INTERVAL- VALUED FERMATEAN NEUTROSOPHIC GRAPHS

Said Broumi ${ }^{*}$, Raman Sundareswaran ${ }^{2}$, Marayanagaraj Shanmugapriya ${ }^{3}$, Giorgio Nordo ${ }^{4}$, Mohamed Talea ${ }^{1}$, Assia Bakali ${ }^{5}$, and Florentin Smarandache ${ }^{6}$
${ }^{1}$ Laboratory of Information Processing, Faculty of Science Ben M'Sik, University of Hassan II, Casablanca, Morocco \& Regional Center for the Professions of Education and Training(C.R.M.E.F), Casablanca,Morocco.
2,3Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, India
${ }^{4}$ Dipartimento di scienze Matematiche e Informatiche, scienze Fisiche e scienze della Terra dell'Università degli Studi di Messina
Viale Ferdinando Stagno d'Alcontres, Italy
${ }^{5}$ Ecole Royale Navale-Boulevard Sour Jdid, Morocco
${ }^{6}$ Department of Mathematics, University of New Mexico, USA

Received: 2 May 2022;
Accepted: 29 June 2022;
Available online: 12 July 2022.
Original scientific paper Abstract: In this work, we define Interval-valued Fermatean neutrosophic graphs (IVFNS) and present some operations on Interval-valued Fermatean neutrosophic graphs. Further, we introduce the concepts of Regular intervalvalued Fermatean neutrosophic graphs, Strong interval-valued Fermatean neutrosophic graphs, Cartesian, Composition, Lexicographic product of interval-valued Fermatean neutrosophic graphs. Finally, we give the applications of Interval-valued Fermatean neutrosophic graphs.

Key words: Interval-valued Fermatean Fuzzy sets, Interval-valued Fermatean Neutrosophic sets, Interval-valued Fermatean Neutrosophic graphs

[^0]
1. Introduction

The concept of neutrosophic set theory was proposed by Jun (2017). The idea of neutrosophic set which is a generalization of the fuzzy set (Zadeh, 1965), intuitionistic fuzzy set (Atanassov, 1986). The neutrosophic sets are characterized by a truth function (T), an indeterminate function (I) and a false function (F) independently. Smarandache (2019) introduced the concept of spherical neutrosophic oversets as generalization of spherical fuzzy sets. By bending the concept of single valued neutrosophic set and graph theory, different classes of neutrosophic graphs is discussed by Broumi (2016) and many works available in the literature (Broumi et al., 2016a, 2016b, 2016c, 2016d, 2022). Nagarajan et al. (2019) investigated the intervalvalued neutrosophic graphs and its applications. Recently, Ajay et al. $(2020,2021)$ extended the concept of Pythagorean neutrosophic sets to graphs and called it Pythagorean neutrosophic graph (PNG) and investigated some of their properties. The same authors presented the idea of labelling of Pythagorean neutrosophic fuzzy graphs and investigate their properties. Ajay et al. (2022) studied the concept of regularity in PNG and introduced the ideas of regular, full edge regular, edge regular, and partially edge regular Pythagorean Neutrosophic graphs. In addition, a new MCDM method has been introduced using the Pythagorean neutrosophic graphs with an illustrative example. By integrating the concepts pythagorean neutrosophic fuzzy graph and Dombi operator. Furthermore, Ajay et al. (2021) proposed a new extension of neutrosophic graph called Pythagorean Neutrosophic Dombi fuzzy graphs (PNDFG) and suggested some basic operations of PNDFG and computed the degree and total degree of a vertex of PNDFG. Akalyadevi et al. (2022) introduced the concept of spherical neutrosophic graph coloring and discussed some of their important properties also they suggested the chromatic number of spherical neutrosophic graph as a crisp number. Duleba et al. (2021) applied the concept of Interval-valued spherical fuzzy AHP method to public transportation problem. Aydın et al. (2021) proposed a novel fuzzy MULTIMOORA method based on interval-valued spherical fuzzy sets to evaluate companies that are using Industry 4.0 technologies. Lathamaheswari et al. (2021) proposed the concept of Interval Valued Spherical Fuzzy Aggregation Operators and applied it for solving a Decision-Making Problem. Kutlu Gündoğdu et al. (2021) extended spherical fuzzy analytic hierarchy process to interval-valued spherical fuzzy AHP (IVSF-AHP) method and applied it to compare the service performances of several hospitals. Kutlu Gündoğdu et al. (2019) presented the idea of Spherical fuzzy sets (SFS) as an integration of Pythagorean fuzzy sets and neutrosophic sets. Smarandache (2017) proposed the concept of Spherical Neutrosophic Numbers. Senapati et al. (2019) defined basic operators over the FFSs. On the other hand, division, and subtraction operations on FFSs were proposed. Donghai Liu et al. (2019) focused on a distance measure for Fermatean fuzzy linguistic term sets. Ganie et al. (2022) proposed some novel distance measures for Fermatean fuzzy sets using t-conorms. On the other hand, Jeevaraj et al. (2021) proposed the concept of interval-valued Fermatean fuzzy sets (IVFFSs) and establishes some Mathematical operations on the class of IVFFSs. A new total ordering principle on the class of IVFFNs is introduced. They implemented the interval-valued Fermatean fuzzy TOPSIS (IVFFTOPSIS) method for solving multi-criteria decision-making problems. Based on neutrosophic Pythagorean sets, Stephen et al. (2021) introduced the concept of interval-valued neutrosophic Pythagorean sets with dependent interval valued Pythagorean components and discussed some of its properties. Recently, Lakhwani et al. (2022) introduced a novel concept of Dombi neutrosophic graph and presented some kinds of Dombi neutrosophic graph such as a regular Dombi neutrosophic graph,
strong Dombi neutrosophic graph, complete Dombi neutrosophic graph, and complement Dombi neutrosophic graph and described some of their properties, also, and discussed some operations on Dombi neutrosophic graphs are defined.

