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Introduction: Classification of dermatoscopic images via neural networks shows comparable perfor-
mance to clinicians in experimental conditions but can be affected by artefacts like skin markings or 
rulers. It is unknown whether specialized neural networks are more robust to artefacts.

Objectives: Analyze robustness of 3 neural network architectures, namely ResNet-34, Faster R-CNN 
and Mask R-CNN. 

Methods: We identified common artefacts in the HAM10000, PH2 and the 7-point criteria evaluation 
datasets, and established a template-based method to superimpose artefacts on dermatoscopic images. 
The HAM10000-dataset with and without superimposed artefacts was used to train the networks, 
followed by analyzing their robustness against artefacts in test images. Performance was assessed via 
area under the precision recall curve and classification results. 

Results: ResNet-34 and Faster R-CNN models trained on regular images perform worse than Mask 
R-CNN on images with superimposed artefacts. Artefacts added to all tested images led to a decrease 
in area under the precision-recall curve values of 0.030 for ResNet-34 and 0.045 for Faster R-CNN in 
comparison to only 0.011 for Mask R-CNN. However, changes in model performance only became sig-
nificant with 40% or more of the images having superimposed artefacts. A loss in performance occurred 
when the training was biased by selectively superimposing artefacts on images belonging to a certain class.

Conclusions: As Mask R-CNN showed the least decrease in performance when confronted with artefacts, 
instance segmentation architectures may be helpful to counter the effects of artefacts, warranting further 
research on related architectures. Our artefact insertion mechanism could be useful for future research.

ABSTRACT
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Introduction

Epidemiological studies show an increasing trend in the in-

cidence rates of melanoma and non-melanoma skin cancer 

worldwide over the last 30 years [1]. According to the Amer-

ican Joint Committee on Cancer melanoma staging system, 

stage I malignant skin alterations with a five-year survival 

rate of more than 90% contrasts with a survival rate of less 

than 15% for stage IV patients. This indicates a clear need 

for early, reliable and consistent diagnosis and treatment [2]. 

The desire for automatic lesion analysis is further intensified 

by a high dependency between the diagnostic quality and the 

examiners experience in dermoscopy, as well as a high degree 

of inter- and intra-variability of diagnoses [3,4]. 

Methods of automatic skin lesion analysis have been the 

focus of research for decades, and have gained interest in recent 

years [5,6]. These methods are intended to support tele-der-

matologic settings, improve management decisions or aid in 

difficult clinical scenarios, but often suffer, among other things, 

from the presence of artefacts in dermatoscopic images [7-12].

A common neural network used for classification is Res-

Net, two well-known neural network architectures in com-

puter vision are Faster R-CNN and Mask R-CNN (Figure 1) 

[13,14]. The first is performing “object detection”, a process 

where one or multiple objects in an image can be detected 

and located with a rectangular “bounding box”. The latter 

is performing “instance segmentation” where one or more 

objects in an image can be found and their respective area 

(i.e. pixels) in the image outlined (“segmented”), and can 

be regarded as a CNN-based multi-instance generalisation 

of computer-vision based techniques of lesion segmentation 

[15,16]. Object detection has been used in the field of au-

tomated skin cancer detection on clinical images [17], but 

training of instance segmentation neural networks in der-

matoscopy has not yet been reported on successfully, most 

probably because of missing ground-truth data.

Objectives

Our hypothesis is that in contrast to ResNet, the other net-

work architectures intrinsically have to “concentrate” on re-

gions of the classified object in an image and hence may offer 

robustness against artefacts surrounding the lesions. Robust-

ness in this case describes the consistency of the obtained 

diagnoses under the influence of artefacts in the input image 

data. These networks could potentially be used as off-the-

shelf methods with little customization-effort needed and 

could enable us to focus less on tedious image pre-processing 

such as removal of bubbles or hairs [18].

Methods

Image datasets

The primary source of dermatoscopic images was the 

HAM10000 dataset [19]. This dataset also includes pub-

licly available lesion segmentation masks for every image, 

as described previously, which are necessary for training the 

Faster R-CNN and Mask R-CNN architectures [8]. It con-

tains 10,015 images, each with 600x450 pixels and 3-8 bit 

color channels. Each image is assigned one of seven diag-

nostic classes: actinic keratosis / intraepithelial carcinoma 
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Figure 1. A visual representation of the outputs of the three approaches. Image classifi-

cation (ie ResNet-34) classifies the image as a whole, object detection (ie Faster R-CNN) 

finds objects and their approximate position in the image and instance segmentation (ie 

Mask R-CNN) finds objects and their exact spatial delimitation.  



