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Abstract 
Waiting time for elective surgery is a key problem in the current medical world. This 
paper aims to reproduce, by a Monte Carlo simulation model, the relationship 
between hospital capacity, inpatient activity, and surgery waiting list size in teaching 
hospitals. Inpatient activity is simulated by fitting a Normal distribution to real 
inpatient activity data, and the effect of the number of beds on inpatient activity is 
modelled with a linear regression model. Analysis is performed with data of the 
University Multi-Hospital Complex of Santiago de Compostela (Santiago de 
Compostela, Spain), by considering two scenarios regarding the elastiticity of 
demand with bed increase. If demand does not grow with an increase on bed 
capacity, small changes lead to drastic reductions in the waiting lists. However, if 
demand grows as bed capacity does, adding additional capacity merely makes 
waiting lists worse. 
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1. Introduction 
A waiting list for healthcare is a queue of patients who have been given a care 
procedure but, due to reasons beyond their control, must wait to be served within a 
variable time period (Sampietro and Espallargues, 2001). Though waiting lists are 
common in different healthcare fields (both primary and specialty care), healthcare 
levels (outpatient and hospital care), and therapeutic procedures (surgical and 
nonsurgical), diagnostic and rehabilitative (Churruca, 2000), surgical waiting lists are 
those commonly discussed. These are often studied due to their major problems of 
morbidity and mortality, as well as their greater economic impact (Richards, 1999; 
Silber et al., 1996).  

With the aim of assessing the influence of waiting lists on survival rates, Richards 
(1999) reviewed 87 studies published in different countries, and showed that survival 
of patients with over a three-month delay in surgical treatment of breast cancer was 
reduced by 10 per cent at 5 years when compared to patients who benefited from 
earlier operations. In the same line, Silber et al. (1996) examined waiting list-related 
risk, and pointed out that the risk of mortality in patients awaiting coronary by-pass 
was 1.3 per cent per month, and that by-pass should be performed within the first 
week after coronary angiography diagnosis to minimize death risks in the waiting list.  

Elective surgery in Spain works through waiting lists to such an extent that a public 
opinion barometer identified waiting time for elective surgery as the leading source 
of public dissatisfaction with inpatient services. One of the main reasons behind 
waiting lists for elective surgery is the fact that Spanish hospitals face serious 
problems of productive capacity (Siciliani and Hurst, 2003). Although productive 
capacity usually refers to resources such as staff, beds, operating theatres, and 
community-based health centers, just to name a few, the two main resources in 
hospital production function are personnel and number of beds (often considered a 
rough proxy for capital endowment).1 

This paper is focused on analysing the situation in one of these hospitals, namely 
the University Multi-Hospital Complex of Santiago de Compostela2 (Santiago de 
Compostela, Spain) Specifically, we examine the impact of bed capacity—a scarce 
and expensive input in healthcare—on daily inpatient activity, patients’ length of stay 
and, consequently, waiting lists in a teaching hospital like the above mentioned. The 
high cost of academic health centres and other teaching hospitals is largely attributed 
to the unique missions pursued by these institutions—including graduate medical 
education, biomedical research, and the maintenance of standby capacity for highly 
specialized patients (Commonwealth Found, 1997).  

Medicare is often viewed as the primary payer of graduate medical education in view 
of its size and use of explicit payment adjustments for teaching hospitals (Koening 
et al., 2003). However, experimentation with the real system would cause a lot of 
trouble both for patients and staff. For that reason, we are obliged to perform a 
simulation approach, which represents the system and can be manipulated with no 
daily healthcare practice disruptions. Indeed, one of the often-mentioned reasons for 
using simulation as a tool is the experimentation with non-existing systems (Law and 
Kelton, 1991). Once validated, the simulated model can yield accurate estimates of 
the behaviour of the real system and help to understand and clarify complex dynamic 
processes (Yamaguchi et al., 1994). Finally, simulating a process such as admission 
to elective surgery can also help to identify bottle-neck and congestion points. 

                                                                                                           
1 The common wisdom that the lack of hospital resources other than beds (equipment, for example) may 
determine waiting lists rather than beds themselves is considered here, by assuming a direct relationship 
between beds and equipment in such a way that beds represent roughly the amount of capital input of 
the hospital.    

