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Abstract: Model-driven engineering (MDE) is a software engineering discipline
which focuses on models as the primary artifact of the software development pro-
cess while programs are mainly generated by means of model-to-code transforma-
tions. In particular, modeling languages tailored to specific domains promise to
increase the productivity and quality of software. Nevertheless due to e.g. evolving
requirements, modeling languages evolve and existing models have to be migrated.
Corresponding manual model migration is tedious and error-prone, therefore tools
have been developed to (partly) automate this process. We follow the idea of con-
sidering such modeling language and model co-evolutions as related graph transfor-
mations ensuring a correct and unique typing of migrated models. In this paper, we
present a general and formal construction of well-formed model migration schemes
that are able to co-adapt any model of a given modeling language to a performed
meta-model change. We show how appropriate model migration schemes can be
constructed and discuss how they may be customized.

Keywords: meta-model evolution, model migration, graph transformation

1 Introduction

Model-driven engineering [Fow10] (MDE) is a software engineering discipline which raises the
abstraction level in software development by using models as primary artifacts. In particular,
domain-specific modeling languages (DSMLs) are means to increase productivity and quality
of software. Developers can focus on their essential tasks while repetitive and technology-
dependent artifacts are automatically generated by transformations specified by experts in these
areas. To keep this high level of abstraction, a modeling language has to evolve simultaneously
to the evolving understanding of its target domain. However, this often causes trouble since ex-
isting models need to co-evolve with their languages (see. Figure 1). This evolution-migration
problem has been tackled in practice with the result that tools have been developed that (par-
tially) automate this tedious and error-prone process (see e.g. [HBJ09, RKPP10]). In current
approaches however, parts of model migrations still have to be specified manually. In our work,
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Well-formed Model Co-evolution with Customizable Model Migration

we support this step by generating default migration rule schemes for arbitrary meta-model evo-
lution steps. These rule schemes may be customized by the user as long as the given correctness
criteria are satisfied.�� ��Modeling Language

evolution //
�� ��Modeling Language′

�� ��Model

conforms to

OO

migration +3 �� ��Model′

conforms to

OO

��

Figure 1: Model co-evolution: Modeling language evolution and model migration

Modeling languages in MDE are usually defined by meta-models. Hence, the challenge of
modeling language evolution in MDE is often referred to as the problem of meta-model evolution
with corresponding model migration. We tackle this model co-evolution challenge by using al-
gebraic graph-transformations [EEPT06]. More specifically, we employ a variant of the classical
double-pushout (DPO) approach using co-span rules [EHP09] offering a better synchronization
of deletion and creation actions than the usual DPO approach [TML12]. For example, moving
an element can be easier represented by first adding a new copy of the element before deleting
its old version. In the co-span approach, the intermediate graph contains the whole context while
in the span approach, it contains the preserved part only. This context can be advantageously
used to formulate adequate model migrations. Our earlier work in [TML12, MTL12] presents
a general framework of co-transformations by graph transformations where meta-model evolu-
tions and model migrations are defined as inter-related graph transformations. This framework
allows for migration variants. It also shows how model migrations can be derived automatically
from meta-model evolutions resulting in model-specific migration rules.

In this paper, we go a step further and present model-independent migration schemes. Given
an evolution rule, a default migration scheme is automatically deduced and may be customized
to special needs. While the default migration scheme replays changes in the evolution rule as far
as possible, potential customizations may follow special strategies to insert new model elements
or to glue existing ones. Evolutions that need custom migration schemes are e.g. the insertion
of a new objects of singleton classes such as registries, the insertion of new containers, new
acyclic connections between model elements, new connections to existing model elements, etc.
Roughly spoken, customization of migration schemes is needed whenever the insertion of new
elements and gluing of existing ones need to fulfill special requirements. After the customization
phase, the adapted migration scheme is applied to a specific meta-model evolution and a specific
instance model. We show how a well-formed, model-specific migration rule can be deduced
automatically and then applied.

2 Evolution Scenario

In the following, we consider a small example describing a co-evolution scenario of colored
Petri nets [Jen03]. Figure 2 shows a simplified meta-model for colored Petri nets and an instance
model, i.e. a Petri net. The Petri net variant in Figure 2 supports weighted arcs as well as colored

Proc. GTVMT 2013 2 / 13



ECEASST

tokens. The meta-model and the example Petri net are presented in abstract and concrete syntax.
While we are working with the abstract syntax (on the right) in our theory, meta-models and
models are also shown in concrete syntax (on the left) to give the reader an intuition how they
are usually presented to a modeler.

