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Abstract  

Background: The challenge of climate variability is a major problem for developing and using 

water resources. Scarcity of climate data compounds the problem and undermines the efforts to 

acquire updated information for predicting climate change and reduce its risks.  

Objective: The objective of the study was to evaluate and select the best climate models having 

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset for Gibe 

III watershed. Material and Methods: NEX-GDDP data of precipitation and temperature with 

spatial resolution of 0.25º x 0.25º of ten CMIP5 models was, evaluated against observed data of 

eight stations distributed in the Watershed.  

Results: The models showed a consistent and reasonable pattern for mean monthly total 

precipitation and mean temperature (max and min). The mean monthly precipitation of all models 

against observation also resulted to R2 of 0.71 to 0.99 and the Nash–Sutcliffe efficiency (NSE) 

value of 0.66 to 0.99. Mean annual precipitation of model ensemble mean over the watershed 

against observation spatially varied between –100 and 100 mm underestimating at the northern 

and southern tips of watershed while overestimating at central and northeastern parts. The mean 

maximum and minimum temperature varied from –1.6 ºC to +2.9 ºC and 0.4 ºC to 3.8 ºC, 

respectively.  

Conclusion: The result indicates that, selecting climate models’ ensemble mean could provide 

higher confidence in climate change projection than choosing a specific model for an entire 

watershed. Based on evaluation metrics and long-term mean annual rainfall, NEX-GDDP dataset 

of CSIRO-MK3-6-0, MIROC5, MPI-ESM-MR, NorESM1-M, MIROC5 and GFDL-ESM2M 

models reasonably simulated the mean annual rainfall at Shebe, Sodo, Jimma, Hosaina, Sokoru 

and Woliso stations respectively for uses of climate change projection in the Watershed. The 

reliability of NEX-GDDP dataset for the climate models need seasonal basis study in the future 

at the Watershed since this study did not conduct seasonal data analysis. 
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1. Introduction 

Studies on climate change impact on water resources 

require the use of climate models with higher resolution 

at local condition that could simulate the present day 

climate and give increased confidence on future climate 

scenarios (Ramirez-Villegas et al., 2013). These GCM 

projections have a spatial resolution (0.5º x 0.5º or more) 

(Chu et al., 2010) that affect its application for climate 

change impact assessment at a local scale (IPCC, 2013). 

Downscaling (Jones et al., 2004; Pervez and Henebry, 

2015) and bias correction of climate simulation models 

(Ho et al., 2012) are major procedures when working with 

climate simulation models. Dynamical downscaling 

technique (Boé et al., 2006; Christensen et al., 2006; Jacob 

et al., 2014) and statistical downscaling technique 

(Hewitson and Crane, 2006; Bosshard et al., 2013; Maraun 

and Widmann, 2018) were applied to downscale the GCM 

output to finer local climate conditions (Dibike and 
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Coulibaly, 2005; Frei et al., 2006; Shimelis Gebriye et al., 

2010; Wayne, 2013).   

   Gibe watershed has potential water resources for 

electric power generation at cascades of Gibe I, II, III, 

and IV dam whose construction targeted before fifteen 

years (EEPCo, 2009). However, scarcity in climate data 

and the challenge of climate variability is a major problem 

for the Gibe watershed hydrological resource basis which 

otherwise will not achieve its development goal (UNEP, 

2013). The area needs updated information on the climate 

change impacts to reduce risks of climate change. 

Downscaling of global-scale climatic variables to local-

scale hydrologic variables is an important procedure 

before perusing impact studies for climate change.  

   However, as Shimelis Gebriye et al. (2010) explained, 

the limitation of downscaling procedure for getting 

climate model output is that it requires high computing 

resource capacity, high human knowledge and skill as well 

as time. In response to this problem, NASA produced 

Earth Exchange Global Daily Downscaled Projection 

(NEX-GDDP) dataset of Coupled Model Inter-

comparison fifth Project (CMIP5) with resolution of 

0.25º x 0.25º for climate models (Thrasher et al., 2012; 

Thrasher et al., 2015).  Chen et al. (2017) and Jain et al. 

(2019) justified that the near and long-term climate study 

using the datasets was proved to be robust in regions with 

complex topography like the study region, Gibe 

watershed, Ethiopia. Since Gibe watershed is a source of 

hydroelectric power energy for the country, it needs a 

critical attention to sustain its service as planned. One of 

the information for such action is analysis of future 

climate state specially the rainfall and maximum and 

minimum temperature.  

   On the other hand, studies on future climate condition 

and the prediction require use of climate models, which 

could show us plausible future climate. In this regard, it is 

important to compare some climate model outputs with 

existing observational dataset with historical data and use 

the best model that could represent the station climate 

data for future climate change as well as impact study. In 

this case, a comparative evaluation and selection of best 

climate models at Omo-Gibe basin in general and at Gibe 

III in particular was, not conducted. Therefore, it is 

important to select best and high-resolution model type 

with NEX-GDDP dataset for the watershed through 

model reliability evaluation. Accordingly, this study is 

signifies the importance of overcoming climate data 

scarcity and solve the uncertainty expected during climate 

change studies for sustainable management of water 

resources. The result will be of benefit to stakeholders 

who manage hydroelectric dams and its water sources as 

well as the scientific community for further research. The 

research question was, ‘Is the existing bias corrected 

statistically downscaled high-resolution climate models 

with NEX-GDDP dataset applicable for use in Gibe 

watershed’. Therefore, the objective of the study was to 

evaluate the reliability of the NEX-GDDP datasets in 

reproducing climatological means of rainfall and 

temperature over Gibe III Watershed  

 

2. Materials and Methods 

2.1. Description of the Study Area 

Gibe III watershed is located within the Omo-Gibe River 

Basin, in the middle reach of the Omo river. It is located 

between the latitude of 6.6o–9.4oN and longitude of 

35.78o–38.42oE. The catchment area is about 34,154.16 

km2 with the Hydropower scheme comprising a 243 m 

high dam creating a reservoir of surface area spanning 200 

km2 and creating storage of some 11,750 million m3 of 

water (EEPCO, 2009). Gibe III dam has the capacity to 

generate about 1870 MW (Negash Teklu et al., 2016) 

hydroelectric power. The area experiences hot arid to 

tropical humid and sub humid climatic conditions. The 

rainfall pattern is uni-modal for the northern and central 

parts of the Watershed and bimodal for the southern part. 