2 Throughout the paper, we will maintain the Galician name of “Complexo Hospitalario Universitario de 
Santiago de Compostela” and its CHUS acronym.  
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Besides, the simulation model can be useful to monitor hospital system performance 
and assess the relative effectiveness of alternative policies aimed at coping with 
historical or statistically-generated patient load.  

In sum, simulation is a recommended tool to solve the problems created by complex 
systems where mathematical models are not operational. For this reason simulation 
is widely used to analyse hospital problems, as these problems are considered a 
complex system comprising many variables and different random events. For 
example, in surgical services, Everett (2002) developed a decision support tool to 
evaluate various policies on surgey waiting lists and bed occupancy. Akkerman and 
Knip (2004) used simulation to allocate beds to cardiac surgery in order to reduce 
waiting times. Denton et al. (2007) applied simulation to examine optimal timing of 
surgery.3 Likewise, VanBerkel and Blake (2007) built a discrete event simulation 
model to evaluate surgical waiting times and support capacity-planning decisions. 
Although the optimization approach is different in each case, it is aimed at improving 
all services through optimal resource use.  

To examine the pattern of waiting lists size in programmed surgery and reproduce 
the behaviour of daily inpatient activity, the length of stay and, consequently, waiting 
lists, a known distribution was fit to each variable. Such distribution then allows us to 
generate new values for daily inpatient activity and patient length of stay by means 
of the Monte Carlo method. Finally, after generating new observations of inpatient 
activity and length of stay, the corresponding simulated waiting list and daily 
percentage of occupied beds (occupancy rate) can also be created.  

In this context, waiting list variations with increased number of hospital beds (a rough 
proxy for capital input) can also be studied by examining the impact of the number 
of beds on inpatient activity, length of stay and, consequently, waiting lists. With this 
purpose, the simulation process was replicated for various increased percentages in 
the number of available beds in two alternative scenarios. First, the increased 
number of beds is assumed to lead to no modification of the inpatient activity pattern 
(no beds effect). Then, alternatively, a change in the number of beds was assumed 
to modify the behaviour of inpatient activity in the amount given by the inpatient 
activity-beds elasticity estimated by Kroneman and Siegers (2004) in a comparative 
study for 10 European countries. All computational programming was performed with 
free statistical software R. 

The current research provides two main results. Firstly, if there is no beds effect, i.e., 
if the number of beds affects the admission pattern, even remarkable extensions in 
the mumber of beds lead to no significant difference in hospital occupancy rates or 
waiting lists. Secondly, if the elasticity of the beds-inpatient activity relationship, 
which is over 1 (Kroneman and Siegers, 2004), is taken into account, then no 
significant differences in terms of occupancy rates and surgery waiting lists are 
observed, as the potential number of beds in the hospital increases. In other words, 
when elasticity is included in the simulation model, waiting lists are found not to drop 
when the hospital disposes of a higher amount of physical capital (beds) in its 
production function. 

Our findings suggest that, under certain conditions, the number of hospital beds is 
the driver of waiting lists in Galician hospitals like CHUS. This, obviously, has a key 
consequences at both policy and managerial levels: hospital configurations 
(evaluation of bed usage policies, creation of new services, revision of elective 
admissions…) allocation plans, new view of measures of performance, etc. 

                                                                                                           
3 In spite of the fact that the use of simulation models in healthcare is not new, a survey on 200 healthcare 
simulation models proves that their results were implemented in only 16 cases, showing limited 
acceptance (Wilson, 1981).The primary reason for the healthcare industry reluctance to accept simulation 
was managerial reluctance to reduce complex healthcare processes to a model representation (Alvarez 
and Centeno, 1999). 
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Finally, it is worth to note that our results are close to those of Kroneman and Siegers 
(2004) and Zeraati et al. (2005), among others. In their analysis of the effect of 
hospital beds on their use for 10 European countries, Kroneman and Siegers (2004) 
found that admission rates seem sensitive to bed supply, and show a positive and 
over-1 elasticity (in particular, 1.44). This means that admission rates are higher in 
those countries whose hospitals have a high number of beds, but the amount of 
hospital beds itself seems to have no significant impact on average length of stay. In 
the same line, Zeraati et al. (2005) suggested that an increase in the number of beds 
tends to generate additional healthcare demand, either in the form of higher patient 
admission, longer-treated patients, or some combination of both. This fact reflects 
the so-called Roemer’s law of demand (Shain and Roemer, 1959; Roemer, 1961), 
indicating that a sudden increase in in the amount of hospital beds in a given country, 
with no changes in other factors, leads to a sharp increase in usage rates. 

