameter with processes 2 72.4-89.2 —
Process nr on egg circumference 2 29-33 -
Process height 10 4.2-6.4 54+0.6
Process base width 10 3.2-5.2 42+0.5
Distal disc width 10 3.2-52 44+0.6
Inter process distance 10 2.7-4.8 3.5+0.5

Fig. 4. Egg of Macrobiotus azzunae sp. nov., paratype (UNIMORE, slide C4218-S11). A. In toto egg
with buccal-pharyngeal apparatus of its embryo at the end of development. B. Processes of the eggshell
(midsection). C. Distal discs of the eggshell processes. D. Surface of the eggshell between processes.
A, C-D: PhC; B: DIC.
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but never clearly jagged, serrated or dentate. Surface among processes of the hufelandi type (sensu
Kaczmarek & Michalczyk 2017a), i.e., covered by a very thin grid (Fig. 4D). Meshes around the process
bases slightly larger and with slightly thicker wires compared with interbasal meshes. Mesh diameter
around 0.5 pm.

Comparisons

Macrobiotus azzunae sp. nov. has eggs with processes as inverted goblets and a reticulate eggshell
between the processes. Consequently, a comparison must be done with the Macrobiotus species listed by
Kaczmarek & Michalczyk (2017a) with hufelandi type eggshells, excluding the species with processes
that are not like inverted goblets, and adding the species with hufelandi type chorion eggs described after
that publication. The species with hufelandi type chorion eggs that do not have processes as inverted
goblets are Macrobiotus acadianus (Meyer & Domingue, 2011), M. dariae Pilato & Bertolani, 2004,
M. lissostomus Durante Pasa & Maucci, 1979, M. santoroi Pilato & D’Urso, 1976, and M. scoticus
Stec, Morek, Gasiorek, Blagden & Michalczyk, 2017. Moreover, M. azzunae sp. nov. has egg processes
with distal discs with a smooth or slightly jagged border, therefore it differs from all the species that
have clearly indented, serrated or clearly jagged distal discs, such as: Macrobiotus canaricus Stec,
Krzywanski & Michalczyk, 2018, M. crustulus Stec, Dudziak & Michalczyk, 2020, M. hannae
Nowak & Stec, 2018 (whose egg surface is more cribriform than reticulate), M. hibiscus de Barros,
1942, M. horningi Kaczmarek & Michalczyk, 2017b (which also has very high processes), M. hufelandi
C.A.S. Schultze, 1834, M. humilis Binda & Pilato, 2001, M. iharosi Pilato, Binda & Catanzaro 1991,
M. joannae Pilato & Binda, 1983, M. julianae (Meyer, 2012), M. kamilae Coughlan & Stec, 2019,
M. modestus Pilato & Lisi, 2009, M. noonragis Coughlan & Stec, 2019, M. papei Stec, Kristensen &
Michalczyk, 2018 (with particularly long filaments starting from the distal disc), M. paulinae Stec,
Smolak, Kaczmarek & Michalczyk, 2015, M. polypiformis Roszkowska, Ostrowska, Stec, Janko &
Kaczmarek, 2017 (even with cog-teeth extended to form a long, thin, hair-like and flexible filament),
M. punctillus Pilato, Binda & Azzaro, 1990, M. sapiens Binda & Pilato, 1984, M. sottilei Pilato, Kiosya,
Lisi & Sabella, 2012.

For the shape of the egg Macrobiotus azzunae sp. nov. differs from M. rawsoni Horning, Schuster &
Grigarick, 1978 because this species has only one strip of meshes around each egg process (see
Kaczmarek & Michalczyk 2017b); it differs from M. serratus Bertolani, Guidi & Rebecchi, 1996
because in this species the egg surface is porous more than reticulated, with pores small and spaced from
each other, and its egg processes have a large, often square, distal disc; it differs from M. seychellensis
Biserov, 1994 because the distal disc of the egg processes of this species, even though not dentate, has
long and very developed lobes.

The remaining nine species of the Aufelandi group should be compared singularly.

Macrobiotus almadai Fontoura, Pilato & Lisi, 2008
Macrobiotus azzunae sp. nov. differs from M. almadai in having a posterior band of teeth in the buccal
cavity visible with LM (not visible in M. almadai), and distal disc with a jagged margin instead of very
small teeth as in M. almadai.

Macrobiotus canaricus Stec, Krzywanski & Michalczyk, 2018
With LM the margin of the distal disc of M. azzunae sp. nov., never dentate in this species, looks similar
to that of M. canaricus, but the SEM images of the eggs of the latter species evidence the presence of
an almost dentate disc. Moreover, the peribasal meshes of the eggshell are larger than interbasal ones
in the new species while they do not differ from the interbasal ones in M. canaricus; regarding the
animals there are differences in the buccal armature: in M. azzunae sp. nov. the posterior band of teeth
is visible with LM (even though poorly) and the three dorsal crests are distinct transverse ridges, while
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in M. canaricus the posterior band of teeth is visible only with SEM and with LM the dorsal teeth form
a transversal ridge weakly divided into three teeth.