The average annual rainfall calculated over the whole 

Gibe III watershed where the dam is located is 1,426 mm 

with major distribution occurring from May to 

September. The mean annual temperature varies from 16 
oC to over 29 oC (EEPCO, 2009). The study area has a 

topography characterized by mountainous to hilly terrain 

and flat alluvial plain punctuated by hilly areas. The 

Watershed has an altitude range of 681–3570 m a.s.l. 

(EEPCO, 2009). 
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Figure 1. Location of the Gibe-III watershed and weather stations (Ethio-GIS database). 

 

2.2. Data Type and Source  

The National Aeronautics and Space Administration 

(NASA) Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) dataset contains downscaled 

climate scenarios derived from the GCM simulations of 

the Coupled Model Inter-comparison Project Phase 5 

(CMIP5). The spatial resolution of the dataset is 0.25° (~ 

25 km × ~ 25 km). These datasets provide a set of global, 

high-resolution, bias- corrected climate change 

projections that can be, used to evaluate climate change 

impacts on finer scales. Each of the climate projections 

includes mean maximum and minimum temperatures and 

precipitation for the periods from 1950 to 2005 

(retrospective run) and from 2006 to 2099 (prospective 

run) on a daily scale available at 

https://dataserver.nccs.nasa.gov/thredds/catalog/bypas

s/NEX-GDDP/bcsd/catalog.html. The bias corrected 

statistically downscaled climate model output data of 

GCMs with data range of 1976–2005 was, downloaded 

from NASA data portal (ftp://ftp.nccs.nasa.gov/). For 

comparative analysis, observed daily rainfall and 

maximum and minimum temperature data from 1976–

2005 was, obtained from National Meteorological Agency 

(NMA) of Ethiopia. Eight climate stations in and around 

the Watershed having full data similar to the selected 

model historical data period (1976–2005) were selected 

(Table 1). 

Table 1. Data obtained from National Meteorological Agency for selected stations. 

Stations Lat. (degree) Long. (degree) Elev. (m.a.s.l) Number of year  Period  Data type 

Sokoru 7.92 37.42 1928 30 1976–2005 Daily 

precipitation; 

daily 

maximum and 

minimum 

temperature 

Atnago 8.31 36.95 1804 30 1976–2005 

Hosaina 7.57 37.85 2349 30 1976–2005 

Jimma 7.67 36.82 1718 30 1976–2005 

Nekemte 9.08 36.55 2108 30 1976–2005 

Shebe 7.50 36.52 1772 30 1976–2005 

Sodo 6.81 37.73 2032 30 1976–2005 

Woliso 8.55 37.98 2464 30 1976–2005 

2.3. Methods 

2.3.1. Climate model selection  

The following table indicates the list of selected CMIP5 

climate models for this study (Table 2). However, due to 

limitation of time for analysis of each variable on a 

station basis, from twenty-one models developed in 

different countries at different institutions, the study 

selected only about ten models. The researcher 

https://dataserver.nccs.nasa.gov/thredds/catalog/bypass/NEX-GDDP/bcsd/catalog.html
https://dataserver.nccs.nasa.gov/thredds/catalog/bypass/NEX-GDDP/bcsd/catalog.html
ftp://ftp.nccs.nasa.gov/
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downloaded historical daily precipitation and maximum 

and minimum temperature data for each point-station 

from NASA web page.  

 

Table 2. Information about the selected 10 Coupled Model Inter-comparison fifth Project (CMIP5) general circulation 

models (GCMs). 

Number Model Country and institution 

01 ACCESS1-0 1 Commonwealth Scientific and Industrial Research Organization and Bureau 
of Meteorology, Australia 

02 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 
03 CNRM-CM5 Centre Europeen de Recherche et Formation 

AvanceesenCalculScientifique, France 
04 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization 

Queensland Climate Change Centre of Excellence, Australia 
05 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America 
06 IPSL-CM5A-LR Institute Pierre-Simon Laplace, France 
07 MIROC5 Atmosphere and Ocean Research Institute, Japan 
08 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 
09 MRI-CGCM3  Max Planck Institute for Meteorology, Germany 
10 NorESM1-M  Norway Consumer Council, Norway 

 In order to analyze the data on a Watershed basis, area 

weighted data were prepared for average annual 

precipitation and temperature using Inverse Distance 

Weight (IDW), the method recommended by Chen and 

Liu (2012) for spatial interpolation using ArcGIS version 

10.1. IDW is a common and simple way of spatial 

interpolation, where observations are weighted based on 

their distance to a given point by a non-linear relationship 

expressed by an exponent (typically equal to 2). The 

method is widely used due to its simplicity and its 

applicability to even sparse and irregular datasets (Ahrens, 

2006; Yang et al., 2015). IDW uses the distances from the 

target neighbor gauge stations with more weight given to 

data of nearest station as justified by different authors 

(Longley et al., 2001; De Silva et al., 2007; Achilleos, 2011; 

Chen and Liu, 2012; Moeletsi et al., 2016). Monthly 

patterns of precipitation and temperature were plotted 

against the observation for the monthly long-term mean 

data of the selected models. 