To illustrate our approach, the small evolution scenario covers several steps: Petri nets shall
be equipped with containers for places and transitions. The container insertion is done in two
steps: First, a model container is inserted for all places and second, transitions are also put into
those containers.
Third, the attribute “color” is
moved from “Place” to “To-
ken”. Meta-model evolutions
and model migrations are for-
mulated by rule-based transfor-
mations, i.e. evolution and mi-
gration rules specify correspond-
ing changes. Figure 3 shows
the insertion of a new con-
tainer for places as example co-
transformation depicting models
in abstract syntax.

Figure 2: Petri net meta-model with an instance model
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Figure 3: Co-transformation example: Insertion of a container for places

The upper layer shows the meta-model evolution where a new container for places is inserted.
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The lower layer shows the migration of a specific Petri net model (introduced in Figure 2) where
one container is inserted for all its places. Note that graph mappings are encoded in graph
element names: Strings before “@” indicate graph mappings within one layer while strings
after “@” and before ’‘:” of meta-model elements as well as strings after “:” of instance model
elements are used to indicate the typing of instance model elements (i.e. graph mappings between
layers).
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Migration - Multi-Rule Migration - Multi-Rule (generated)

Model-Independent Migration Scheme

Kernel-Rule (user defined)

Model-Independent Migration Scheme 
(customized)

Migration - Multi-Rules
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for Example Petri-Net

Customization (manual) Application
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Figure 4: Migration schemes for adding a new model element

Since migration rules have to specify all model changes, they are model-specific and typically
grow with increasing model sizes. Therefore, we are looking for a model-independent solution
to specify model migrations. This leads us to migration schemes. An example migration scheme
for the insertion of a new class is shown in Figure 4 in the lower left corner. It just consists of one
basic migration rule to be applied multiple times , hence it is called a multi-rule. Migration rules
are typed by evolution rules. In this example, the migration rule is isomorphic to its evolution
rule. The rule specifies the basic action during migration: insertion of a new element connected to
the old one. Applying this multi-rule as often as possible to all places in a Petri net would give us
a new container for each match of the rule. This is not exactly what we want to have. Actually,
the new element should be the same for all matches. Therefore, we customize the migration
scheme to this special need and add a so-called kernel rule specifying that all new elements shall
be glued to one. (See the migration scheme in the middle of Figure 4.) This customization suits
well to the first evolution step where a new container (and only one) is inserted for all places. On
the right, we see a migration scheme being specific for model G in Figure 3 where three places
occur. Therefore, three copies of the multi-rule are in that scheme and each one is applied exactly
once. Gluing all these rules at the kernel rule yields the migration rule in Figure 3.

Since the connection of elements to an existing container can be handled similarly to its in-
sertion, it is left out here, due to space limitations. The third step is considerably different and
discussed in the following. Figure 5 shows an evolution rule for moving an attribute from one
class to another one. The corresponding default migration scheme contains 6 multi-rules: We
start with an isomorphic copy of the evolution rule. To ensure that all elements typed by the
evolution rule are matched, we need to add sub-rules for each connected component of the rule.
In this case, each sub-rule is an identity rule, hence we only show their left-hand side. We pri-
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oritize the rules based on their inclusions. The one with the highest priority is an exact copy of
the evolution rule. All others are identity rules and have lower priorities. Their purpose is to
complete the scheme such that also parts of T L can be identified for migration and potentially
deleted. For example, rule r3 being the identity on L3, is needed to identify all old attributes to be
removed (although not moved to another class but deleted by default). Rules with higher priority
are matched first. All rules in one priority class can be matched in parallel. And furthermore, a
rule is matched only if its match is not already completely covered by a previous match. Apply-
ing this scheme to Petri nets, the color attribute may be moved from “Place” to “Token” and is
removed from places even without connected “Token”-element to remain well-typed.
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Figure 5: Migration Rule Derivation

3 Meta-model Evolution with Model Migration by Co-transformation

First, we recall the basic definitions of co-span transformations and co-transformations as defined
in [EHP09, TML12, MTL12]. Co-span transformations are analog to usual DPO transformations
with the exception that they use co-spans instead of spans, i.e. additions are performed before
deletions. Co-transformations are the formal framework we use to formulate model co-evolution.
We choose the usual category of graphs and graph morphisms as the underlying category (for
details see [EEPT06]).

