Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation On the occasion of the 65th birthday of
Hartmut Ehrig
(GraMoT 2010)

Position Paper: Formal Methods in Agile Development
Michael Lowe

6 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122




Eﬁ ECEASST

Position Paper: Formal Methods in Agile Development

Michael L dwe

FHDW Hannover

Abstract: Modern software development must be agile. It has to accept that soft-
ware systems undergo a lot of changes due to changes in the applicatierttor
example changing conditions on the markets and changes due to the jurigdiction
and base technology (e.g. integration of new frameworks or update® qiahk
form) in their life cycle. Thus, most of the activities in the development pmeaes
redesign steps. Even requirements are not stable. They change in tineecasith
text of the system changes. There is no time for complex correctness pfabe
implementation with respect to the requirements. Automatic (regression) tessing ha
proved to be sufficient for correct system behaviour. Therefaeatile developer
does not learn and apply formal methods himself. In order to be agile Veowe
relies on tools for automatic refactoring of the system or of certain partstfiése
tools are able to change the system structure without changing its behaWeur
argue in this paper that, in order to build such tools, further research eréaeof
formal system modelling and development is neeted.

Keywords: Agile Software Development, Software Refactoring, Graph Transfor-
mation

1 Introduction

There have been two major trends in software engineering for the laadelec
1. Raising the level of abstraction for software systems design (verggalapment) and
2. Providing (more sophisticated) methods for agile development (horlztevtalopment).

Notions like "Model-driven DevelopmentBG05, "Service-Oriented ArchitectureK[BS05,

and "Business Process Modelling/ps01 are connected to the first trend. The second trend is
characterized by concepts like "Software RefactorifRgif99, "Test-First’[Bec0q, "Extreme
Programming”JAHOQ or "Dynamic Systems Developmen8{a91.

In the first area, formal methods, especially graph transformations, gravided precise se-
mantics for model specifications and transformation concepts from atbisiragncrete system
descriptions including correctness notions for static as well as dynamiclsn@de data struc-
tures and process models respectively). The level of abstraction thratisled to the standard
programmer today by software development environments, modern dasigpragramming
languages and especially by program generation tools can hardly basect. And the mapping

1 The position paper is comprehensive. The references just prowide hints for further reading. They are not
meant to be complete or comprehensive for the research areatefisofevolution and the application of graph
transformations in this field.

1/6 Volume 30 (2010)



Position Paper: Formal Methods in Agile Development Eﬁ

of abstract levels (with unique semantics) to concrete machine oriented dewele performed

almost automatically and without any interference of the designer. Ver@salapment of the

functional aspects of a system from a very abstract level to the derless| of execution is a
high-level compilation process nowadays. Research in formal methediha a good job here.
Educating the designers such that they can handle the abstractions islkegehtoday.

In the second area, formal methods have not been applied that mu¢h|y&t, MVDJO05].
At first glance, agility and formal preciseness do not go together wellalye in this position
paper against this first impression and show that there is great potentimbph transformation
techniques in agile contexts.

2 Agile development

The agenda for agile development is provided by the "Manifesto for Agifenare Devolpment”
by Kent Beck et al.:

We are uncovering better ways of developing software byglidiand helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we gahe items on the left more.

Agile development accepts that nothing is stable in software developmentlir&eents
might change dramatically if, for example, customers use first rapid systetotypes. They
learn what they want by using what the thought they have wanted. Duede thpid changes,
there is no time for an orderly formal development process that enfoaresctness proofs of
the implemented system wrt. the requirements. If there were such probfsigdhe software
has to be refactorized frequently but also these proofs would haverewiten over and over
again. Thus, formal methods do not seem to be applicable in agile contextagile developers
are not very likely to appreciate education in these techniques.

But there is a different level, where formal methods can support agileepses. The rapid
redesign of software systems is not chaotic. It is a continuous procgsstitoduces, changes
or removes system structure, mostly without changing the external (faaftioehaviour of the
system. Hence, what is needed is a catalogue of evolution patterns thavéntpeosystem'’s
structure to a certain extent and preserve system semantics (incl..prbuod) application of
these patterns needs to be automated by a tool (like for example refactoszatieclipse) and
delivered to the agile developer.