 

2.3.2. Performance metrics for evaluation of models 

The performance Metrices, such as the root mean squared 

error (RMSE), coefficient of determination (R2), and 

Nash–Sutcliffe efficiency (NSE) of the Annual Mean 

Precipitation (MA-P), the mean monthly temperature 

(MM-T- both max. and min) as well as mean monthly 

precipitation (MM-P) (Nash and Sutcliffe, 1970; 

MacLean, 2005) were applied during statistical analysis 

(Equations 1-3). In addition, Absolute (AE) and relative 

errors (RE) were used to identify models that could 

reasonably reproduce the mean annual precipitation (MA-

P) at each station so that the station would get one 

representative model. The smaller the AE or RE, the 

better is the model to reproduce the observation 

(Equations 4 and 5). These metrics were used as the 

indicators for the performance comparison of each model 

with observed data. R2 shows the degree of the linear 

relation between model output and observed data; R2 of 

0 denotes no relation whereas 1 represents strong 

relation. RMSE represents the errors between two 

variables; the smaller the RMSE, the better the results. 

The specific performance metrics including mean annual 

precipitation (Mean-P) and mean annual temperature 

(Mean-T) were also used during the evaluation. 

𝑅2 = [
1

n
∑ (Xo

n
m=1 −μo)(Xm−μm)

σXo X σXm
]

2

                             Eq. 1 

𝑅𝑀𝑆𝐸 = √
∑ (Xo−Xm)2𝑛

𝑚=1

𝑛
                                      Eq. 2 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

]                           Eq. 3 

Where, X, μ and σ show the raw data, mean and variance, 

respectively, while o and m show the observed and model, 

respectively, and n is the number of events. 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝐴𝐸) = |𝑦𝑚𝑒𝑎𝑛
𝑜𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛

𝑚𝑜𝑑𝑒𝑙| 

           Eq. 4 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝐸) =
|𝑦𝑚𝑒𝑎𝑛

𝑜𝑏𝑠−𝑦𝑚𝑒𝑎𝑛
𝑚𝑜𝑑𝑒𝑙|

𝑦𝑚𝑒𝑎𝑛
𝑜𝑏𝑠 𝑥100       

                                                                Eq. 5 
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Where, 𝑦𝑚𝑒𝑎𝑛
𝑜𝑏𝑠 = long-term mean (1976-2005) of the 

observation of annual precipitation at station and 

𝑦𝑚𝑒𝑎𝑛
𝑚𝑜𝑑𝑒𝑙  = long-term mean (1976-2005) of the model 

of annual precipitation at station 

 

3. Results 

Knowledge of historical climate condition compared to 

model outputs from different sources of data has an 

important role to play in building confidence in the 

knowledge of future climate change simulated by such 

models. Although GCMs are a very important source of 

information to know the future climate, uncertainty due 

to their inherent characteristics, the complexity of 

variables (parameters) producing atmospheric and land 

system interaction requires evaluation of their output 

based on observation data. Thus, precipitation and 

temperature analyses for ten models, ensemble mean of 

the models and observation data were, carried out and the 

results are discussed below.  

 

3.1.  Performance of NEX-GDDP Dataset for 

Simulating Mean Monthly Temperature 

The mean monthly maximum and minimum 

temperatures of each model and ensemble mean as well 

as for observation in selected weather stations are shown 

in Figure 2.  

 

 

  
  

Figure 2. Climatological (1976–2005) annual cycle (monthly mean) of surface temperature (maximum (left) and 
minimum (right) of NEX GDDP model historical and observed data (A-P). 
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Figure 2. Continued. 
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3.2. Performance of NEX-GDDP Dataset for 

Simulating Mean Monthly Distribution Pattern of 

Precipitation  

The results of comparing the ten CMIP5 models with 

NEX-GDDP dataset outputs, their ensemble mean and 

observed data of monthly distribution from (1976–2005) 

of rainfall data for eight weather stations is shown in 

Figure 3 below. As in the case of temperature, the 

precipitation pattern was similar among ten models and 

the ensemble mean. Although bar graphs show the 

magnitude of precipitation for all ten models, to make 

the document simple to readers, only model ensemble 

mean and observed value were, made visible by line 

graph overlay.  

 

 
Figure 3. Climatological (1976–2005) mean monthly total precipitation at each station for NEX_GDDP dataset, the 

ensemble mean of 10 models and observed data 
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Figure 3. Continued 
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Figure 3. Continued. 
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Table 3. Performance metrics for climatological mean monthly precipitation total models outputs relative to observation at the station. 

Metrics CanESM2 CSIRO-
Mk3-6-0 

MIROC5 IPSL-
CM5A-
LR 

GFDL-
ESM2M 

NorESM1-
M 

MPI-
ESM-
MR 

MRI-
CGCM3 

ACCESS1-
0 

CNRM-
CM5 

Ensemble Max min mean 

   
         Sokoru station 

      

RMSE 20.75 20.53 17.95 24.38 32.63 29.57 15.12 20.60 30.61 25.63 16.84 32.63 15.12 23.2 
R2 0.92 0.93 0.94 0.93 0.83 0.84 0.97 0.93 0.84 0.91 0.95 0.97 0.83 0.91 
NSE 0.95 0.95 0.96 0.93 0.87 0.89 0.97 0.95 0.89 0.92 0.97 0.97 0.87 0.93    

     Atnago station 
      

RMSE 38.72 42.29 37.65 41.41 35.79 43.16 42.52 38.28 41.02 42.66 39.47 43.16 35.79 40.3 
R2 0.96 0.97 0.97 0.96 0.99 0.98 0.98 0.98 0.95 0.95 0.98 0.99 0.95 0.97 
NSE 0.86 0.84 0.87 0.84 0.88 0.83 0.84 0.87 0.85 0.83 0.86 0.88 0.83 0.85    