Definition 1 (Graph) A graph G =(GV ,GE ,srcG, trgG) consists of a set GV of vertices (or nodes),
a set GE of edges (or arrows), and two maps srcG, trgG : GE→GV assigning the source and target
to each edge, respectively. e : x→ y denotes an edge e with srcG(e) = x and trgG(e) = y.

Definition 2 (Graph morphism) A graph morphism g : G→ H consists of a pair of maps gV :
GV → HV , gE : GE → HE preserving the graph structure, i.e., for each edge e : x→ y in G we
have an edge gE(e) : gV (x)→ gV (y) in H with gV ◦ srcG = srcH ◦gE and gV ◦ trgG = trgH ◦gE .

As mentioned before, the migration procedure constructs migration schemes that rely heavily
on connected components.
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Definition 3 (Connected component) Given a graph H, we define an equivalence relation on
vertices ≡ ⊆ HV ×HV where ≡ is the transitive closure of ∼ with v1 ∼ v2 ⇐⇒ ∃e : v1→ v2 ∈
HE or ∃e : v2→ v1 ∈HE . Let [v]≡ ⊆HV denote an equivalence class of ≡. A complete subgraph
Gv H over [v]≡ is called a connected component.

Note that each vertex (and edge) belongs to exactly one connected component. Note further
that injective morphisms are denoted by “�”, surjective morphisms by “�”, bijective mor-
phisms by their combination, and inclusions by “↪→”.

Definition 4 (Co-span transformation rule) A co-span transformation rule p = L l→ I
r
� R

consists of graphs L (left-hand-side), I (interface), and R (right-hand-side) and two jointly sur-
jective morphisms l and r where r is injective. If r is bijective a rule p is called non-deleting and
can be written as l = L→ I. In the case of non-deleting rules we also call I right-hand-side.

Definition 5 (Co-span transformation) Given a co-span transformation rule p = L l→ I
r
� R

together with an injective morphism m : L� G, called match, rule p
can be applied to G if a co-span double-pushout exists as shown in the
diagram on the right. t : G

p,m
=⇒ H is called a co-span transformation.

L
��

m
��

l //

(PO1)

I
��
i
��

(PO2)

R
��
m′
��

ooroo

G g
// U Hoo

h
oo

The co-span double pushout exists if the co-span gluing condition holds (see [EHP09, MTL12]
for more details). Note that morphism l is allowed to be non-injective which means that graph
elements may also be glued during evolutions. Co-span transformations are used to define co-
transformations formalizing meta-model evolutions and their corresponding model migrations in
a rule-based manner.

Definition 6 (Co-transformation rule) A co-span rule t p = T L tl→ T I
tr
� T R together with a

co-span rule p = L l→ I
r
� R form a co-transformation rule (t p, p), if

there are graph morphisms tL : L→ T L, tI : I→ T I and tR : R→ T R such
that both squares in the diagram on the right commute. In such a co-

T L tl //

=

T I

=

T Rootroo

L
l
//

tL

OO

I

tI

OO

Roor
oo

tR

OO

transformation rule (t p, p), rule t p is called an evolution rule while rule p is called a migration
rule wrt. t p. We also say that migration rule p is well-typed wrt. t p.

Definition 7 (Match of co-transformation rule) A match (tm,m) of a co-transformation rule
(t p, p) is given by two corresponding matches tm : T L� T G of the evolution rule
t p and m : L� G of the migration rule p so that the matches together with the
typing morphisms tL : L→ T L and tG : G→ T G construct a commuting square:
tm◦ tL = tG ◦m. If G

m
� L tL→ T L is a pullback then the match is called complete.

