
Electronic Communications of the EASST
Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools

(GraBaTs 2006)

Creating Well-Structured Specifications in MOFLON

Carsten Amelunxen and Tobias Rötschke

12 pages

Guest Editors: Albert Zündorf, Daniel Varró
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Creating Well-Structured Specifications in MOFLON

Carsten Amelunxen and Tobias Rötschke

TU Darmstadt, FG Echtzeitsysteme
contact@moflon.org

Abstract: Considering the growing popularity of model-based development, spec-
ifications become more complex. As a consequence, graph-based modeling tools
have to take measures to handle this complexity. In this paper, we present the meta-
modeling environment MOFLON which has been developed on top of the FUJABA
Toolsuite during the last few years at our department. We focus one of MOFLON’s
strongest advantages, i.e. the realization of the abstraction and modularization fea-
tures introduced by the recent UML 2.0 Infrastructure specification. The new con-
cept of package merge allows to reuse and refine existing models without modifying
the original. Subset and redefinition relationships become useful tools to refine as-
sociations due to the automatic propagation mechanism generated by the MOFLON
code generator. We show how the user can organize large specifications using these
concepts and how they effect graph transformation rules and code generation.

Keywords: Metamodeling, Graph Transformation, Package Refinement, Associa-
tion Refinement

1 Introduction

The vision of Model Driven Architecture (MDA) paradigm means that the developers start with
modeling the structure and behavior of the desired system on an abstract level using their favorite
modeling tools. These abstract models will then successively be transformed into more specific
models ideally resulting in the desired system. As a result, developers have to deal with lots of
complex models that are distributed over various tools.

The metamodeling framework MOFLON1 aims at bridging the gap between various tools by
allowing to generate suitable analysis and integration tools helping to understand and interpret
[Röt04] the available data and keeping distributed data consistent across tool boundaries [A+03].
To this end, it allows to create metamodels with class diagrams as well as related model transfor-
mations with graph transformations. Its code generator produces sophisticated Java code from
these specifications. In [AKRS06], we have discussed how MOFLON can be used for model
analysis, transformation, and integration with emphasis on the underlying triple graph grammar
mechanism.

As human beings can only deal with a limited number of entities at the same time, individual
diagrams should be rather small, however complex the specification. This paper supports a
tool demonstration providing an example how MOFLON deals with complex specifications by
realizing some of the new abstraction and modularization features introduced by the latest UML
2.0 specification [Obj06].
1 http://gforge.echtzeitsysteme.org/projects/moflon/

1 / 12 Volume 1 (2006)

http://gforge.echtzeitsysteme.org/projects/moflon/

MOFLON

Graph
Transformation

Fujaba

MOF 2.0
Metamodel

refine Constraints
(OCL, Java)

XML Interchange
(XMI)

Triple Graph
Grammar

Visual TGG Editor(Rational Rose, etc.)
CASE Tools

COTS

Visual MOF 2.0 Editor Visual SDM Editor
Fujaba

XSLT Transformation
MOMoC

Velocity Transformation
Fujaba

repair

generate

transform

instantiate

Legend:

Model Transformation
Model Analysis

Model Integration XML Representation
(XMI)

Tailored
Interfaces

Constraint
Checking

Java Representation
(JMI Interfaces + Implementation)

Reflective
Interfaces

Event
Notification

Repair
Transformation

M O F L O N

M O F L O N

import

augment

Dresden
OCL Compiler

refine

Domain Specific Metamodels
Tool Representations

Figure 1: MOFLON architecture overview.

Section 2 provides an overview of the MOFLON architecture. The following three sections
illustrate the application of MOFLON on the basis of an example. Section 3 deals with creating
a schema, the influence of the new features to graph transformations are discussed in Section 4,
and as a result, the code generation is considered in Section 5. We compare our solution with
related ones in Section 6 and summarize the results in Section 7.

2 The MOFLON architecture

Although this paper only covers only one facet of MOFLON while neglecting many others, we
provide a short overview of the whole concept in the following. When we started to design
MOFLON, our goal was to reuse existing technology where possible and focus on conceptual
improvements. To balance our desire to make use of the new features that come with UML 2.0
and the necessity to limit our effort, we decided to restrict the usage of UML 2.0 to the language
MOF 2.0, which consists of UML 2.0 Infrastructure with only a small number of extensions.
Back then, MOF 2.0-editors and code generators were not available, but there were several graph
transformation tools. After comparing different approaches, we decided to realize MOFLON on
top of the FUJABA Toolsuite [Zün01] which already featured graph transformations for UML-
like graph schemata.