Macrobiotus madegassus Maucci, 1993

The new species differs from M. madegassus by the presence of the eye spots (absent in M. madegassus),
pores on the cuticle (absent in M. madegassus), presence in the buccal armature of posterior band of
teeth, even though weak (fully absent in M. madegassus), buccal tube much larger (pt of the holotypes
15.9 vs 7), insertion of the stylet supports on the buccal tube much more posterior (p¢ of the holotypes
76.1 vs 68), first and second macroplacoid longer (pz of the holotypes 25.5 and 18.1 vs 21.3 and 12.0),
lunules on the hind legs without kerning (crenate in M. madegassus), eggshell processes with distal disc
as large as the base (similar range 3.2—5.2 for both measurements) with respect to that of M. madegassus
(disc vs base: 4.3-5.4 vs 2.3-2.6).

Macrobiotus martini Bartels, Pilato, Lisi & Nelson, 2009
The cuticular pores in M. azzunae sp. nov. are much smaller than those of M. martini; the distal disc
of the egg processes in M. azzunae sp. nov. has a diameter similar to that of the process base, while in
M. martini the distal disc is much narrower than the base.

Macrobiotus nebrodensis Pilato, Sabella, D’Urso & Lisi, 2017

Macrobiotus azzunae sp. nov. differs from M. nebrodensis by the absence of the cuticular bar near
the lunules on the first three pairs of legs (a faint bar is present in M. nebrodensis). The egg processes
of M. azzuane sp. nov. are in higher number on the circumference (29-33) with respect to those of
M. nebrodensis (18). In the latter species there are some egg processes very high (up to 20.6 pm), while
in the new species process height and shape are more uniform. The difference in the eggshell between
meshes around the process base and the others is much less evident in M. azzunae sp. nov. than in
M. nebrodensis.

Macrobiotus personatus Biserov, 1990

The new species differs from M. personatus by the posterior band of the buccal armature less evident,
the presence of a clear constriction in the first macroplacoid (Fig. SA), in the paratype of M. personatus
examined by us barely identifiable (Fig. 6A) and, according to Biserov (1990) usually absent in the
type material of that species. The pores on the cuticle of M. azzunae sp. nov. are small, approximately
1 um in diameter, while in M. personatus they are strongly elliptic and about 3 pm in length (Fig. 6B).
Lunules on leg IV are always smooth in M. azzunae sp. nov., sometimes indented in M personatus.
With respect to the eggs of M. personatus (Fig. 6C-D), the egg processes of M. azzunae sp. nov. (Figs
4C-D, 5C) are clearly shorter, 5.4 = 0.6 vs 9.5+ 0.5 (range 4.2—6.4 vs 9-10.5) and with a narrower base
and distal disc (both 3.2-5.2 vs 7-10.5 and 7-9 respectively). Males are present in the new species,
while in M. personatus only females were found (Biserov 1990), suggesting parthenogenesis in that
species.

Macrobiotus sandrae Bertolani & Rebecchi, 1993

The new species differs from M. sandrae for the eggshell shape, with thinner wires of the reticulum and
meshes around the processes larger than the inter-process meshes in M. azzunae sp. nov. (Fig. 5C), all
meshes similar in size in M. sandrae (Fig. 5D). Figure 5C-D also show a difference in the process base
diameter, narrower in M. azzunae sp. nov.With regard to the animals, M. azzunae sp. nov. differs from
M. sandrae by a constriction of the first macroplacoid much more pronounced (Fig. 5A; it is hardly
visible in M. sandrae; Fig. 5B). Moreover, in animals of similar size the posterior band of the buccal
armature is just less evident in the new species, and lunules on the hind legs are without hint of teeth
(but teeth, present in the holotype of M. sandrae, are often difficult to identify in other specimens of that
species).
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Macrobiotus terminalis Bertolani & Rebecchi, 1993
Macrobiotus azzunae sp. nov. differs from M. terminalis for the absence of granulation on the cuticle
(noted only in the redescription of M. terminalis; see Cesari et al. 2011), for the absence of teeth on the
lunules, especially evident on the hind legs of M. terminalis, and for the presence of males, absent in
M. terminalis (see redescription by Cesari et al. 2011).