The rest of the paper is laid out in four sections. Section 2 outlines the model, while 
simulation analysis and the main results of the paper are presented in Section 3. The 
results achieved are discussed in Section 4. Finally, Section 5 concludes the paper. 

2. The model 

2.1. Data on inpatient activity and length of stay 

Our approach is applied to the University Multi-Hospital Complex of Santiago de 
Compostela (CHUS), a teaching hospital-complex located in the city of Santiago de 
Compostela (NW Spain). The CHUS is composed of three hospitals with 1,100 beds, 
29 surgical theatres and 705 full-time physician equivalents. In 2008 the number of 
CHUS-treated inpatients was 34,953 vs. 352,930 inpatient days that correspond to 
9,525 first-time visits and 149,406 emergencies.4  

Our working variables are daily inpatient activity and length of stay for all patients 
admitted in CHUS in 2007. Inpatient or residential activity is the number of hospital 
patients who, daily, receives lodging and food as well as treatment divided by the 
number of beds, The length of stay, on the other hand, refers the number of days 
that a patient is treated in hospital, including readmissions.  

To fit an inpatient activity pattern from real data and select adequate fitting 
distribution, data were split into two groups: working days (i.e. Monday to Friday, 
except July, August, and December), and holidays (i.e. Saturdays and Sundays plus 
July, August and December). The reason behind this splitting is that, as plotted in 
Figure 1, clear differences in inpatient activity values were observed between 
working days and holidays. 

                                                                                                           
4 Consellería de Sanidade, Xunta de Galicia (2008), Memoria 2007 Sistema Público de Saúde de 
Galicia. Available at 
www.sergas.es/Publicaciones/DetallePublicacion.aspx?IdPaxina=40008&IDCatalogo=1732. 
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Figure 1. Box-plot (left panel) and histogram (right panel) of daily inpatient activity. 

  

   

 

In fact, quartiles are 96.5 (first quartile), 116 (median) and 126 days (third quartile) 
for working days, while they are 53 (first quartile), 80.5 (median) and 94 days (third 
quartile) for holidays. A two-sample Kolmogorov-Smirnov test applied to data shows 
that the statistic value is 0.5667 and the associated p-value is below 0.05, so the null 
hypothesis that inpatient activity for working days and holidays is drawn from the 
same distribution of probability can be rejected. Hence, we decided to analyze 
inpatient activity in working days and holidays separately. 

Both the box-plot and the histogram of patient length of stay are shown in Figure 2. 
Here, most data can be observed to correspond to short stays, as the first quartile is 
3 days, the median is 6 days, and the third quartile is 12 days, although some outliers 
correspond to longer hospital stays. 

Figure 2. Box-plot (left panel) and histogram (right panel) of length of stay. 

   

2.2. The Monte Carlo simulation method 

The Monte Carlo simulation method allows generating new values for daily inpatient 
activity and patient length of stay. For the former, data were considered independent 
observations of a continuous variable and then fitted a Normal distribution for 
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working days and holidays separately.5 In other words, the two parameters (the 
mean, , and the standard deviation, ) that determine a Normal distribution for 
working days and holidays were determined. After the fitting procedure, the Normal 
distribution  

)45.20ˆ,02.112ˆ(  WWN  ,    (1) 

was selected for inpatient activity in a working day (denoted by subscript W), and the 
Normal distribution 

)08.24ˆ,72.76ˆ(  HHN  ,     (2) 

was chosen for inpatient activity in a holiday (denoted by subscript H). To decide 
whether the behaviour of the inpatient activity variable comes from a Normal 
distribution, a Kolmogorov-Smirnov test was completed. This offered 0.0972 as the 
value of the statistics for working days (p-value=0.0503), and 0.1047 as the value of 
the statistics for holidays (p-value=0.0481). Data are then accepted to be normally 
distributed for significance level 01.0 . 