Fig. 1 provides an overview of MOFLON and FUJABA parts working together. Note that the
large MOFLON block is divided into three layers: On top are various editor components to ma-
nipulate the specification. In the center, repositories symbolize related metamodels, constraints
and transformation rules. The bottom layer consists of several code generators working together
in MOFLON.

Domain-specific metamodels and tool representations can be created either using a commer-

Proc. GraBaTs 2006 2 / 12

ECEASST

cial CASE tool such as Rational Rose or directly using the new MOF 2.0 Editor plugin for FU-
JABA. The metamodel is kept in memory, as instance of a JMI-compliant Java representation of
the MOF 2.0 metametamodel. Graph transformation rules are edited using the SDM editor that
already exists in FUJABA. These rules augment the MOF 2.0 metamodel instance conceptually,
by providing visually specified implementations of methods defined in the schema.

The Triple Graph Grammar (TGG) editor actually consists of a new schema editor and a rule
editor adopted from FUJABA. Upon user request, ordinary SDM rules are generated from these
TGG rules using a MOFLON-specific translation.

The metamodel can be refined using OCL constraints. They are used to define invariants and
derived attributes as well as pre- and postconditions for methods implemented by graph transfor-
mations. Graph transformations are used to define repair actions for constraint violations.

From the MOF metamodel, JMI-compliant Java code [Dir02] is generated by XSLT trans-
formation [ABS04]. Java code for graph transformations is generated using FUJABA’s latest
Velocity-based code generator [GSR05] and for OCL 2.0 constraints using the Dresden OCL
compiler [LO04]. According to the JMI standard, the resulting Java representation features tai-
lored and reflective interfaces, XMI import and export. Besides, the generated code features an
event mechanism that makes our approach interface-compatible with MDR [Mat03].

At the time of writing, we consider the MOF 2.0 editor, adaption of the Fujaba graph transfor-
mation engine, JMI-compliant code generation for schema and graph transformations and import
from Rational Rose and Magic Draw finished except for some bug fixing and performance opti-
mization. Currently, our main effort is spent on the completion of the triple graph grammar and
the OCL integration components, which already can be demonstrated on selected examples.

3 Creating the schema

In this section, we discuss the MOFLON schema editor based on an imaginary reverse engineer-
ing scenario. The general idea is to model the logic of a tool that can calculate the number of
lines (LOC) in each file of a project, and lift that information to directory level. The specification
should separate concerns and general parts of the specification should be reusable. In Fig. 2, we
introduce relevant features step-by-step, rather than creating the schema in chronological order.

To start with, we model a file system, consisting of Directories containing Files (Fig. 2.1).
Note, that we omit adornments like composition and navigability, as they are not of interest for
this paper. For reverse engineering purpose, only directories related to a certain project, modeled
as ProjectDir are of interest (Fig. 2.2). Let us assume, that these project directories contain
only a certain type of file, e.g. TextFiles, consisting of an arbitrary number of lines. The more
specific association between project directory and text file is represented by a new association.
Apart from the additional possibilities of OCL, previous versions of UML did not provide any
regular means to express the relationship between both associations. In UML 2.0, however we
can redefine the association end files by the association end textfiles, thereby restricting the type
of files contained in project files to TextFile (Fig. 2.3).

As directories may be nested, we further extend the schema as shown in Fig. 2.4. Element
represents a common super class of Directory and File. A new association indicates that a Direc-
tory may contain any kind of Elements. Nesting of directories is explicitly expressed by another

3 / 12 Volume 1 (2006)

MOFLON

Figure 2: Stages of inventing the schema.

association. The original association between Directory and TextFile still exists. The association
ends files and nested are marked as subsets of elements, thus expressing that each item in the set
of files or nested directories is also contained in the set of elements. Because elements is marked
as union, items are not stored redundantly, i.e. the set of elements is directly composed of files
and nested. As a result, we can query the relationship between directories and its elements in
several ways.