In this paper, we present the concept of Interval-valued Fermatean neutrosophic graphs (IVFNG) and the concepts of Regular interval-valued Fermatean neutrosophic graphs, Strong interval-valued Fermatean neutrosophic graphs, Cartesian, Composition, Lexicographic product of interval-valued Fermatean neutrosophic graphs. We also introduce some theorems and examples on IVFNG's Finally, we give the applications of Interval-valued Fermatean neutrosophic graphs.

2. Preliminaries

The extension of crisp set theory with membership degree is known as Fuzzy set theory in which each element of the set gets a real number between 0 and 1 . But in many real time situations, it is not always possible to give an exact degree of membership because of lack of knowledge, vague information, and so forth. To overcome this problem, we can use interval-valued fuzzy sets, which assign to each element a closed interval which approximates the "real," but unknown, membership degree. The length of this interval is a measure for the uncertainty about the membership degree. An interval number I is an interval $\left[c^{-}, c^{+}\right]$with $0 \leq c^{-} \leq c^{+} \leq$ 1. The interval $[c, c]$ is identified with the number $c \in[0,1]$. Let $I[0,1]$ be the set of all closed subintervals of $[0,1]$. An extension of fuzzy sets by Zadeh (1965), Intervalvalued fuzzy sets which stated that the values of the membership degrees are intervals of numbers instead of the numbers. It provides a more sufficient information about uncertainty than traditional fuzzy sets. In this section, we provide all the basic definitions of interval valued sets and its corresponding graphs. Table 1 depicts the types of sets and graphs for interval-valued fuzzy and neutrosophic environments.