Practical applicability, however, requires that we do not restrict deeseo the level of static
and dynamic models only. Since agile development aims at quick system deeglband early
production with the system under development, we have to take into accatrnthéhmodels
are populated. This means that there is (typically giga-bytes of) data typld static modél

2 For agile database development semp03 Amb0#.

Proc. GraMoT 2010 2/6



Eﬁ ECEASST

and (lots of) running processes typed in the dynamic niodBhus, evolution patterns have to
provide canonically induced and correct migrations on the instance lewakl. Therefore,
formal methods that support agile development shall provide

1. Suitable models for "populated” systems (model and instance),

2. Formal concepts for model refactorisations and induced instancetioigra
3. Notions of correctness for such refactorisations/migrations, and

4. A catalogue of practically useful and correct patterns.

The existing body of concepts and results within the research area aphGrransformation”

seems to be a good starting point for this programme: (1) Graphs anditagitructures pro-

vide a good formal model for almost all software structures (e.g. classis\attivity diagrams,

state diagrams, call graphs, data flow structures, control flow or pets) and (2) the rule-
based transformation process is able to provide semantics to practichbhsdd-transformations
like XSL-Transformation for XML-based languages or xtend/xpand &napchitectureWare for
model-driven developmertipd.

3 Formal Model for Systems: Model and Instance

Agile software development modifiesmplete running systems. It is not only the information,
the operation, or the process model that is changed by refactorisalibisschange also com-
prises at least the current system state. This state is made up by all theadlzgaatitessible by
the system (usually in a database) and the current point (or points inge@tmulti-threading)
of execution. Therefore, suitable formal models must be able to spesifgraymodels together
with system states. A formal model for instance for object-oriented cesoepst comprise the
class model, the specification of the operations and methods, the currastiggerbject world,
and the current execution context, i. e. the already sent but not getiexd messages and their
execution order.

If we include explicit process models (for example specified in the BusiPresess Modelling
Notation BPMN Wes07) into our framework, the state can get even more complex. Having
the process model at hand, the current state not only comprises infonnadsbait the current
execution context but also the process history that has led to the cstragmt Additionally, the
indeterministic future of the process (starting at the current point ofugixer) can be thought of
as part of the current state.

The model and the state cannot be considered separately. The statayis détermined by
the model which is usually expressed by a typing relation between state iteneteamehts in
the model. For a formal framework of agile development this typing relationrigrale since
model changes must lead to minimal state restructurings that allow corrgunigy

In the context of graph transformation, a suitable model for the typing relato be given
by a morphism from the state graph into the model graph.

3 For process evolution see for examptp2].

3/6 Volume 30 (2010)



Position Paper: Formal Methods in Agile Development Eﬁ

4 Refactorisations and Induced Migrations

Agile development demands automatic refactorizations of whole systems (nzodkelktates).
If state migrations have to be calculated or performed manually (or by time mamgwatch
jobs), development becomes slow and looses its agility. Since the state costinabanges
in a running system, the only way to initiate general changes is to change thé¢ (wbash is

constant while the state is changing). Therefore state migrations shal (iiquely induced
by model changes and (2) must be executable without any interactions adévieloper.

It depends on the type of system that is developed whether it can be egvidéihduring mi-
gration. Real-time embedded systems in critical applications for example canlreeswitched
off. And service orientation requires minimal down-time also for modern méion systems.
Thus, a framework for agile development must provide some meamsidoation on demand:
The state is not changed completely, it is changed step by step as the axeadtithe new
model proceeds and requires retyped state structures. This mechanisines (i) model ver-
sioning, (ii) coexistence of different models within the running system, gih@o@artial) typings
of the same state into different models.

In the context of graph transformation, model changes can be erprégssimple graph
transformation rules and their application. The canonical extension of tdelmbange to the
existing state requires some kind of universal quantification (perforrmtbael change foall
instances), which is not a standard mechanism in many approacheshdmgregformations.

5 Correctness of Migrations

A formal framework for agile development can provide proof methods biglwvtool designers
can show that their migrations do change the system structure but not éivable behaviour.
Such proofs are valuable since the tool user can rely on the correcthéise transformation
without knowing the formal languages in which the proof was formulatede Bdsis for such
proof methods is formal semantics for complete systems. (The semanticsldepetie chosen
notion of state!) Here well-known notions from for example algebraicifipation (observable
equivalence) or process algebra (bisimulation) can be reused. Ihsfdrenation cannot be
proven generally correct for all system states but only for a certags dastates, appropriate
tool support shall be provided that checks the required propertite ctate.

Graph transformation techniques for proving invariants of the genegaggah language can
support the efforts towards such proof methods.