        Hosaina station 
      

RMSE 26.52 24.15 22.53 23.98 27.16 19.75 25.07 22.12 21.31 28.78 22.21 28.78 19.75 23.9 
R2 0.83 0.88 0.88 0.87 0.84 0.89 0.86 0.86 0.9 0.81 0.88 0.9 0.81 0.86 
NSE 0.78 0.82 0.84 0.82 0.77 0.88 0.8 0.85 0.86 0.74 0.84 0.88 0.74 0.82   

                                Jima station 
     

RMSE 13.54 12.74 12.64 14.45 15.12 14.51 11.97 10.45 15.17 16.12 8.64 16.12 8.64 13.2 
R2 0.97 0.97 0.98 0.98 0.97 0.97 0.98 0.98 0.96 0.96 0.99 0.99 0.96 0.9 
NSE 0.96 0.96 0.97 0.95 0.95 0.95 0.97 0.98 0.95 0.94 0.98 0.98 0.94 0.96   

                              Nekemte station 
      

RMSE 52.84 54.04 53.84 55.43 57.06 58.63 52.77 49.97 55.61 59.82 53.88 59.82 49.97 54.9 
R2 0.99 0.98 0.98 0.98 0.97 0.98 0.99 0.99 0.97 0.99 0.99 0.99 0.97 0.98 
NSE 0.85 0.85 0.85 0.84 0.83 0.82 0.85 0.87 0.84 0.81 0.85 0.87 0.81 0.84   

                                                                         Sodo  station 
     

RMSE 19.34 16.03 19.43 20.59 20.98 18.31 17.72 16.05 17.62 19.54 14.9 20.98 14.9 18.2 
R2 0.96 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.95 0.99 0.99 0.95 0.97 
NSE 0.91 0.94 0.91 0.9 0.89 0.92 0.92 0.94 0.92 0.91 0.95 0.95 0.89 0.92    

                                                 Shebe station 
     

RMSE 30.78 33.71 31.38 24.19 23.21 27.11 33.32 33.4 29.99 29.75 28.92 33.71 23.21 29.6 
R2 0.77 0.79 0.73 0.85 0.88 0.8 0.78 0.71 0.79 0.77 0.84 0.88 0.71 0.79 
NSE 0.71 0.66 0.7 0.82 0.84 0.78 0.66 0.66 0.73 0.73 0.75 0.84 0.66 0.73    

                                               Woliso station 
     

RMSE 23.36 20.64 24.79 17.28 26.68 26.11 9.63 17.22 28.13 13.29 16.33 28.13 9.63 20.3 
R2 0.95 0.95 0.95 0.97 0.92 0.93 0.99 0.97 0.91 0.98 0.97 0.99 0.91 0.95 
NSE 0.86 0.95 0.93 0.96 0.91 0.92 0.99 0.96 0.9 0.98 0.97 0.99 0.86 0.94 

Note: This table is the output of statistical analysis of selected model climatological mean monthly values relative to observed values for each station. Sample analysis for Sokoru station was shown in 
Appendix Table 2. 
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3.3. Performance of NEX-GDDP Dataset for 

Simulating Climatological Mean Annual 

Precipitation Distribution and Magnitude 

The annual precipitation result for ten models, the 

ensemble mean and observed data over selected eight 

stations of the watershed is demonstrated in Figure 4. 

 

 

 

 

  
 

 
 
Figure 4. Climatological mean annual rainfall distribution for models and observation. 
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Figure 4. Continued. 

 

The mean standard deviation and coefficient of variation 

indicated in Table 4 was obtained for each variables 

(mean annual precipitation and mean maximum and 

minimum temperture for each station. The analysis is to 

identify the variability between models and observation in 

eneral.  

Table 4. The Mean, standard deviation (SD) and coefficient of variation (CV) for climatological means of models and 

observation at each station.  

 Station Mean annual precipitation for 

models and observation  

Mean annual maximum 

temperature for  models and 

observation 

Mean annual minimum 

temperature for models and 

observation 

 Mean            SD CV (%) Mean SD CV (%) Mean SD CV (%) 

Atnago 1394.59 86.66 6.21 26.59 0.32 1.22 12.98 0.22 1.66 

Nekemte 1407.07 101.54 7.22 24.88 0.29 1.17 12.28 0.16 1.33 

Sodo 1165.09 37.09 3.18 26.77 0.64 2.38 11.70 0.72 6.15 

Shebe 1497.15 37.71 2.52 23.68 0.65 2.73 10.01 0.99 9.91 

Hosaina 1534.36 41.25 9.21 23.91 0.51 2.13 9.76 0.34 3.46 

Jimma 1571.40 45.91 2.92 25.54 0.57 2.24 11.22 0.16 1.42 

Woliso 1158.60 65.04 5.61 23.99 0.39 1.64 10.64 0.66 6.21 

Sokoru 1348.44 56.85 4.22 24.45 0.87 3.56 10.28 0.62 5.99 

Tables 5 and  6 show absolute error and relative error of 

each model at each station. The climatological mean 

annual precipitation indicated in Appendix Table 3 and 

equations 4 and 5 was the source of data for caluculation 

of AE and RE. Shaded values indicate the minimum 

values of the model at respective station and it shows the 

model to be selected at the station. 

Table 5. The absolute error for climatological mean annual precipitation of models relative to observation at each station. 