Table 1. Different types of Interval-valued sets and its graphs

Type of Sets	Definition	Type of Graphs	Definition
Interval-valued Fuzzy set (IVFS) -Zadeh, 1975	$A=\left\{\left(x,\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]\right): x \in V\right\}$	Interval- valued Fuzzy graph (IVFG) - Muhammad Akram, Wieslaw A. Dudek, 2011.	$\mathrm{G}=(\mathrm{A}, \mathrm{B})$, where $\mathrm{A}=\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]$ is an interval-valued fuzzy set on V and $\mathrm{B}=$ $\left[\mu_{B}^{-}(x), \mu_{B}^{+}(x)\right]$ is an interval-valued fuzzy relation on E .
Interval-valued Intuitionistic Fuzzy set (IVIFS) - Atanassov, K., Gargov, G., 1989	$\begin{aligned} & A=\left\{\left(x,\left[T_{A}^{-}(x), T_{A}^{+}(x)\right]\right): \in V\right\} ; \\ & B=\left\{\left(x,\left[F_{A}^{-}(x), F_{A}^{+}(x)\right]\right): x \in V\right\} \\ & \text { such that } 0 \leq T_{A}^{+}(x)+F_{A}^{+}(x) \leq \\ & 1 \text { for all } x \in X \end{aligned}$	Interval- valued Intuitionistic Fuzzy graph (IVIFG) - S. N. Mishra and A. Pal, 2013	$\begin{aligned} & \text { - } \mu_{A}: V \rightarrow D[0,1] ; \eta_{A}: V \rightarrow D[0,1] \text { such that } \\ & 0 \leq \mu_{A}(x)+\eta_{A}(x) \leq 1, \forall x \in V \\ & \text { - } \mu_{B}: E \subseteq V \times V \rightarrow D[0,1] ; \eta_{B}: E \subseteq V \times \\ & V \rightarrow D[0,1] \\ & \mu_{B}^{-}((x, y)) \leq \min \left(\mu_{A}^{-}(x), \mu_{A}^{-}(y)\right) ; \\ & \eta_{B}^{-}((x, y)) \geq \min \left(\eta_{-}^{-}(x), \eta_{-}^{-}(y)\right) \\ & \mu_{B}^{+}((x, y)) \leq \min \left(\mu_{A}^{A}(x), \mu_{A}^{+}(y)\right) ; \\ & \left.\eta_{B}^{+}(x, y)\right) \geq \min \left(\eta_{A}^{+}(x), \eta_{A}^{+}(y)\right) \end{aligned}$
			$\begin{aligned} & \text { such that } 0 \leq \mu_{B}^{+}((x, y))+\eta_{B}^{+}((x, y)) \leq \\ & 1, \forall(x, y) \in E \end{aligned}$
Interval-valued Neutrosophic set (IVNS) - Said Broumi , Mohamed Talea ,Assia Bakali, Florentin	For each point $x \in X$, we have that $T_{A}(x)=\left[T_{A}^{-}(x), T_{A}^{+}(x)\right], I_{A}(x)=$ $\left[I_{A}^{-}(x), I_{A}^{+}(x)\right], F_{A}(x)=$ $\left[F_{A}^{-}(x), F_{A}^{+}(x)\right] \subseteq[0,1]$ and $0 \leq$ $T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3$.	Intervalvalued Neutrosophic graph (IVNG) - Said Broumi, Mohamed Talea, Assia Bakali,	$G=(A, B)$, where $\left[T_{A}^{-}, T_{A}^{+}\right],\left[I_{A}^{-}, I_{A}^{+}\right],\left[F_{A}^{-}, F_{A}^{+}\right]>$is an intervalvalued neutrosophic set on V ; and $B=<$ $\left[T_{B}^{-}, T_{B}^{+}\right],\left[I_{B}^{-}, I_{B}^{+}\right],\left[F_{B}^{-}, F_{B}^{+}\right]>T_{B}^{-}: V \times V \rightarrow$ $[0,1], T_{B}^{+}: V \times V \rightarrow[0,1], I_{B}^{-}: V \times V \rightarrow$ $[0,1], I_{B}^{+}: V \times V \rightarrow[0,1]$ and $F_{B}^{-}: V \times V \rightarrow$ $[0,1], F_{B}^{+}: V \times V \rightarrow[0,1]$ are such that $T_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right]$,

Smarandache, (2016)

Florentin Smarandache, 2016

Interval-
For each point $x \in X$, we have that $T_{A}(x)=\left[T_{A}^{-}(x), T_{A}^{+}(x)\right], F_{A}(x)=$ $\left[F_{A}^{-}(x), F_{A}^{+}(x)\right] \subseteq[0,1] \quad$ and $\quad 0 \leq$ $T_{A}^{+}(x)^{2}+F_{A}^{+}(x)^{2} \leq 1$.
valued
Pythagorean
Fuzzy graph
(IVPFG)

Interval-valued Pythagorean Fuzzy set (IVPFS) - F. Teng, Z. Liu, and P. Liu, (2018).