When reconsidering our example so far, one might draw the conclusion, that we have blended
two different concerns, i.e. general file systems and projects-specific file system information for
reverse engineering purposes. Therefore, we divide the model over the packages Filesystem and
Project (Fig. 2.5). As the more specific part uses the general part, we create a package import
relationship between the two packages. The package Project refers to the types Directory and
File of package Filesystem to define generalization relationships. The types are visible through
the package import and represented as darkened boxes with stereotype ”reference”.

Finally, we want to extend the package Project by adding methods for the calculation of the
metric Lines of Code (LOC). However, we do not want to touch the package Project, so we

Proc. GraBaTs 2006 4 / 12

ECEASST

Figure 3: Package structure of complete specification

can reuse it for other purposes, where metrics might not be required. Using an import relation,
we would have to define new classes similar to step 5, i.e. with different names and explicitly
generalize ProjectDir and TextFile. Using a package merge such as in Fig. 2.6 provides are
more elegant way to do so. Class with identical names than classes in the merged package
automatically specialize them. Besides, the complete context is redefined as well. For instance,
there implicitly is a new association between ProjectDir and TextFile whose association ends
redefine the corresponding ends in the merged package. As a result, links between ProjectDir
and TextFile can only be created, if the associated objects have types defined in the same page,
i.e. either Project or ProjectMetrics.

Fig. 3 shows how the MOFLON tool looks like, after creating the schema as discussed so far.
On the left-hand side, a browser displays the hierarchy of the specification. On the right-hand
side, the selected diagram is shown, which represents the contents of a top-level package named
Demo. We added an extra package PrimitiveTypes defining the types String and Integer used by
our specification. To explain the effect of namespaces in MOFLON, we also added the packages
StructuredTypes and TrendAnalyses not been used so far.

For instance, the package StructuredTypes contains a data type Date. This type does not
appear in the list of available return types for the method TextFile.loc (Fig. 4). As one can
see from the package structure in Fig. 3, the package StructuredTypes is neither imported nor
merged by ProjectMetrics, hence Date is invisible. Opposed to that, Integer and String defined
in PrimitiveTypes are visible, as package merge and import are transitive. Void indicates the
absence of a return type.

5 / 12 Volume 1 (2006)

MOFLON

Figure 4: Available return types for TextFile.loc().

Figure 5: Available node and edge types.

4 Defining graph transformations

The visibility rules implied by package import and package merge affect the definition of graph
transformations, too. Fig. 6 shows such a transformation, calculating the ProjectDir.loc() as sum
of the result of TextFile.loc() of all contained text files. As mentioned in Section 2, we reuse the
graph transformation language of Fujaba (SDM) for this purpose, where transformation rules are
realized as implementations for methods defined in the schema. A rule consists of a UML-like
activity diagram for defining the control flow, where activities either contain Java code or story
patterns. Story patterns are special object diagrams describing patterns and transformations in
the dynamic object structure of the model.

Fig. 5.a shows the available types for objects used in story patterns for methods in the package
ProjectMetrics. As only classes can be used as object type, the five displayed classes remain.
Note, that Project.ProjectDir and Project.TextFile are not available, as their simple names are
hidden by the names in ProjectMetrics. Although MOFLON can deal with fully qualified names
as required by the MOF 2.0 standard (e.g. for models imported through XMI), the user interfaces
forces the user to use import and merge relationships instead to avoid ill-structured specifications.

Fig. 5.b shows the available edge types for a link between a ProjectDir and a TextFile. As
discussed in Section 3, there is an implicit association defined in ProjectMetrics which is not

Proc. GraBaTs 2006 6 / 12

ECEASST

Figure 6: A Story Diagram for the MOF 2.0 schema.

displayed. Instead, there is the association hasTextFile, which is actually hidden by the implicit
one. Our code generator deals with this correctly, but we decided to display the explicit asso-
ciation rather than the implicit one, because that is the one defined by the user. Obviously, we
have to gather some practical experience with real applications to be able to judge whether this
decision works out fine.

The association refinement features used in our specification have some influences on the
specification of transformations as well: Similar to abstract classes, one cannot instantiate asso-
ciations whose ends have been marked as union. It is also forbidden to instantiate associations
between classes if the ends have been redefined. For instance, the transformation rule in Fig. 6
must not create links of type hasFile, as its ends have been redefined by hasTextFile. Neverthe-
less, it would be possible to create a link of type hasElement. Note that such a link would not be
in the subset file.