6 Catalog of and Tool Support for Correct Evolution Patterns

All the work that has been sketched in the previous sections has one aimejyna catalog
of (partially) correct evolution patterns and its implementation within a softwaveldpment
environment or some software generation tool and - if migration on demarmdliged - the
runtime environment of the execution language. This catalog shall - ametigss - comprise
patterns for the

e Introduction of new structure

Proc. GraMoT 2010 4/6



Ea ECEASST

Removal of unused structure

¢ Introduction and removal of abstractions (observer, composite, state, e

¢ Introduction (and removal) of structural indirection (adapter, proisjtar, etc.)
¢ Introduction (and removal) of operational indirection (command, even), etc
¢ Introduction (and removal) of transaction support

¢ Introduction (and removal) of locking strategies

¢ Introduction (and removal) of versioning and historization

e Introduction and removal of parallelism

e Decomposition of process steps

e Merging of process steps

¢ Introduction (and removal) of process alternatives

¢ Introduction (and removal) of remote communication and distribution structure

The documentation of the patterns can be provided as some sort of grapfotmation rules.

7 Conclusion

In this position paper, we have argued that formal system modelling anddmnaragion can
support agile software development. It provides urgently neededeptsyand tools for the
consistent and correct transformation of complete and running systeini¢e &tject-oriented
modelling and programming has become a quasi-standard in the software citynitimenap-
proaches, languages, and methods in the research area of gregibrtretion are still very
different’ In order to produce some remarkable effect on the application domairilefdsyel-
opment (and other application areas), some standardization totierdsaph transformation
language, framework and devel opment environment is needed.

Bibliography

[ABO2] W. M. P. van der Aalst, T. Basten. Inheritance of workflows:agproach to tackling
problems related to changgheor. Comput. Sci. 270(1-2):125-203, 2002.

[AGG] The AGG 1.5.0 Development Environment - The User Manual. httpricséu-
berlin.de/ gragra/agg/AGG-ShortManual/AGG-ShortManual.html.

4 There are many different languages. Even within one approacle, éhersome variants. In the algebraic approach,
for example, there are the double-pushdtEPT0§, the single-pushout[ow93, and the sesqui-pushout approach
[CHHKOE6]. There are different tools with strengths and weaknesses thatida@meombined with each other easily,
for example PGG] or [FUJ.

5/6 Volume 30 (2010)



Position Paper: Formal Methods in Agile Development Eﬁ

[Amb03] S. Ambler.Agile Database Techniques. Wiley, 2003.

[Amb06] S. Ambler. Refactoring Databases. Evolutionary Database Design. Addison-
Wesley, 2006.

[BBGO5] S. Beydeda, M. Book, V. Gruhn (edsModel-Driven Software Development.
Springer, 2005.

[BecO2] K. Beck.Test Driven Development - By Example. Addison-Wesley, 2002.

[CHHKO06] A. Corradini, T. Heindel, F. Hermann, B.dig. Sesqui-Pushout Rewriting. In Cor-
radini et al. (eds.)JCGT. Lecture Notes in Computer Science 4178, pp. 30-45.
Springer, 2006.

[EEPTO6] H. Ehrig, K. Ehrig, U. Prange, G. TaentZzaundamental s of Algebraic Graph Trans-
formation. Springer, 2006.

[Fow99] M. Fowler.Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[FUJ] Fujaba Tool Suite. http://www.fujaba.de/about-fujaba.html.

[JAHOO] R. Jeffries, A. Anderson, C. Hendricksoixtreme Programming Installed.
Addison-Wesley, 2000.

[KBSO5] D. Krafzig, K. Banke, D. Slamédnterprise SOA: Service Oriented Architecture Best
Practices. Prentice Hall, 2005.

[Low93] M. Lowe. Algebraic Approach to Single-Pushout Graph Transformafitweor.
Comput. Sci. 109(1&2):181-224, 1993.

[MTO04] T. Mens, T. Tourve. A Survey of Software RefactorintEEE Trans. Software Eng.
30(2):126-139, 2004.

[MVDJO5] T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens. RHainwrefactorings with
graph transformationgournal on Software Maintenance and Evolution: Research
and Practice, 2005.

[Ope] OpenArchitectureWare Group. openArchitectureWare UseadesMersion 4.3.1.
www.openarchitectureware.org.

[Sta97] J. StapletonDSDM - Business Focused Development: The Method in Practice.
Addison-Wesley, 1997.

[Wes07] M. WespeBusiness Process Management. Springer, 2007.

Proc. GraMoT 2010 6/6