Regarding the length of hospital stay, a Normal and other distributions were fitted 
like a Poisson distribution, but none of them rendered good fitting. A possible cause 
could be the presence of outliers corresponding to large stays, which leads the 
distributions to not have heavy enough tails to fit real data adequately. Hence, an 
alternative approach based on the kernel density estimator was chosen, for which 
the length-of-stay variable is implicitly assumed to be continuous.  

Denote the real observations of the length-of-stay variable in 2007 by sample 

),...,,( 21 nXXX  drawn for some distribution with an unknown density f, where n 

represents the sample size. Since we are interested in estimating the shape of the 
density function of the length-of-stay variable, f can be estimated by the following 
kernel density estimator (Wand and Jones, 1995) 
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where K is a kernel (i.e. a non-negative real-valued integrable function, satisfying the 
following two requirements:  





 1)( dxxK                                                                 (4) 

and  

)()( xKxK  , for all values of x.6                                      (5) 

On the other hand, h is a positive number called bandwidth related to the obtained 
estimator's smoothness. Specifically, the standard Normal density function was 
adopted as the kernel function, and the bandwidth related to the obtained estimator’s 

smoothness was estimated as 74.0ˆ h . 

                                                                                                           
5 Although we have tried to fit distributions other than Normal distribution, the Normal distribution rendered 
the best fit. 

6 The first requirement ensures that the kernel density estimation method results in a probability density 
function, and the second one ensures that the mean of the corresponding distribution equals that of the 
sample used. K is usually a unimodal symmetric probability density function. 
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2.3. Generating new observations 

Once the distributions for daily inpatient activity and patient length of stay were 
chosen, data were generated for both variables. On one hand, a new observation for 
inpatient activity is drawn from the Normal distribution stated in (1) on a working day, 
and from the Normal distribution postulated in (2) on a holiday.  

On the other hand, the new observations for patient length of stay were obtained 
from the kernel estimator given in (3). This was carried out by means of a three-
stage method. In the first stage, the real length of stay in 2007 was denoted as (x1, 

x2,..., xn), and an element x from dataset },...,,{ 21 nxxx  was randomly selected. In 

the second stage, z was generated from the standard Normal distribution 
)1,0(Nz  . Finally, in the third stage, a new length of stay, x*, was built by using 

the rule  

)ˆ(* zhxroundx  ,                                                           (6) 

where ĥ  stands for the bandwidth estimated for the kernel density estimator (3), and 

)(round  rounds the simulated values x* to zero decimal places.  

3. Simulating inpatient activity and patient length of 
stay 
The activity of the CHUS can now be simulated for 2007, when the total number of 
beds (roughly speaking, the amount of physical capital) was 1,100. To avoid starting 
with an “empty” system (i.e. a hospital without patients), the simulation process 
begins on August 1st, 2006 (i.e. before the period of analysis).7 Then, for each day 
of 2007, the simulation process followed a three-stage procedure. In the first stage, 
an inpatient activity value was generated taking into account both new and waiting-
list patients. In the second stage, we detect the number of free beds in the hospital 
and we decide to occupy them with patients for which generate the length of their 
stays. Finally, in the third stage, if daily inpatient activity exceeds the number of 
available beds, the remaining patients are included in the waiting list. 

The results of this 3-step model are depicted in Figure 3, which plots the hospital's 
actual inpatient activity in 2007 (black line), and the 500 runs of model-simulated 
inpatient activity (grey lines). 

                                                                                                           
7 In the simulation literature, this is called the start-up problem (Law, 1983). 
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Figure 3. Actual inpatient activity (solid black line) and simulated inpatient activity 
(grey lines) in 2007. 

 

On the other hand, Figures 4 and 5 depict, respectively, the 500 replications of 
simulated daily waiting lists and occupancy rate. 
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Figure 4. Simulated daily waiting list 

(grey lines) in 2007

 

Waiting list quartiles are highlighted: 25 per cent 
(dashed black line), 50 per cent (solid black line) 

and 75 per cent (dotted black line). 