Name of 
station  

CanES
M2 

CSIRO-
Mk3-6-
0 

MIRO
C5 

IPSL-
CM5A-LR 

GFDL-
ESM2M 

NorES
M1-M 

MPI-
ESM-
MR 

MRI-
CGC
M3 

ACCE
SS1-0 

CNR
M-
CM5  

Sokoru 54.0 43.7 6.2 139.8 93.3 39.0 59.7 74.3 85.1 57.3 
Atnago 335.5 362.4 316.0 337.1 371.9 322.6 386.7 333.6 318.8 354.5 
Hosan 79.3 111.7 80.4 44.3 57.3 15.6 115.7 32.6 99.2 88.1 
Jimma 15.2 35.9 20.1 39.1 24.9 108.9 3.9 31.9 22.6 26.1 
Nekemte 484.1 456.0 485.9 508.2 511.3 451.0 473.6 431.1 449.5 535.4 
Shebe 18.7 10.8 31.8 73.3 60.3 152.8 39.5 65.5 63.8 15.9 
Sodo 159.3 248.6 93.2 111.8 135.3 122.6 227.7 141.0 172.9 126.9 
Woliso 111.8 58.5 147.9 47.8 4.7 50.8 49.3 98.9 79.8 72.4 
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Table 6. The Relative error (%) for long-term mean annual precipitation of models relative to observation at each station. 

Station  CanES
M2 

CSIRO-
Mk3-6-0 

MIROC
5 

IPSL-
CM5A-LR 

GFDL-
ESM2M 

NorESM
1-M 

MPI-
ESM-MR 

MRI-
CGCM3 

ACCE
SS1-0 

CNRM-
CM5  

Sokoru 4.1 3.3 0.5 10.7 7.1 3.0 4.6 5.7 6.5 4.4 
Atnago 19.5 21.0 18.4 19.6 21.6 18.7 22.5 19.4 18.5 20.6 
Hosain 6.4 9.1 6.5 3.6 4.7 1.3 9.4 2.7 8.1 7.2 
Jimma 1.0 2.4 1.4 2.6 1.7 7.3 0.3 2.2 1.5 1.8 
Nekemte 24.5 23.1 24.6 25.8 25.9 22.9 24.0 21.8 22.8 27.1 
Shebe 1.2 0.7 2.1 4.8 4.0 10.0 2.6 4.3 4.2 1.0 
Sodo 12.2 19.1 7.2 8.6 10.4 9.4 17.5 10.8 13.3 9.7 
Woliso 9.0 4.7 12.0 3.9 0.4 4.1 4.0 8.0 6.5 5.9 

 
3.4. Performance of NEX-GDDP Dataset for 

Simulating Spatial Variability of Mean Annual 

Precipitation and Temperature 

The model ensemble mean annual rainfall was spatially, 

interpolated to the watershed area for comparative 

analysis with the observed values. Spatial basis 

distributions of the NASA dataset (1976–2005) mean 

annual precipitation and temperature are displayed in 

Figure 5. 

 

 
Figure 5. Spatial distributions of the climatological mean annual precipitation (1976–2005) (a) Observed, (b) Ensemble 

mean of 10 models for the watershed. 
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Figure 6. Spatial distributions of the climatological mean annual surface temperatures (1976–2005) for observed and the 

ensemble mean of 10 models for mean maximum temperature (A and B) and minimum temperature (C and D) of the 

watershed. 

 

4. Discussion 

4.1. Performance of NEX-GDDP Dataset for 

Simulating Mean Monthly Temperature 

The mean monthly maximum and minimum 

temperatures of the models were not significantly 

different to each other in the respective stations (Figure 

2). However, the difference was, obviously observed 

between observation and ensemble mean. In all stations, 

mean maximum temperature of ten models and ensemble 

mean had a similar pattern of observation. However, the 

mean minimum temperature had a similar pattern of 

observation only at Sokoru, Jimma, Shebe, Nekemte, and 

Atnago. During the months from October to March, 

mean minimum temperatures at Sodo, Hosaina and 

Woliso stations were not captured by all models and 

indicating the underestimation of mean minimum 

temperature. Dyer et al. (2019) justified that, cold biases 

from November–March are a common characteristic of 

almost all of the coupled model climatology in some parts 

of Ethiopia. The author explained that if the models 

cannot reproduce higher temperatures in the months of 

dry season, they might not be a useful tool for using in 

such event prediction. The best fit of the lines (pattern) 

among the models and their ensemble mean for mean 

maximum and minimum temperature at the remaining 

stations indicates the possibility of using one of the 

models data or ensemble mean data for further studies in 

this Watershed.  

   The climatological mean monthly maximum 

temperature was little overestimated at Sodo and Hosaina 

while it was underestimated at Shebe, Jima and Sokoru 

stations. According to Randall et al. (2007), the local 

topography, existing surface condition and the weather 

events can make variations among stations. Regions with 

sharp elevation changes that could come from 

mismatches between the smoothed model topography 

and the actual topography of area can result in larger 

errors. This situation is in agreement with justification of 

Dyer et al. (2019) who stated that the highland in general 

is cooler so that the models may not be able to capture 

the spatial heterogeneity in regional temperature. The 

climatological mean monthly temperature patterns in 

Figure 2 clearly indicates how well the NEX-GDDP 

model runs and reproduces observed annual cycle. 

Generally, five out of eight stations shown at Figure 2 

indicated good simulation ability of NEX-GDDP model 

datasets for Gibe Watershed to reproduce the observed 

temperature.  
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4.2. Performance of NEX-GDDP Dataset for 

Simulating Mean Monthly Distribution Pattern of 

Precipitation 

There was a good match of mean monthly precipitation 

total (climatological mean monthly precipitations) pattern 

in all cases between models, their ensemble means and 

observed values. In stations such as Atnago (Figure 3A), 

Nekemte (Figure 3B), and Sodo (Figure 3C), the models 

failed to capture the higher magnitude of the observations 

during the months of May to September so that, the mean 

was underestimated. This situation was explained by to 

Randall et al. (2007) since the models continue to have 

significant limitations in their representation of clouds 

that could lead to uncertainties in the magnitude and 

timing of precipitation. Though NEX-GDDP dataset is 

bias-corrected, it underestimates rainfall observation 

which might result in uncertainties especially from high 

discrepancies in the extreme values of precipitation (Bao 

and Wen, 2017; Raghavan et al., 2018). However, 

Dettinger et al. (2004) and Wilby et al. (2000) agreed that, 

the performance of model outputs with NEX-GDDP 

data were applicable in hydro-climatology studies under 

data scarce conditions. The peak and trough for the 

magnitude of the annual cycle were kept in a similar trend 

for all models against the observation though there could 

be a limitation in the inherent uncertainties in the models. 