T L // tm // T G

=

L // m //

tL

OO

G

tG

OO

Definition 8 (Co-transformation) A co-transformation (tt, t) is defined by two graph transfor-
mations tt : T G

t p,tm
=⇒ T H and t : G

p,m
=⇒ H that apply a co-transformation rule (t p, p) via match

(tm,m) simultaneously to type graph T G and its instance graph G, so that there are graph mor-
phisms tU : U → TU and tH : H → T H such that all faces of Figure 6 commute. In such a
co-transformation (tt, t), the type graph transformation tt : T G

t p,tm
=⇒ T H is called an evolution
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while the instance graph transforma-
tion t : G

p,m
=⇒ H is called a migration

wrt. tt.
T G

T L

TU

T I

T H

T R

PO1tt PO2tt
tm

tl tr

G

L

U

I

H

R

PO1t PO2t
m

l r

tG

tL tI tR

Figure 6: Co-transformation

An example of a co-transformation is given in Section 2 illustrated by Figure 3. Since the
example co-evolution step does not delete anything, the right cube is the identity. Therefore, the
left cube is shown only.

4 Migration Schemes and Automatic Model Migration

In the following, we present a model-independent solution to specify model migrations by so-
called migration schemes. The concept of migration scheme builds up on interaction schemes
used to specify amalgamated graph transformation as presented in e.g. [Tae96]. For a better
understanding, we recall basic definitions of kernel and multi-rules and interaction schemes,
here for non-deleting rules. Thereafter, model-independent and later model-specific migration
schemes are defined as special interaction schemes. Migration schemes cover the insertion and
gluing of graph elements only, while their deletion is done by a pullback construction. The
reason for this design decision is the observation that deletions in meta-model evolutions have to
be completely reflected by their model migration while this is not true for insertions and gluings.
New meta-model elements, for example, need not cause any changes in models but they may.
Hence, we define a default migration scheme for a given evolution rule and allow that it may be
customized under certain conditions (see Section 5 for allowed customizations).

In the following, we distinguish multi-rules to be applied as often as possible from kernel rules
that are needed to glue newly inserted elements such that they are only inserted once for several
multi-rules matches overlapping in the left-hand-side of the kernel rule.

Definition 9 (Kernel morphism for non-deleting rules) Given non-deleting rules l1 : L1 → I1

(called kernel rule) and l2 : L2 → I2 (called multi-rule), a kernel morphism
k : l1→ l2 is a pair (a,b) of morphisms a : L1→ L2 and b : I1→ I2 such that (1) is
commuting.

L1
l1 //

(1)a
��

I1

b
��

L2 l2
// I2

Definition 10 (Interaction scheme of non-deleting rules) Given a set K of non-deleting kernel-
rules, a set M of non-deleting multi-rules and a set KM of kernel morphisms k : lk→ lm from K
to M with lk ∈K and lm ∈M. An interaction scheme of non-deleting rules is a triple (K,M,KM).

Three examples for interaction schemes of non-deleting rules are given in Figure 4. These are
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the model-independent migration schemes on the left and in the middle of the figure as well as
the model-specific one on the right.

In the following, we construct special interaction schemes for model migrations, so-called
migration schemes. Given an evolution rule T L→ T I, a default migration scheme is constructed
by defining multi-rules for all connected subgraphs of T L and their extensions by connected
parts in T I. We consider connected graphs due to the assumption that they define model parts
that belong together. Including multi-rules over all subgraphs of connected components ensures
that also partial patterns are recognized and adequately migrated in model-specific migration
rules. In addition, loop edges in meta-models may have instances not being loops. Those cases
also have to be covered by migration rules. Kernel rules are considered to be all empty by default.

Definition 11 (Default migration scheme) Given a non-deleting evolution rule
t p : T L→ T I, the default migration scheme (K,M,KM)t p for rule t p is constructed by the fol-
lowing steps:

1. Construct a set ML of multi-rule left-hand sides by creating all possible connected subgraphs
of T L. For each loop in T L, a left-hand-side is added containing a graph that has only one
unfolded edge:

ML := {Lv T L | L is connected} ∪ MLloop

MLloop := {LE = {e : v1→ v2},LV = {v1,v2} ∀e ∈ T L with srcT L(e) = trgT L(e)}

In addition, prio : ML→ N defines the priority function with prio(Li)> prio(L j) if Li A L j.
2. Construct a set of non-deleting multi-rules:

First construct ∀ L ∈ (ML\MLloop) a graph IL with:

IL
V = T IV \ tl(T LV \ tL(LV ))

IL
E = {e ∈ T IE \ tl(T LE \ tL(LE)) | srcT I(e) ∈ IL

V ∧ trgT I(e) ∈ IL
V}

IL completes tl(L) by the new elements of T I.