Figure 5. Simulated daily occupancy 

rate (grey lines) in 2007 

 

Occupancy rate quartiles are highlighted: 25 per 
cent (dashed black line), 50 per cent (solid black 

line), and 75 per cent (dotted black line). 

The simulated values can be concluded to fit well the real-data pattern for this period. 
Besides, the hospital waiting list grows until June, disappears in July and August, 
and rises again until December. There are then two critical moments before summer 
and Christmas with very high peaks. A similar pattern is observed for daily 
occupancy rate. 

The results obtained for the simulated daily waiting list data and the simulated daily 
occupancy rate can be summarized as follows. Thirty-eight days out of a hundred 
days a year show no waiting list, while 62 days show a variable-size surgical waiting 
list. This size ranges from 1 to 100 patients (21 per 100 days), from 100 to 200 
patients (14 per cent of the analysed period), from 200 to 350 patients (13 per cent 
of the time considered), and over 350 patients (14 per cent of the time). The 
differences observed in waiting list time and size would be explained by the seasonal 
trend observed in hospital admissions. For instance, the admissions of chronic-
disease patients in autumn has a strong impact on hospitals' waiting lists, as well as 
the appearance of flu outbreaks from November to January. Likewise, the impact of 
spring on some patients with respiratory or allergic disorders can also explain these 
waiting list differences. 

On the other hand, the simulation allows us to conclude that, bed occupation rate 
ranges between 70 and 80 per cent of hospital capacity in 7 out of 100 days, during 
12 per cent of the days this rate ranges between 80 and 90 per cent, and during 19 
per cent of the days it ranges between 90 and 99 per cent. That is, 28 out of 100 
days the hospital is working below its capacity, while 62 out of 100 days the hospital 
generates a widely variable-length waiting list. Thus, wide variability is observed in 
the use of hospital capacity. The fact that bed occupancy rate shows a strong 
seasonal behaviour may be due to increased healthcare pressure in some months 
due to the impact of some climate conditions on certain disorders. 

3.1. Beds-inpatient activity elasticity 

In this subsection we examine what happens in the simulation analysis if the number 
of hospital beds increases. To this end, two alternative scenarios are assumed. First, 
in Scenario 1 the number of beds has no impact on inpatient activity and the stays 
pattern. This assumption is then removed in Scenario 2. In both cases, we consider 
the actual number of beds (1,100), as well as successive increases: 55 beds more 
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(5% capacity increase), 110 beds more (10%), 165 beds more (15%), 220 beds more 
(20%), 330 beds more (30%), 440 beds more (40%) and 550 beds more (50%). 

3.1.1. Scenario 1 

Here daily inpatient activity is simulated as described above, i.e. Ŵ  and Ŵ  ( Ĥ  

and Ĥ ) are estimated using the inpatient activity sample of working days 

(holidays). This implies that no increase in the number of hospital beds, irrespective 
of the magnitude of the increase, modifies the generation process of new values for 
inpatient activity or length of stay. In this context, Figures 6 and 7 show, respectively, 
both the median of the 500 simulated waiting lists and the median of the 500 
simulated occupancy rates for various amounts of beds. 

Figure 6. Median of simulated waiting 
lists. No beds effect 

 

Figure 7. Median of simulated daily 
occupancy rate. No beds effect 

 

As shown in Figure 6, increased number of beds, although slightly increased, would 
lead to significantly reduced waiting lists. For instance, a 5 per cent increase in the 
number of available beds would double the period with no waiting lists (from 38 to 
76 per cent). Besides, the remainding waiting list would also be considerably smaller. 
Particularly, waiting lists comprising 1-100 patients would prevail only 18 per cent of 
the time (vs. 21 per cent), 100-200 patients would correspond to 5 per cent of the 
time (vs. 14 per cent), and those comprising over 200 patients would disappear. If 
the number of beds increased by 10 per cent, the period with no waiting list would 
extend up to 95 per cent, as there would be a below-100 waiting list during 4 per 
cent of the time. Finally, if the increase in the number of beds were 15 per cent, there 
would be no days with waiting lists in the analysed period. In short, a below 15 per 
cent increase in hospital production capacity would be enough to eliminate waiting 
lists. 