The result is supported by the findings of Dyer et al. 

(2019), Raghavan et al. (2018) and Tierney et al. (2015) that 

NEX-GDDP reproduced the observed patterns except 

for some marginal differences in the rainfall magnitude 

during wet months. The result indicates that NEX-

GDDP dataset can be applicable with better confidence 

during station based climate change impact study as the 

NEX-GDDP data represents well the mean states of 

temperature and precipitation on a monthly scale. Several 

studies adopted the Bias Correction and Spatial 

Disaggregation (BCSD) method to assess the 

hydrological impacts of climate change (Payne et al., 2004; 

VanRheenen et al., 2004; Hayhoe et al., 2006). 

 

4.3. Performance Metrics for Climatological Mean 

Monthly Precipitation Total 

From Table 3, it is clear that, the selected models of the 

NEX-GDDP dataset reproduced the observed mean 

monthly total precipitation better based on the 

acceptance level of metrics used in evaluation. The 

evaluation metrics resulted in R2 of 0.71–0.99; NSE of 

0.66-0.99 and RMSE of 8.64–59.82mm for different 

models at eight stations. In eight stations, NSE value 

ranged from 0.66 at Shebe station for the CSIRO-Mk3-6-

0 model to 0.99 at Woliso station for the MPI-ESM-MR 

model indicating strong relation to the observed value 

since a value of NSE greater than 0.5 is generally at 

acceptable level of performance (Nash and Sutcliffe, 

1970). The higher RMSE (59.82 mm) was obtained from 

CNRM-CM5 model (Nekemte station) while the lower 

RMSE (8.64 mm) was observed at the model ensemble at 

Jimma station.  

   Multi Model ensemble of these ten models (Figure 3) 

shows that mean monthly observations for June, July, 

August and September were highly underestimated at 

Atnago, Nekemte and Sodo stations with maximum 

difference at July by about 80–100mm of rainfall. These 

stations are at boundary divide of Watershed (Sodo and 

Atnago) and outside the Watershed (Nekemte) at high 

elevation (Figure 1).  On the other hand, at Hosaina 

station, March April and May were, underestimated while 

June, July and August were, overestimated slightly. On the 

contrary, all models captured dry periods in all stations 

correctly. It can be justified that the models well captured 

rainfall pattern at Shebe, Jimma, Sokoru and Woliso 

stations for all selected models. It could be argued that 

the detail agricultural water management requires NEX-

GDDP dataset selection on seasonal bases because 

obvious biases were observed in the seasonal values, 

which are also not uniform in space amongst models. The 

justification by Kug et al. (2008), Sengupta and Rajeevan 

(2013) and Jain et al. (2019) supports this argument. The 

result indicates that the NASA dataset of monthly scale 

could help during the prediction of the rainfall simulation 

in the future. According to Alo and Wang (2010), the 

statistical downscaling with bias correction is an effective 

tool to derive fine resolution predictions directly from 

coarse resolution GCMs' outputs. 

 

4.4. Performance of NEX-GDDP Dataset for 

Simulating Mean Annual Precipitation Distribution 

and Magnitude 

Station based comparision indicated that the observed 

mean annual rainfall was reproduced for  Jimma and 

Shebe stations except for the case of NorESM1-M which 

is overestimated by about 100 mm per year.  Generally, 

the mean annual precipitation showed high mismatch at 

stations such as Hosaina, Sodo, Nekemte and Atnago 

resulting to underestimation of observation by 100–300 

mm annual rainfall. On the contrary, overestimation was 

observed at Sokoru and Woliso by 50–80 mm per year. 

Underestimations of the mean annual precipitation by the 

models were  observed for northern (Atnago and  

Nekemte) tip of the study area and overestimations were  
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observed for  central (Sokoru and Woliso) areas of the 

study. However, unpredictable condition of mean annual 

precipitation was seen among the models in south-east 

(Hosaina and Sodo) of study Watershed. The results agree 

with the findings of McMahon et al. (2015) who reported 

that, the performance statistics comparing CMIP5 GCM 

outputs and observed mean annual precipitation showed 

that the high mean annual precipitation was 

underestimated and the low mean annual precipitation 

was overestimated.  According to Ahmed et al. (2013), the 

drawback of the models, however, is that many wet days 

are set to no-rain days, which leads to a slight 

underestimation of the amount of rain. It was also justifed 

by Raghavan et al. (2018) that the magnitude of 

precipitation in the inter-annual variability is 

underestimated by NEX-GDDP compared to the 

observation. This is because the frequency and 

mangnitude of annual daily maximum events in 

obsevations may be higher than that of the model. 

Precipitation is one of the ckimate varaibles that is the 

mist challengimng for modelling  due to the low 

predictability especially a topographically complex region 

(Wilby and Dawson, 2007). Acoording to Jain et al. (2019), 

the NEX-GDDP information biases with observed data 

at 25 km horizontal resolution could be due to the lack of 

ability of the model parameterization schemes to deal 

with mountainous regions. 