Original Article | Dermatol Pract Concept. 2022;12(3):e2022126 3

(akiec), basal cell carcinoma (bcc), benign keratotic lesion 

(bkl), dermatofibroma (df), nevus (nv), melanoma (mel), or 

vascular lesion (vasc). Also, the PH2 and the 7-point criteria 

evaluation dataset were reviewed and several images were 

utilized to extract artefacts from [20,21]. Images from those 

datasets were not used for other purposes within this study. 

We used the ISIC2018 test-set as the test-set to keep varia-

tion as low as possible, as it sources from the same origin as 

the HAM10000 dataset and includes the same classes. 

Artefact generation

As with every real-world picture, dermatoscopic images can 

contain content considered as “artefacts”. Examples are hairs, 

dark corners, vignettes, medical devices, different sorts of rul-

ers, ink markings in different shapes, styles and colors, air 

bubbles or reflections. This work focuses on three of them: 

“bubbles” that originate from trapped air in the liquid be-

tween skin and the dermatoscope, “rulers” used to show the 

spatial dimension of a lesion, and ink “markings” on the pa-

tient’s skin used to highlight the lesion for excision or review.

In order to generate artefact-modified cases, we selected 60 

images from the HAM10000, PH2 and 7-point criteria dataset 

which contain either a bubble, a ruler or a marking artefact. 

From those images we extracted the artefacts by manually re-

pairing the images areas with Adobe® Photoshop’s® (version 

CC 2018 (19.1.9), Adobe Inc.) content aware image repair 

mechanism and using the difference, per RGB channel, to the 

untouched image as a template (Figure 2). The insertion of those 

templates was done in a way that the position of artefacts var-

ies according to observed patterns, using the provided segmen-

tation mask of the target image. In Figure 3, a dermatoscopic 

image with automatically superimposed artefacts is shown. The 

source code will be made available upon publication of this 

work at https://github.com/thisismexp/artefact_insertion.

Using the artefact insertion mechanism, several dataset 

mutations of the original HAM10000 dataset were created, 

where artefacts were superimposed on either none or all of the 

images and on every image belonging to a certain diagnosis. 

The test portion of the HAM10000 dataset, corresponding to 

the ISIC2018 challenge Task 3 test-set with 1,511 images, was 

altered in the same way. Additionally, artefacts were inserted 

in a certain percentage of images in 20% step increments.

Neural Network Training

As representatives for image classification, object detection 

and instance segmentation we trained a ResNet-34, a Faster 

Input: Original Image

Output: Artefact Template

1.) Content-aware image repair

3.) RGB channel-Wise
di�erence

2.) Extraction of repaired regions

Figure 2. Workflow for extracting artefact templates. Manually selected original images (Input) were 

repaired manually (1), and corresponding image areas extracted (2). The channel-wise difference  

(3) was stored as a template for the corresponding artefact type.
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R-CNN (with ResNet-34 backbone) and a Mask R-CNN 

(also with a ResNet-34 backbone) model as provided by the 

Torchvision package of the open source machine learning 

framework PyTorch [22]. All models were trained on all of 

the 9 generated datasets in a 5-fold cross validation fashion. 

Transfer-learning and data augmentation including random 

crops, resize, rotations, mirroring operations as well as color 

jitter operations were used.

Statistics

To evaluate diagnostic accuracy, all trained network mod-

els are tested against the 13 test datasets and performance 

was reported in terms of area under the precision recall 

curve (PR-AUC), precision, recall, false positive (FPR) and 

false negative rates (FNR) and differences thereof (calcu-

lated using scikit-learn version 0.24.1) [23]. To visualize 

spatial activations, Gradient based Class Activation Map 

(Grad-CAM) visualizations were used. A two-sided p-value 

of 0.05 was regarded as statistically significant, and all 

calculations were performed using statsmodels version 

0.12.2 [24]. 