The data shown by Figure 7 allow deducing that a 5 per cent increase in the number 
of hospital beds would lead to: (i) the number of days of full hospital occupancy 
(therefore involving waiting lists) would be reduced from 62 to 25 per cent; and (ii) 
extended periods in which the occupancy rate is below 100 per cent. At the same 
time, a 10 per cent increase in the number of beds would reduce the number of days 
in which hospital occupancy rate is 100 per cent up to only 5 per cent per year and 
would significantly increase the number of days in which occupancy rate remains 
below 100 per cent. For instance, while the current number of beds leads to hospital 
occupancy rates between 90 and 99 per cent during 19 per cent of the year, this 
occupancy rate would extend up to 40 or 42 per cent with either a 5 or a 10 per cent 
increase in the number of beds, respectively. If the number of hospital beds is 
increased by 20 per cent, maximum occupancy would not exceed 99 per cent 
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throughout the year, while a 30 or a 40 per cent increase would lead maximum 
occupancy not to exceed 90 or 70 per cent. 

The results obtained under Scenario 1 can be formally recorded as follows. 

Proposition 1. If bed capacity has no impact on inpatient activity, even a minor 
increase in the number of beds leads waiting lists to decrease, and occupancy rate 
to drastically reduce. 

3.1.2. Scenario 2 

In this case we take the median of daily inpatient activity in working days (holidays) 
and the number of beds in working days (holidays) to fit a linear regression. It is well 
known that, if the number of hospital beds increases, inpatient activity tends to adapt 
itself to the hospital’s new productive capacity. This is the so-called Roemer's law of 
demand (Shine and Roemer, 1959; Roemer, 1961). In our case, this effect between 
capacity and utilization is taken into account by adopting the value that Kroneman 
and Siegers (2004) obtained for a set of hospitals from 19 European countries. 
These authors found that a 1 per cent increase in the number of beds leads inpatient 
activity to increase 1.44 per cent. Thus, inpatient activity seems sensitive to bed 
supply. This value is taken for the simulations completed in Scenario 2 with the 
analysed hospital. 

Since we are modeling inpatient activity as a Normal distribution, the pattern of the 
variable is determined by mean and standard deviation. Then we examine whether 
both parameters, mean and standard deviation, are related to the number of beds. 
To avoid pernicious effects from outliers, median and median absolute deviation 
(mad) are considered as a robust estimator of dispersion.8  

The fitted regression model, where the covariate is the number of hospital beds and 
the response is the median of daily inpatient activity, is given by 









holidaysin  ,0643.02362.4

days in working ,0972.09619.3
activity) (inpatientMedian 

B

B
  (7) 

where B denotes the number of beds. Hence, there is a reasonable linear 
relationship between the median of inpatient activity and beds. Indeed, the 
determination coefficients for both fittings are over 0.9. 

In addition, the fitted regression models, where the covariate is the number of 
hospital beds and the response is the mad of daily inpatient activity, is  









holidaysin  ,0181.02984.2

days in working ,0165.03747.2
activity) (inpatient Mad

B

B
  (8) 

where, once more, a reasonable linear relationship can be observed between mad 
of inpatient activity and the number of beds. The determination coefficients for both 
fittings are over 90 per cent. Therefore, we can use a modified simulation process 
where the inpatient activity values for working days are drawn from the Normal 
distribution )ˆ,ˆ( WWN  , where 

BW 0972.09619.3ˆ   and BW 0165.03747.2ˆ     (9) 

                                                                                                           
8 The mad is the median of the absolute deviations from the data’s median. For example, for a dataset as 
{2,2,3,4,12}, the median is 3, so the absolute deviations from the median are {1,1,0,1,9} (reordered as 
{0,1,1,1,9}) with a median of 1, in this case unaffected by the value of the outlier 12. Hence, the mad is 1. 
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In turn, inpatient activity values for holidays are drawn from the Normal distribution 
)ˆ,ˆ( HHN  , where 

 BH 0643.02362.4ˆ  and BH 0181.02984.2ˆ                (10) 

Figures 8 and 9 sum up the main results provided by the validated model in 
Scenario 2. 