   Atnago and Nekemte stationss overall variability or 

mean annual precipitation was high among models 

including observation with SD of 86.66 and 101.54 

respectively. In addition, the mean monthly and annual 

precipitation of all models tested at these two stations did 

not reasonably capture the observation. Tables 5 and 6 

also confirm the condition that the absolute error for all 

models is above 300 mm. The cause may be the 

microclimate effect, which was not parameterized in the 

models.  Based on the performance metrics (Tables 3, 4, 

5 and 6) as well as the magnitude of the station based 

long-term mean annual precipitation (Figure 4)  Atnago 

and Nekemte  stations could be out of stations to use 

NEX-GDDP dataset. The results shown in Tables 5 and 

6 indicated that NEX-GDDP dataset of CSIRO-MK3-6-

0, MIROC5, MPI-ESM-MR, NorESM1-M, MIROC5 

and GFDL-ESM2M  models reasonably simulated the 

mean annual rainfall at Shebe, Sodo, Jimma, Hosaina, 

Sokoru and Woliso stations, respectively.  

 

 

4.5. Performance of NEX-GDDP Dataset for 

Simulating Spatial Variability of Annual 

Precipitation and Temperature 

The results of maps from NEX-GDDP data showed a 

similar trend of distribution against the observation in the 

catchment with small variation in magnitude. From 

Figure 5, it is observed that, the major coverage of 

variability of observed data from model output is in the 

range of -100 to 100 mm per year. From the spatial 

information, the NEX-GDDP could capture the pattern 

of precipitation but not the magnitude of precipitation. 

The result indicates underestimation of the annual 

precipitation by the models at the Northern and southern 

tips of the Watershed while overestimation at Sokoru 

(Central watershed) and Woliso (Northeast tip) of the 

study area. Given the complexity of variables in modeling 

precipitation, existence of limitations in downscaling 

technique, data scarcity problem in the region (Thrasher 

et al., 2015) and topographic effect of the microclimate in 

the study area, the results obtained can be tolerable and 

could be used to evaluate the impact of climate change on 

water resource in the study area. 

   The spatial distribution of the mean annual maximum 

and minimum temperatures for the Watershed (Figure 6) 

was observed not to be consistent with the variations in 

the rainfall of selected stations. The maximum 

temperature is overestimated by the model at the 

Northern tip, southern tip, and the southeastern tip of the 

watershed while it was underestimated by 1.2–2.9 ºC at 

the central and towards the western part of the study area. 

However, the magnitude of the difference is very small (-

0.6–1.2 ºC) for major coverage of the area. The minimum 

values were overestimated while the maximum values 

were underestimated. Regarding the minimum 

temperature (Figure 6), small coverage of land showed 

underestimation by about 2.4–3.8 ºC difference at the 

southern tip and the western tip. A larger portion of the 

watershed got little variation from 0.4–2.4 ºC difference 

(mean 1.4 ºC).   

 

5. Conclusion and Recommendation 

Study of the impact of climate change on water resource 

at local scale requires reliable and bias corrected high 

resolution, climate model output. BCSD NEX-GDDP 

dataset of daily precipitation and temperature having 

spatial resolution of 25km was released by NASA for use 

in data scarce regions. Accordingly, these dataset were not 

evaluated for their reliability for application in Gibe III 

Watershed. Thus, the climatological means of 

precipitation and temperature (1976–2005) from ten 
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climate models were comparatively evaluated with 

observed data at selected representative stations of Gibe 

III Watershed. The NEX-GDDP dataset of the most of 

the stations reasonably reproduced the pattern of the 

climatological annual cycles (monthly means) for 

temperature and precipitation. However, the 

climatological mean monthly minimum temperature at 

Sokoru, Shebe and Woliso showed underestimation while 

the mean monthly precipitation at Atnago, Nekemte and 

Sodo also resulted to underestimation. Although different 

metrics were applied to evaluate and select the relative 

model that could capture the observation at each station, 

R2 value greater than 0.71; NSE value more than 0.66 and 

RMSE lower than 59.82 mm were recorded by the 

different models at each station for climatological mean 

monthly total values. From all models in the eight 

stations, the lowest NSE value of 0.66 at Shebe station 

for CSIRO-Mk3-6-0 model and the higher NSE of 0.99 

at Woliso station for the MPI-ESM-MR model indicated 

the strong relation of the models to observed values. The 

highest RMSE (59.82 mm) was obtained at the CNRM-

CM5 model (Nekemte station) while the lower RMSE 

(8.64mm) was observed at ensemble mean at Jimma 

station which indicate NEX-GDDP dataset of one single 

model may not be applicable for different locations. The 

findings indicted that the six stations had likely 

representative model that simulated climatological mean 

monthly and mean annual rainfall as well as temperature 

(max. and min). Accordingly, based on evaluation metrics 

and long-term mean annual rainfall, NEX-GDDP dataset 

of CSIRO-MK3-6-0, MIROC5, MPI-ESM-MR, 

NorESM1-M, MIROC5 and GFDL-ESM2M models 

reasonably simulated the mean annual rainfall at Shebe, 

Sodo, Jimma, Hosaina, Sokoru and Woliso stations 

respectively. The implication of finding was that, any 

model dataset requires proper evaluation an 

interpretation before use as a decision tool for water 

resource management and planning at local level. It was 

also found that, higher resolution data does not mean 

quality and representative but the model type and local 

microclimate also play great role. Therefore, water 

resource experts, the country’s dam authorities, 

environmentalists or the climate modelers should 

evaluate climate model reliability before making use it.  

Similarly, those who are working in Gibe III Watershed 

can use the selected model dataset as a source of data for 

water resource management and modeling works at the 

Watershed. Since the data used for this study did not 

include seasonal evaluations of precipitation and 

temperature, future studies should focus on reliability 

study of NEX-GDDP dataset for the climate models on 

seasonal basis in this Watershed. 
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Appendix Table 1. Information about the selected 21 Coupled Model Inter-comparison fifth Project (CMIP5) general 

circulation models (GCMs) with NASA NEX-GDDP dataset. 