T L tl // T I

L l //?�

tL

OO

=

IL
?�

tI

OO

M := {lL : L→ π(tl(L), IL) | L ∈ (ML\MLloop) and lL = tl|Li} ∪ Mloop

Mloop := {idL : L→ L | L ∈MLloop}

where π(U,H) denotes the connected component of H that contains UV if U v H.

3. ∀ l : L→ I ∈M : ∃inL : L ↪→ T L and inI : I ↪→ T I being the typing morphisms.
4. Set K = { /0 : /0→ /0} contains the empty kernel rule /0 as default.
5. KM = { /0l : /0→ l | ∀l ∈M} is the default set of kernel morphisms.

Given a default migration scheme, a meta-model evolution, and an instance model, the model-
specific migration rule is constructed by matching all multi-rules as often as possible such that
matches are not completely covered by other matches. Computing the intersection for each two
matches, applications of multi-rules can be synchronized by common kernel rules. If available, a
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suitable kernel rule is selected from the given migration scheme. Otherwise, it is constructed by
epi-mono-factorization. This means that the intersection graph is taken as left-hand side and its
potential gluing in its multi-rules is reflected in the right-hand side of its kernel rule. The result
of this construction is a model-specific migration scheme containing multi-rules as often as they
can be matched. For an example, consider the scheme on the right of Figure 4.

Definition 12 (Model-specific migration scheme for graphs) Let (K,M,KM)t p be a default mi-

gration scheme over evolution rule t p = (T L tl→ T I
tr
� T R) and let tt : T G

t p,tm
=⇒ H be an evolution

step. Furthermore, let G be a graph typed by T G, i.e.tG : G→ T G:

1. Match all multi-rules lu : Lu→ Iu ∈M to G and construct match
set MM =: {mi : Li� G | 1≤ i≤ n} such that:

∀Li with 1≤ i≤ n =⇒ ∃lu : Lu→ Iu ∈M, Li = Lu

and @ m j ∈MM with mi(Li)v m j(L j)

T G T Lootmoo

G

OO

=

Lioomioo
OO
tLi

OO

L joo

@m j

^^

``

``

PP

tL j

bb

2. Let Li
ai j
� Li j

a ji
� L j be the pullback of Li

mi
� G

m j
� L j,

∀1≤ i < j ≤ n. ∀Li j with 1≤ i < j ≤ n:

(a) If ∃ ls : Ls→ Is ∈ K with Li j = Ls and

∃(a : Ls→ Lu,b : Is→ Iu) ∈ KM and ai j = a, Li = Lu.

=⇒ ki j = (ai j,bi j) ∈ KM with bi j = b and li j : Li j→ Ii j

with Ii j = Is be in K. (Analogously for k ji). (ki j,k ji) ∈ KM

Ls ls
//

��

����
=

��

auv

��

Is

��

����

��

buv

��

Li j
li j //

��
=ai j

��
=

Ii j
��
bi j=

��
Li

li // Ii

Lu lu
//

OO

OOOO
=

Iu
OO

OOOO

(b) Otherwise generate a kernel rule:
Construct (Ii j, li j : Li j → Ii j, bi j : Ii j → Ii) by epi-mono-
factorization of li ◦ ai j. In this case, li j : Li j → Ii j ∈ K and
ki j = (ai j,bi j). (Analogously for k ji ∈ KM). Then, (ki j,k ji) ∈ KM

Li j
li j //

��
ai j

��
li◦ai j

  

Ii j
��
bi j

��
Li

li // Ii

This yields the model-specific migration scheme (K,M,KM)tt,G.

Remark 1 Note that the epi-mono-factorization of li ◦ ai j yields the same li j : Li j → Ii j as that
of l j ◦a ji does.

Remark 2 It is obvious that both kinds of migration schemes are interaction schemes of non-
deleting rules.