Figure 8. Median of simulated waiting 
list with a beds effect 

Figure 9. Median of simulated daily 
occupancy rate with a beds effect 

Figure 8 shows that now waiting lists cannot be eliminated, not even when the 
increase in the number of beds is high. In this scenario in which the admission rate 
adjusts itself to the number of available beds, a 5 per cent increase in the number of 
beds is observed not to reduce but to increase waiting lists. From here onwards, 
waiting lists are reduced if the number of beds keeps growing over 5 per cent. 
Although the reduction is not proportional, every 5 per cent increase in the number 
of beds can be said to lead to a 1 per cent waiting list reduction. 

Waiting list increases are due to the fact that an increase in the hospital’s inputs 
leads to an increased number of patients included for admission. Besides, given that 
the elasticity is positive and over-1, greater input amounts lead to greater demand 
and therefore to longer waiting lists. Though consecutive increases in the number of 
beds do not shorten waiting lists at the same pace, they do show some effect in this 
sense, probably due to the appearance of growing scale performances from a 
particular hospital size which compensate for the effect of (over-1) admission-
demand elasticity relative to inputs. 

The simulation results achieved in Scenario 2 can be summarized in the following 
proposition. 

Proposition 2. If we consider the beds effect on inpatient activity, an increase in the 
number of beds leads to no significant differences in waiting list and occupancy rate 
(even for huge increases of beds). 

4. Discussion 
The expansion of hospital physical capacity (building new surgical units, for 
example) is a long-run policy that may require time to be implemented. The increase 
of the health workforce may be even slower, since physicians and specialists need 
several years' training before becoming active. Although staff can be recruited from 
abroad, such staff may face assimilation difficulties and such a policy can therefore 



Antelo, Reyes Santias, Martinez Calvo ● Bed capacity and surgical waiting lists 

130 

also take time. This means that the different ways of increasing supply will generally 
involve different costs and require different time scales. In the short run, purchasing 
extra activity from public facilities at low marginal cost may be possible if there is 
spare capacity. However, if public facilities are already working close to full capacity, 
purchasing extra activity in the short run will only be possible at high marginal costs. 
In the medium to longer term, it may well be cheaper to expand activity by expanding 
public capacity. For example, Denmark adjusted its public capacity to respond to the 
upsurge in demand for coronary revascularisation procedures more rapidly than 
England in the 1990s. Consequently, waiting times for revascularisation fell in 
Denmark, whereas they rose steeply in England (Siciliani and Hurst, 2003). 

It is argued that, in principle, waiting times can be reduced through supply-side 
policies, if the volume of surgery is not considered adequate, or through demand-
side policies, if the volume of surgery is considered adequate. Supply-side policies 
include raising production capacity by increasing the number of beds and specialists, 
or by using the available capacity in other (private) hospitals. They also include 
increasing productivity by funding extra activity, fostering day-surgery, and linking 
doctors' and hospitals' remuneration system to their performance (Hurst and 
Siciliani, 2006).  

However, it is common to take measures aimed at reducing waiting times by 
increasing activity, and then find that, after a brief period, demand has increased and 
waiting times have reverted to levels similar to those before the application of 
measures. Such responses may be hard to overcome, since demand responds 
positively to reductions in waiting times. This is the result rendered by the present 
study. By means of simulation analysis, we observed that if the demand pattern is 
not modified relative to the increased number of beds, a (slight) increase in the 
number of beds would remarkably help to reduce surgical waiting lists. Particularly, 
a 10 per cent increase in the number of available beds would reduce variable-size 
surgical waiting lists from 62 to 5 per cent of the studied period. In this context, this 
production capacity increase would be highly effective. However, if the demand 
responds positively to increased supply, then every increase in the number of beds 
(no matter how large) would have scarce impact on waiting list reduction. 