Number Model Country and institution 

01 ACCESS1-0 1 Commonwealth Scientific and Industrial Research Organization and Bureau of 

Meteorology, Australia 

02 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 

03 CNRM-CM5 Centre Europeen de Recherche et Formation 

AvanceesenCalculScientifique, France 

04 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization 

Queensland Climate Change Centre of Excellence, Australia 

05 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America 

06 IPSL-CM5A-LR Institute Pierre-Simon Laplace, France 

07 MIROC5 Atmosphere and Ocean Research Institute, Japan 

08 MPI-ESM-MR Max Planck Institute for Meteorology, Germany 

09 MRI-CGCM3  Max Planck Institute for Meteorology, Germany 

 10 NorESM1-M  Norway Consumer Council, Norway 

11 BCC-CMS1-1 Beijing Climate Center, China  

12 BNU-ESM 3 Institute of global change and Earth System Sciences, Beijing Normal University, 

China 

13 CCSM4  National Center for Atmospheric Research, America  

14 CESM1-BGC National Center for Atmospheric Research, America 

15 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, America 

16 INMCM4 Institute of Numerical Calculation, Russia 

17 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 

18 MIROC-ESM Atmosphere and Ocean Research Institute, Japan MIROC-ESM- 

19 CHEM Atmosphere and Ocean Research Institute, Japan  

20 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 

21 GFDL-CM3  Geophysical Fluid Dynamics Laboratory, America  
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Appendix Table 2. Performance metrics (RMSE, RSQ and NSE) analysis for two models. 

RMSE mean monthly rainfall 

Month Observed CanESM2 
 

RMSE* CSIRO-Mk3-6-0 
 

RMSE* 

1 34.6 25.2 9.4 20.75 19.3 15.3 20.5 
2 14.0 34.4 –20.4   29.9 –15.8  
3 74.5 67.5 7.0   80.7 –6.2  
4 124.0 96.5 27.4   91.3 32.6  
5 147.0 131.9 15.1   156.9 –9.9  
6 196.0 203.8 –7.9   175.3 20.6  
7 231.1 203.3 27.9   254.3 –23.2  
8 190.3 214.8 –24.5   215.1 –24.8  
9 163.6 196.2 –32.7   145.7 17.9  
10 89.6 106.3 –16.7   120.3 –30.7  
11 24.2 50.6 –26.4   20.9 3.3  
12 18.0 30.3 –12.3   40.9 –22.9  

RSQ mean monthly rainfall  
 Month Observed CanESM2 RSQ* CSIRO-Mk3-6-0 RSQ* 

1 34.6 25.2 0.9 19.3 0.9 
2 14.0 34.4 

 
29.9   

3 74.5 67.5 
 

80.7   
4 124.0 96.5 

 
91.3   

5 147.0 131.9 
 

156.9   
6 196.0 203.8 

 
175.3   

7 231.1 203.3 
 

254.3   
8 190.3 214.8 

 
215.1   

9 163.6 196.2 
 

145.7   
10 89.6 106.3 

 
120.3   

11 24.2 50.6 
 

20.9   
12 18.0 30.3 

 
40.9   

NSE of climatological (long-term) men monthly rainfall  
Observed CanESM2 

 
 NSE* CSIRO-Mk3-6-0 

 
NSE* 

1 34.6 25.2 88.9 0.948 19.3 233.7 0.949 
2 14.0 34.4 416.5   29.9 250.6  
3 74.5 67.5 49.3   80.7 38.5  
4 124.0 96.5 753.1   91.3 1066.0  
5 147.0 131.9 228.1   156.9 97.2  
6 196.0 203.8 62.1   175.3 425.2  
7 231.1 203.3 775.8   254.3 536.3  
8 190.3 214.8 601.8   215.1 614.3  
9 163.6 196.2 1066.2   145.7 319.0  
10 89.6 106.3 278.5   120.3 941.0  
11 24.2 50.6 694.6   20.9 11.1  
12 18.0 30.3 151.4   40.9 524.8  

Note: *Calculated based on equation. 
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Appendix Table 3. Climatological mean annual precipitation (1976-2005) for each model and observation data for each 

station. 

Models  Meteorological stations 

Sokoru Atnago Hosaina Jimma Nekemte Shebe Sodo Woliso 

CanESM2 1360.9 1386.6 1152.2 1466.7 1488.8 1546.2 1143.6 1348.3 
CSIRO-Mk3-6-0 1350.6 1359.7 1119.8 1446.0 1516.9 1516.7 1054.3 1295.0 
MIROC5 1300.7 1406.1 1151.1 1502.0 1487.0 1559.3 1209.7 1384.4 
IPSL-CM5A-LR 1446.7 1385.0 1187.2 1521.0 1464.7 1600.8 1191.1 1284.3 
GFDL-ESM2M 1213.6 1350.2 1174.2 1506.8 1461.6 1587.8 1167.6 1231.8 
NorESM1-M 1345.9 1399.5 1215.9 1590.8 1521.9 1680.3 1180.3 1287.3 
MPI-ESM-MR 1366.6 1335.4 1115.7 1478.0 1499.3 1567.0 1075.2 1285.8 
MRI-CGCM3 1381.2 1388.5 1198.8 1513.8 1541.8 1593.0 1161.9 1335.4 
ACCESS1-0 1392.0 1403.3 1132.3 1504.5 1523.4 1591.3 1130.0 1316.3 
CNRM-CM5  1364.2 1367.6 1143.4 1455.8 1437.5 1511.6 1176.0 1308.9 
Observed 1306.9 1722.1 1231.5 1481.9 1972.9 1527.5 1302.9 1236.5 

 

 

 