Having a model-specific migration scheme at hand, it can be glued by so-called star gluings
yielding its model-specific migration rule. The basic idea is to glue all multi-rules along their
kernel rules. Such a gluing diagram can be a kind of star in general. Therefore, we re-call the
star gluing of graphs. It is shown in [Tae96] that the star gluing is a special form of co-limit
construction.
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Definition 13 (Star gluing)

1. Given a set of graph morphism spans S = (Gi
gi j←Gi j

g ji→G j)1≤i< j≤n, a gluing relation IS is the
equivalence relation generated by the relation IS = {(gi j(x),g ji(x))|x ∈ Gi j,1≤ i < j ≤ n}.

2. Given a set of graph morphism spans S = (Gi
gi j← Gi j

g ji→ G j)1≤i< j≤n with its
gluing relation IS, the star gluing graph G is defined by G = (]1≤i≤nGi)/IMS

,
the quotient set of the disjoint union of all Gi. The maps gi : Gi → G for
all 1 ≤ i ≤ n send each element of Gi to its equivalence class in G. The pair
(G,{gi|1≤ i≤ n}) is called the star gluing of S.

Gi j

~~   
Gi

gi !!

= G j

g j}}
G

Definition 14 (Model-specific migration rule) Given a model-specific migration scheme
(K,M,KM)tt,G with match set MM =: {mi : Li�G | 1≤ i≤ n} over evolution tt : T G

t p,tm
=⇒ T H

as defined in Definition 12. Let G be a graph typed by T G, i.e tG : G→ T G:

1. Take all ai j and a ji as well as bi j and b ji for 1 ≤ i < j ≤ n and construct the star gluings

(L,{ai|1 ≤ i ≤ n}) and (I,{bi|1 ≤ i ≤ n}) of morphism stars SL = (Li
ai j
� Li j

a ji
� L j)1≤i< j≤n

and SI = (Ii
bi j
� Ii j

b ji
� I j)1≤i< j≤n with induced morphism l : L→ I. Match m of model-specific

migration rule l is the induced morphism m : L� G over MM =: {mi : Li� G | 1≤ i≤ n}.
2. Finally, construct the right-hand side R of the model-specific migration rule as pullback

I
r
� R tR→ T R of I tI→ T I

tr
� T R (see Figure 6). r is the induced morphism of pullback

I
r
� R tR→ T R.

The figure on the right shows the dou-
ble cube of Figure 6 using a migration
scheme to construct the non-deleting
part of model-specific migration rules.
Morphism r : I � R of the migration
rule is constructed by a pullback delet-
ing all instances that cannot be typed
over T R. This new construction of mi-
gration rules fits to our earlier work
in [TML12, MTL12] as shown in the
next propositions. Hence, a model mi-
gration constructed in such a way, is
applicable and migrates a model “cor-
rectly” (i.e. in a well-typed manner)
and in a unique way.

T L

T I

T R

T G

Li

L j

TU

Ii

I j

T H

Li j

Ii j

G

U

H

L

I

R

tl

tr

li j

l

r

li

l j

tG

tL

tI

tR

tm

m

Proposition 1 A model-specific migration rule is typed over its evolution rule.

Proof sketch: Since all multi-rules of migration schemes are well-typed (see Definition 11) and
L and I are star gluing graphs, their typing morphisms tL and tI are induced morphisms. In
addition, we have tI ◦ l = tl ◦ tL, due to uniqueness of induced morphisms. The existence of tR
and tI ◦ r = tr ◦ tR holds due to the pullback construction.
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Proposition 2 The construction of model-specific migration rules results in complete matches

only, i.e. T L tL← L
m
� G is the pullback of T L

tm
� T G

tG← G (see Figure 6).

Proof sketch: All multi-rule matches in MM induce a unique morphism m : L� G. Since the
default migration scheme contains a multi-rule for each connected subgraph of T L, all elements
of T L that have occurrences in G are matched by multi-rules. Hence, the star gluing graph of the
left-hand sides of a model-specific migration scheme covers at least the pullback graph. Since
the overlapping of each two multi-rule matches has to be a pullback, the star gluing graph cannot
be larger than the pullback graph.