5 Generating code

MOFLON generates Java code according to the JMI standard [Dir02] that originally has been
designed for MOF 1.4. JMI only defines interfaces, which are also applicable for MOF 2.0
metamodels. Yet MOFLON does not only generate interfaces but also their implementation,
providing access to the user-defined metamodel using tailored interfaces and reflective interfaces,
persistency through XMI import and export, event notifications for user interfaces and additional
persistency services, constraint checking and repair transformations, and finally user-defined
model transformations specified through graph transformations (cf. Section 2). In this section,

7 / 12 Volume 1 (2006)

MOFLON

Figure 7: Sketch of generated association code.

we describe the effect of the features used in Sections 3 and 4 on the generated code.

5.1 Subsetting and redefinition

Fig. 7 visualizes the essential classes that are generated for the associations defined in Section 3,
neglecting the specifics of the JMI interface. For each association in the schema, a correspond-
ing class is generated. These classes are actually singletons. The classes provide a number of
methods to realize the features presented in Section 2. Fig. 7 only shows the tailored interface.

Links of a certain type are kept in hash maps that are visualized as qualified associations in Fig.
7. Each link exists as pair of corresponding map entries. The association between hasFile and
File represents a hash map that provides all files connected to a given directory. The association
on the other side represents the corresponding hash map providing all directories a given file is
contained in (hopefully only one). Although this approach consumes some extra memory and
time when creating links, querying the links is fast.

The class hasElement represents the Association with ends marked as union. Therefore, it
contains no hash maps to store links. Queries through exists, getElement, or getDirectory are
delegated to the other classes depending on the actual type of the provided element. As a re-
sult, there is a data flow from the other association instances, as indicated by the thick arrows.
Changes on associations with union ends are not allowed. Thus, method calls to add or re-
move lead to runtime exceptions. As mentioned in section 4, the rule editor does not allow story
patterns that would create or delete such links.

Due to the redefines relationship between textfile and file in Fig. 2, there are also runtime
exceptions, if the add method of hasFile is invoked with a parameter that actually is a ProjectDir
or a TextFile. These links must be create using hasTextFile.add(), which is not depicted in Fig.
7. Note, that this violation can not be avoided by the rule editor, as the actual type of parameters

Proc. GraBaTs 2006 8 / 12

ECEASST

is only known at runtime.

5.2 Package import and merge

Similar to the code generation for the new association concepts, the generation of code for pack-
ages is partly given by JMI. One package is mapped on a package in Java with an additional
interface. The interfaces generated for packages contain methods to query instances of inner
packages as well as methods to query container classes for all included classes and associations.
See [Dir02] for further details. The interfaces are not affected by any imports, regardless of the
kind of import. Since all type references in the generated code use fully qualified names, there is
no equivalent for imports in the generated code. In general it would be possible to map a pack-
age import onto a wildcard import in Java and a single element import onto a single import in
Java. Such a mapping might increase the readability of the generated code which is a negligible
feature since the generated code should just be used through the interfaces and not manipulated
manually. In fact, such an import mapping would result in name clashes. Therefore, the code
generated by MOFLON just uses fully qualified type references.

From the perspective of code generation, the package merge is rather a transformation instruc-
tion than a metamodel element. Thus, there is also no direct equivalent of a package merge in the
generated code. There are detailed instructions how to transform a metamodel containing a pack-
age merge into a metamodel without package merges. Before the process of code generation, the
package merge is transformed via a batch-process.

The current standard of MOF 2.0 describes the package merge as a process of merging equally
named elements and deep-copying elements form the merged package into the merging package.
Such a transformation based on deep copying has the effect that elements in the merging and the
merged package are not type compatible. Considering the example in Fig. 2, with transformation
semantics as described above, an additional package which uses package Project would not be
able to use package ProjectMetrics instead because there would be no type compatibility between
Project::Textfile and ProjectMetrics::Textfile after unfolding the package merge.

Older versions of MOF 2.0 [Obj03b, Obj03a] supported two different kinds of package refine-
ment, one with deep copy semantics and one with specialization through inheritance semantics.
The latter effects that in cases of equally named elements in the merged and merging packages
the element in the merging element inherits from the element in merged package. Such semantics
ensure type compatibility and therefore MOFLON supports this kind of merge semantics.