Results

Baseline performance in terms of PR-AUC of our models 

trained and tested with no additional artefacts was 0.8 for 

ResNet-34 and 0.72 for Faster R-CNN as well as Mask 

R-CNN. Introduction of artefacts in only the test dataset 

led to a reduction in performance for all three architectures  

(Figure 4) increasing with the proportion of artefacts pres-

ent in the test dataset, and more severe for the ResNet-34 

and Faster R-CNN model. With a maximum relative reduc-

tion of 0.05 PR-AUC the Faster R-CNN model was affected 

the most, ResNet-34 (-0.03) the second most, and Mask 

R-CNN was the most robust (-0.01). For ResNet-34 and 

Faster R-CNN, changes in predictive performance compared 

to baseline was significant at and above 40% of introduced 

artefacts in the test set (P < 0.01; tested using McNemar 

test with Edwards correction on binarized predictions). For 

Mask R-CNN we did not detect a significant difference in 

predictions in all used test sets (all P values > 0.17). 
Introducing artefacts in the training data led to biased re-

sults in all three examined architectures. Artefacts introduced 

Figure 3. Example of automatically superimposed artefacts on a dermatoscopic image. (A) In the top left the original image without artefact 

is shown. The other 3 images show the lesion with the superimposed artefacts bubbles (B), ink markings (C) and a ruler (D). 
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into all images of the melanocytic nevi class during training 

decreased recall values on average by 0.218 for ResNet-34, 

0.129 for Faster R-CNN and by 0.155 for Mask R-CNN 

in comparison to the respective unbiased models. Reduc-

tion in recall values indicate that those are indeed biased by 

artefacts for specific classes. This effect was more apparent 

the bigger the proportion of biased samples in the dataset is. 

Considering the FPR and FNR for specific classes, a selective 

bias towards classes that were corrupted by artefacts during 

training could be observed for all three architectures. The 

increase in FPR for the class with inserted artefacts during 

training, and a simultaneous increase in FNR for all others, 

in fact showed a shift in classifications towards the biased 

class. This effect could not be observed if artefacts were in-

serted into none or all of the images.

When inspecting heat map representations of the Grad-

CAM we observed that training with artefacts shifted the 

attention of the object detection and instance segmentation net-

work away from the artefact itself towards areas of the lesion 
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Figure 5. Grad-CAM for used network architectures. The first column shows the 

input image for the corresponding row, in its original form (top) and with bubble 

artefacts inserted (bottom). Grad-CAM heatmaps show the ResNet-34 increases 

 attention towards the bubble-area after training with artefacts (N), where the Faster 

R-CNN network loses its initial attention towards the artefact (G) afterwards (O). 

The Mask R-CNN architecture seems to ignore the artefact throughout (H and P). 

Black boxes denote positions of inserted bubble artefacts.

0.00

–0.02

–0.04 Mask R-CNN

ResNet-34
Faster R-CNN

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of artefacts in the test set

Ch
an

ge
 in

 P
R 

A
U

C

–0.06

Figure 4. Neural networks show different robustness to inserted ar-

tefacts on the test set. Precision recall curve (PR-AUC) as achieved 

by training without additional artefacts in the train and test set was 

used as the baseline (0%). With increasing proportion of inserted ar-

tefacts, PR-AUC decreases for ResNet-34 (blue) and Faster R-CNN 

(green), but almost not for Mask R-CNN (purple). Shaded areas 

denote 95%-confidence intervals.

(Figure 5). These mappings indicate an increase in robustness 

against these very artefacts for Faster and Mask R-CNN mod-

els, if trained with inserted artefacts in the dataset.
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Conclusions

We compared representatives of three neural network archi-

tectures to classify lesions in dermatoscopic images in regard 

to their robustness against artefacts. Although as a limita-

tion the baseline performance of the examined models were 

not the same, we found differences in their vulnerability to 

performance changes under the influence of artefacts. Mask 

R-CNN tends to be the most robust. The influence on classi-

fication results by artefacts in test images can be reduced by 

augmenting training data with artificially superimposed arte-

facts for all three architectures. This is in line with findings by 

Maron et al, who reduced  - but not eliminated - brittleness of 

their system through data augmentation [25]. We anticipate 

that automated superimposition of artefacts as presented 

here as a further evolution of data augmentation, that to-

gether with integrating more diverse variants, will enhance 

robustness of automated classifiers and decision support sys-

tems further [26,27]. The initial data, in our view, warrants 

more in-depth follow up research on this topic, to understand 

which approaches are the most effective and efficient.

However, this work failed to find evidence for a clinically 

relevant robustness against artefacts of instance segmentation 

for several reasons. On the one hand we used a shallow back-

bone network architecture for our experiments, even though 

current research and commercial products commonly use 

deeper models, and an increase in robustness against image 

distortions has been demonstrated by others with increased 

backbone capacity [28]. We also used a new template-based 

approach to superimpose artefacts on images. This approach 

leaves room for improvement with regard to the number of 

images the artefacts are extracted from, and a detailed anal-

ysis on how different artefact types affect the classification 

performance. Alternatively, lesions with existing artefacts 

could be used after manual or automated annotations. 
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