The outflow (supply) of elective surgery depends on both public and private surgical 
capacity, and the productivity with which capacity is used. Econometric evidence 
(cross-sectional and at national level) suggests that higher capacity —in terms of 
increased numbers of beds and physicians— is associated with lower waiting times. 
Evidence on the impact of capacity is provided by Martin and Smith (1999) through 
an English database from the Hospital Episode Statistics in 1991/92. These authors 
showed that waiting time is negatively associated with the number of available beds. 
They particularly found that elasticity equals -0.242. Similarly, Lindsay and 
Feigenbaum (1984) found out that waiting times are negatively associated to both 
the number of available doctors and beds. 

Furthermore, Álvarez and Centeno (1999) used a simulation analysis for the 
Washington Adventist Hospital to evaluate the impact of an expansion in the number 
of beds in the Emergency Room. An expansion in the number of beds was found to 
result in a 0.6-hour reduction of average length of stay. Kirtland et al. (1995) used 
simulation to improve performance by reducing patient time in the system and 
determining appropriate staffing levels. Eleven alternatives were studied and 
resulted in a reduction of 38 minutes on average. 

However, larger increases in capacity may have a different impact on waiting times 
according to the level of excess demand and initial waiting time. Countries with low 
supply and high initial waiting times are likely to have elastic demand to waiting-time 
variations. For this reason, the effect of even larger increases in capacity on waiting 
times may be rather modest (Hurst and Siciliani, 2006).  

In general, supply-side policies may well succeed in their aim of raising the rate of 
elective surgery, but they may be disappointing in their effects on waiting times. That 
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is because an increase in supply may follow rather than lead an increase in demand, 
or may be overtaken by fresh increases in demand. Moreover, any reduction in 
waiting times may encourage an increase in admission rates to lists due to lowered 
clinical thresholds (Hurst and Siciliani, 2006). 

Moreover, many commentators suggested that an increase in the supply of hospital 
beds tends to generate additional demand either in the form of more admitted 
patients or patients treated for longer time periods, or some combination of both 
(Zeraati et al., 2005). Formerly, Shain and Roemer (1959) found very close 
correlations between the availability of short term general hospital beds per 1,000 
population, and rates of use as measured by hospital days per 1,000 population. 
Later, Roemer (1961) also reported on a natural experiment where a sudden 
increase in hospital beds in a country—with no changes in other factors—led to a 
sharply increased utilization rates.  

Using data from 10 European countries hospitals, Kroneman and Siegers (2004) 
found out that inpatient activity increases 1.44 per cent for every 1 per cent increase 
in the number of hospital beds. Taking into account this beds-inpatient activity 
elasticity, the results regarding the impact of beds on waiting times offered by our 
study widely differ from those obtained without considering the impact of bed 
capacity on inpatient activity. Now, an increase in bed capacity leads to no significant 
differences in waiting lists and occupancy rates, even for huge bed-capacity 
increases. Our simulation model then reveals the small effect that supply policies 
may have on waiting lists when healthcare demand adapts itself to the new supply 
conditions. 

5. Concluding remarks 
Waiting time for elective surgery is a significant problem in the current medical world. 
This paper aims at reproducing, by means of a Monte Carlo simulation, how the 
number of beds (a rough measure of a hospital’s physical capital) affects inpatient 
activity, length of stay and, consequently, waiting lists in teaching hospitals like the 
University Multi-Hospital Complex of Santiago de Compostela (CHUS). Inpatient 
activity is simulated by fitting a Normal distribution to the real impatient activity data 
observed in 2007 and the effect of the number of beds on inpatient activity is 
modelled with a linear regression model. Analysis is performed firstly assuming that 
the number of beds has no impact on inpatient activity or length of stay (absence of 
beds capacity effect), and then assuming that the number of beds has certain impact 
on inpatient activity by adapting itself to the new supply conditions.  

This research allows us to evaluate drops in waiting lists due to a potential increase 
in the number of beds. We add empirical evidence showing that if the effect of the 
number of beds on hospital admission rates is neglected, then an increase in the 
number on hospital beds, even the slightest increase, drastically reduces waiting 
lists. By contrast, if the hospital’s admission patterns become affected by the number 
of beds, every extension in the number of beds, even remarkable extensions, leads 
to no significant differences in hospital occupancy rates or waiting lists. 
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