6 Related Work

PROGRES [SWZ99] features modularization concepts to support large specifications based on
the UML 1.4 package concept [Win00]. PROGRES provides two kinds of package depen-
dencies: import and specialization, which are combined with visibilities public, protected and
private. Imports allow to use elements from the imported package, whereas specialization of
packages also allows to refine elements of the specialized package. The visibility of package
dependencies allows to reduce the visibility of referred elements in the referring package. How-
ever, apart from the technical aspects, it has always remained unclear, how the various visibility

9 / 12 Volume 1 (2006)

MOFLON

combinations could be applied in a useful way to solve practical problems. In our opinion, the
package merge mechanism implemented by MOFLON involving less visibility calculation is
a much clearer concept next to the well-known package import, although MOFLON still is to
young to be able to validate this statement by case studies.

PROGRES does not provide the whole range of association refinement possibilities that MOF-
LON provides and especially lacks the propagation mechanism mentioned in Section 5. How-
ever, type restrictions for association ends, such as implied by association redefinition, can be
achieved using metaattributes.

VIATRA [BV06] uses a hierarchical graph model, where each node defines a namespace.
Foreign nodes may be referenced through explicit imports or fully qualified names. Large spec-
ifications are further supported by a zoom mechanism that visualizes nested elements up to a
user-defined depth from the currently active element, hence reducing visual complexity. VIA-
TRA also supports association refinement.

FUJABA [Zün01] offers a rather limited mechanism to reduce the complexity of large specifi-
cations: The main structuring mechanism consists of diagrams, which are categorized into their
different kinds (class-, activity-, package diagrams, etc.). All diagrams contribute to a global
namespace, i.e. simple names must be unique, although it is possible to circumvent this restric-
tion. Classes may be assigned to packages, although this information is used for code generation
purposes only, rather than controlling the behavior of the tool. Although references across di-
agram borders are possible, they are not always visualized, and require the user to obtain this
information from dialogs. To further reduce the complexity when working with large diagrams,
a view mechanism has been realized [Rec01], that has is able to show portions of a given host
diagram. Views are configured by filter rules that allow to specify the visualized context of pre-
selected elements. Although these views help to isolate different topics to better understand the
specification, the host diagrams still exist and may become very complex. FUJABA supports no
association refinement. All other graph transformation systems we are aware of, provide even
less support for large specifications. GReAT [ALS+02] at least allows to structure specifications
in hierarchies without providing namespaces, which effectively holds for MOTMOT [SVGJ04]
as well, because its specifications are created with third-party UML-Tools. Other tools like
AToM3 [DVM04], GUPRO [EKRW02], and AGG [EEPT06] have no modularization support at
all.

7 Conclusions

MOFLON is a tool to generate Java implementations for model repositories that support MDR
all major features of MDR including reflexivity and event mechanism. Beyond that, it supports
the new concepts recently introduced in MOF 2.0, generates Java code for transformations of
one and between multiple models, and finally aims to produce Java code for model analyses gen-
erated from OCL constraints. In this paper, we have described a tool demonstration that showing
how some of the new UML 2.0/MOF 2.0 abstraction and modularization features have been im-
plemented in the metamodeling framework MOFLON. Association and package refinement help
to create better structured, more compact specifications than before.

From our own experience from ongoing industrial case studies an by using the mechanisms

Proc. GraBaTs 2006 10 / 12

ECEASST

described in this paper to specify the underlying model of the MOFLON editor, we are convinced
that the new features are beneficial when creating complex specifications. Ultimately, the entire
OMG standardization approach around UML, MOF, OCL, QVT, and CWM depends on these
features to manage the complexity of the specifications. Now MOFLON has reached a level of
maturity where it can be released to the public, we want to stimulate other researches to try out
our solution.

Together with the rest of the Fujaba community, we will work on the multi-project support of
the Fujaba Toolsuite, which provides a convincing scenario for the package merge, as packages
from foreign projects sometimes need to be extended, but usually may not be altered. Besides,
we are looking forward to the upcoming release of the Dresden OCL Compiler for OCL 2.0,
which will enable us to finalize our ongoing integration effort. Based on a new metametamodel
integrating MOF 2.0, SDM, OCL, and TGG, we will intend to make MOFLON a very useful
tool to rapidly develop model analysis, transformation and integration applications.