Fig. 5. Comparison between M. azzunae sp. nov. and M. sandrae Bertolani & Rebecchi, 1993. A. Placoids
in M. azzunae sp. nov., paratype (UNIMORE, slide C4218-S30). B. Placoids in M. sandrae (UNIMORE,
slide C442-S79); arrowheads evidence the different constriction depth of the first macroplacoid.
C. Eggshell in M. azzunae sp. nov., paratype (UNIMORE, slide C4218-S4). D. Eggshell in M. sandrae
(UNIMORE, slide C2346-S2); in M. azzunae sp. nov. there are smaller processes and reticulation with
thinner wires and larger net around the processes than in M. sandrae. A—D: PhC.
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Fig. 6. Macrobiotus personatus Biserov, 1990, paratypes (Civic Museum of Natural History of
Verona, Italy, CT14701). A. Buccal-pharyngeal apparatus with macroplacoids. B. Pores on the cuticle.
C. Eggshell reticulation and egg processes. D. Egg processes. A—D: PhC.
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Macrobiotus viadimiri Bertolani, Biserov, Rebecchi & Cesari, 2011

With respect to M. viadimiri, animals of M. azzunae sp. nov. reach a shorter length (up to 410.3 pm vs
515.1 pm), in M. azzunae sp. nov. the posterior band of teeth of the buccal armature is less evident and
the lunules on the hind legs are not indented. In M. azzunae sp. nov. the egg diameter without processes
(64.7-80.6 um) is less than that of the eggs of M. viadimiri (89.9-92.0 um); the processes are shorter
(4.2-6.4 um in the new species vs 6.5-8 um in M. viadimiri). In the new species the base process
diameter is narrower (3.2-5.2 um) than in M. viadimiri (5.1-7.3 pm), the distal disc is weakly or not
jagged (clearly jagged in M. terminalis). In M. azzunae sp. nov. males are present, while they are absent
in M. vladimiri.

Genetic distances

The ranges of uncorrected genetic p-distances between M. azzunae sp. nov. and the other species of the
M. hufelandi group (Supp. file 7, Supp. file 8, Supp. file 9, Supp. file 10), are as follows:

18S  0.1-5.6%, with the most similar being M. sandrae from Germany (present paper)

28S  0.1%, with the only available M. viadimiri from Spain (FJ435751-5)

ITS-2 7.7-32.2%, with the most similar being Macrobiotus viadimiri (MN888347) from Finland

COI  6.3-25.6%, with the most similar being Macrobiotus sandrae (HQ876574, HQ876577,
HQ876578, HQ876579, HQ876581) from Germany

The COI dataset is the most complete and informative for species delimitation investigation. Both
phylogenetic reconstructions on the COI dataset resulted in the same topology, and thus the ML tree
was utilized for the PTP analysis (Fig. 7, left), which shows 14 putative species clusters: M. crustulus,
M. hannae, M. cf. recens, M. canaricus, M. hufelandi, M. cf. hufelandisp.1, M. terminalis, M. cf. terminalis,
M. wandae, M. macrocalix, M. cf. macrocalix, M. viadimiri, M. sandrae and M. azzunae sp. nov. This
subdivision is further validated by both the ABGD and the haplotype network analysis (Fig. 7, centre
and right). Present molecular data therefore confirms the validity of the erection of M. azzunae sp. nov.

Discussion

With the discovery of M. azzunae sp. nov. the species identified in Tunisia now comes to 33, all non-
marine. This number is much lower than the number of non-marine species, 120, found in nearby Sicily
(Pilato et al. 2017, 2019), an island extensively studied from a tardigradological point of view. This
means that there is considerable potential for further discoveries that could come from the study of
the various habitats colonized by tardigrades in Tunisia. Furthermore, the results will undoubtedly be
greater and more informative if the research is carried out with an integrated approach, as done in this
work.
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Fig. 7. Left: tree resulting from both the maximum likelihood analysis and the Bayesian inference of
cytochrome c oxidase subunit I (COI) in M. azzunae sp. nov. specimens and sequences from GenBank.
Values above branches point out bootstrap values, while values under branches represent posterior
probability values. Results of the Poisson tree process analysis are provided using differently coloured
branches: putative species are indicated using transitions from blue-coloured branches to red-coloured
branches. Newly scored haplotypes are in bold. The scale bar shows the number of substitutions per
nucleotide position. Centre: haplotype network of COI gene in M. hufelandi complex. Circles represent
haplotypes, while circle surface denotes haplotype frequency. Networks falling below the value of the
95% connection limit are disconnected. Right: rectangles denote specimens grouped by ABGD analysis.
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group for the ITS-2 gene. https://doi.org/10.5852/ejt.2021.758.1429.4641

Supp. file 10. Genetic distances (p-distance) computed between species of the Macrobiotus hufelandi
group for the COI gene. https://doi.org/10.5852/¢jt.2021.758.1429.4643
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