5 Migration Scheme Customizations

Although constructed along reasonable design decisions, default migration schemes do not al-
ways define desired model migrations. As mentioned in Section 2, the insertion of new con-
nected elements have to be limited in some cases, e.g. in case that a singelton class are specified.
Sometimes they should be glued as in this example, sometimes they should be inserted in certain
contexts only. Similarly, the gluing of meta-model elements can lead to retyping or gluing of
model elements during migration but do not have to. Hence variations in migration strategies are
possible and it is essential that migration schemes are customizable. However, we want to make
sure that such customized migration schemes still satisfies Proposition 1 and Proposition 2. This
means that the set of multi-rules is complete so that it can amalgamate every possible L and that
the resulting migration rules are always well-typed over their evolution rules. Given a default
migration scheme, the following customizations are possible:

1. A multi-rule may be deleted if its LHS can be amalgamated by LHSs of other multi-rules.
2. A non-deleting multi-rule may be added if its L and its I are typed over T L and T I, respec-

tively as long as the multi-rule is not conflicting with any other rule. A conflict between two
rules occurs if two elements of L are preserved by one rule and merged by the other.

3. Graph I of a multi-rule may be extended if its extension is still typed over T I.
4. A kernel rule k : Lk→ Ik with kernel morphism to at least one multi-rule may be added. This

means that Ik v Im if Lk v Lm with m : Lm→ Im being the corresponding multi-rule.

An example for a customized migration scheme is given in the middle of Figure 4. Here, a
new kernel rule with kernel morphism to the existing multi-rule are added.

6 Related Work

Co-evolution of structures has been considered in several areas of computer science such as
for database schemes, grammars, and meta-models [Li99, Läm01, SK04]. Especially database
schema evolution has been a subject of research in the last decades. Recently, research activities
have started to consider meta-model evolution and to investigate the transfer of schema evolu-
tion concepts to meta-model evolution (see e.g. [HBJ09]). Herrmannsdoerfer et al. provides an
overview of approaches in [HVW10] that considers the coupled evolution of meta-models and
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models. Inspired by the achievements for databases, current approaches for meta-model evo-
lution use libraries and catalogs for co-evolution operations. However, meta-model evolution
researchers have realized that a fixed set of co-evolution operators is not sufficient and allow
therefore to extend or adapt the default migration transformations.

There are several tools around that consider the co-evolution of Eclipse Modeling Framework
(EMF) models. COPE (now:Edapt) [HBJ09] provides a rich set of co-evolution operators that
implement evolution and migration definitions. If the required migration is not available, a mod-
eling language designer has to add the migration strategy as a Groovy/Java program. Epsilon
Flock [RKPP10] is another tool that is able to migrate EMF models. In contrast to COPE, Flock
does not provide migration operations. Instead, it uses a “conservative copy” strategy that au-
tomatically copies as much as possible to a migrated version of the model. However, migration
scripts have to be written if model elements shall be moved and not forgotten, while pull up
and push down attribute are correctly migrated by the conservative copy strategy. EMF Mi-
grate [EMF] is another migration tool for EMF. It supports not only on model migration but also
the migration of other meta-model-dependent artifacts such as ATL transformations. For model
migration, EMF Migrate provides migration libraries that can be customized and extended. Our
work differs from this related work in the sense that we consider correctness criteria on a formal
level to be applied to show correctness of co-transformations in general as well as for user adap-
tations. Furthermore, we develop a strategy for deriving model migration schemes that are not
only working for pre-defined migration operations but allow user-defined meta-model evolution
rules with deduced migration schemes.

The closest work to ours is the one by König et al. [KLS11]. They also consider correctness
criteria for model co-evolution based on a categorical framework. However, they do not work
with algebraic graph transformation and do not provide customizable rule schemes for model
migration.

7 Conclusion and Future Work

The evolution of meta-models along well-defined transformation steps does not always yield
meaningful model migrations automatically. While default migration schemes can be automat-
ically deduced from evolution rules, it is up to language designers to customize them to their
specific needs. In this paper, we clarify how migration schemes can be defined and how they
may be customized to still yield well-defined co-transformations of models and meta-models.
Model-specific migration rules are shown to be automatically constructible from a migration
scheme, a meta-model evolution, and an instance model. In the future, we want to extend this
work on model migration schemes to more powerful forms of graphs and rules taking especially
node type inheritance, application conditions and constraints into account. Furthermore, we
want to consider further co-evolution examples to evaluate available forms of supported model
migration schemes and their customization facilities. Moreover, we started to a prototype im-
plementation of our co-evolution approach being very close to its formal foundation and hence,
supporting well-formed model migrations.
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