Bibliography

[A+03] Frank Altheide et al. An Architecture for a Sustainable Tool Integration. In Dörr
and Schürr, editors, TIS 2003 Workshop on Tool Integration in System Development,
pages 29–32, 2003.

[ABS04] Carsten Amelunxen, Lutz Bichler, and Andy Schürr. Codegenerierung für Assozia-
tionen in MOF 2.0. In Proc. Modellierung 2004, pages 149–168, 2004. In German.

[AKRS06] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy Schürr. MOF-
LON: A Standard-Compliant Metamodeling Framework with Graph Transforma-
tions. In Proc. ECMDA-FA, volume 4066 of LNCS, pages 361–375. Springer, 2006.

[ALS+02] Aditya Agrawal, Tihamer Levendovszky, Jonathan Sprinkle, Feng Shi, and Gabor
Karsai. Generative Programming via Graph Transformations in the Model Driven
Architecture. In Proc. Workshop on Generative Techniques in the Context of MDA,
2002.

[BV06] András Balogh and Dániel Varró. Advanced Model Transformation Language Con-
structs in the VIATRA2 Framework. In ACM Symposium on Applied Computing,
pages 1280–1287. ACM Press, 2006.

[Dir02] Ravi Dirckze. JavaTM Metadata Interface (JMI) Specification, Version 1.0. Unisys
Corporation, Sun Microsystems, Inc., June 2002.

[DVM04] Juan De Lara Jaramillo, Hans Vangheluwe, and Manuel Alfonseca Moreno. Meta-
modelling and Graph Grammars for Multi-Paradigm Modelling in AToM3. Software
& Systems Modeling, 3(3):194–209, August 2004.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Transformation. EATCS. Springer, 2006.

11 / 12 Volume 1 (2006)

MOFLON

[EKRW02] Jürgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter. GUPRO -
Generic Understanding of Programs – An Overview. ENTCS, 72(2):59–68, 2002.

[GSR05] Leif Geiger, Christian Schneider, and Carsten Reckord. Template- and Modelbased
Code Generation for MDA-Tools. In Fujaba Days 2005, Paderborn, Germany, 2005.

[LO04] Sten Löcher and Stefan Ocke. A Metamodel-Based OCL-Compiler for UML and
MOF. In Peter H. Schmitt, editor, Workshop Proc. OCL 2.0 - Industry standard or
scientific playground?, volume 102 of ENTCS, pages 43–61. Elsevier, 2004.

[Mat03] Martin Matula. NetBeans Metadata Repository. SUN Microsystems, March 2003.

[Obj03a] Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,
March 2003. ptc/03-10-04.

[Obj03b] Object Management Group. UML 2.0 Infrastructure Specification, 2003. ptc/03-
09-15.

[Obj06] Object Management Group. UML 2.0 Infrastructure Specification, 2006. formal/05-
07-05.

[Rec01] Carsten Reckord. Entwurf eines generischen Sichtenkonzeptes für die Entwicklung-
sumgebung Fujaba. University of Paderborn, 2001. Bachelor thesis, in German.

[Röt04] Tobias Rötschke. Re-engineering a Medical Imaging System Using Graph Trans-
formations. In John. L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, AGTIVE
2003, volume 3062 of LNCS, pages 185–201. Springer, 2004.

[SVGJ04] Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Levering UML Profiles to
Generate Plugins from Visual Model Transformations. In Proc. Software Evolution
through Transformations, pages 7–17, 2004.

[SWZ99] A. Schürr, A. Winter, and A. Zündorf. PROGRES: Language and Environment,
volume 2, pages 487–550. World Scientific, 1999.

[Win00] Andreas J. Winter. Visuelles Programmieren mit Graphtransformationen. PhD the-
sis, RWTH Aachen, 2000. In German.

[Zün01] Albert Zündorf. Rigorous Object Oriented Software Development. University of
Paderborn, 2001. Habilitation Thesis.

Proc. GraBaTs 2006 12 / 12

	Introduction
	The MOFLON architecture
	Creating the schema
	Defining graph transformations
	Generating code
	Subsetting and redefinition
	Package import and merge

	Related Work
	Conclusions