Mohamed S.Y., Ali A.M.,2018

Interval-valued
Fermatean Fuzzy set (IVFFS) Jeevaraj S , (2021)

Interval-valued
Fermatean Neutrosophic set (IVFNS) Said Broumi,
Raman
Sundareswaran, Marayanagaraj Shanmugapriya Giorgio Nordo Mohamed Talea, Assia Bakali, and Florentin Smarandache, (2022)

For each point $x \in X$, we have that $T_{A}(x)=\left[T_{A}^{-}(x), T_{A}^{+}(x)\right], F_{A}(x)=$ $\left[F_{A}^{-}(x), F_{A}^{+}(x)\right] \subseteq[0,1]$ and $0 \leq$ $T_{A}^{+}(x)^{3}+F_{A}^{+}(x)^{3} \leq 1$.

Intervalvalued Fermatean Fuzzy graph (IVFFG)

$$
\begin{aligned}
& \mathrm{A}=\left\{\left\langle x, T_{A}(x), \mathrm{I}_{\mathrm{A}}(x), \mathrm{F}_{\mathrm{A}}(x)\right\rangle \mid x \in \mathrm{X}\right\} \\
& \text { where } \quad T_{A}(x)= \\
& {\left[\mathrm{T}_{\mathrm{A}}^{-}(x), T_{A}^{+}(x)\right], \mathrm{I}_{\mathrm{A}}(x)=\left[\mathrm{I}_{\mathrm{A}}^{-}(x), \mathrm{I}_{A}^{+}(\mathrm{x})\right]} \\
& \text { and } \quad \mathrm{F}_{\mathrm{A}}(x)=\left[F_{A}^{-}(x), \mathrm{F}_{\mathrm{A}}^{+}(x)\right], \\
& T_{A}(x): X \rightarrow D[0,1] \\
& \mathrm{I}_{\mathrm{A}}(x): X \rightarrow D[0,1], \quad F_{A}(x): X \rightarrow \\
& D[0,1] \text { and } \\
& 0 \leq\left(T_{A}(x)\right)^{3}+\left(F_{A}(x)\right)^{3} \leq 1 \text { and } 0 \leq \\
& \left(I_{A}(x)\right)^{3} \leq 1 \\
& 0 \leq\left(T_{A}(x)\right)^{3}+\left(F_{A}(x)\right)^{3}+\left(I_{A}(x)\right)^{3} \leq \\
& 2 \text { means } \\
& 0 \leq \\
& \left(T_{A}^{+}(x)\right)^{3}+\left(I_{A}^{+}(x)\right)^{3}+\left(F_{A}^{+}(x)\right)^{3} \leq \quad 2 \\
& \forall x \in \mathrm{X}
\end{aligned}
$$

$T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right]$,
$I_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{-}\left(v_{i}\right), I_{B}^{-}\left(v_{j}\right)\right]$,
$I_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{+}\left(v_{i}\right), I_{B}^{+}\left(v_{j}\right)\right]$,
$F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right]$,
$F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right]$
$G=(A, B)$, where $\quad A=<\left[T_{A}^{-}, T_{A}^{+}\right]$, $\left[F_{A}^{-}, F_{A}^{+}\right]>$is an interval-valued neutrosophic set on V ; and $B=<\left[T_{B}^{-}, T_{B}^{+}\right]$, $\left[F_{B}^{-}, F_{B}^{+}\right]>T_{B}^{-}: V \times V \rightarrow[0,1], T_{B}^{+}: V \times$ $V \rightarrow[0,1]$, and $\quad F_{B}^{-}: V \times V \rightarrow$ $[0,1], F_{B}^{+}: V \times V \rightarrow[0,1]$ are such that $T_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right]$, $T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right]$, $F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right]$, $F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right]$ such that $0 \leq T_{A}^{+}(x)^{2}+F_{A}^{+}(x)^{2} \leq 1$. $G=(A, B)$, where $\quad A=<\left[T_{A}^{-}, T_{A}^{+}\right]$, $\left[F_{A}^{-}, F_{A}^{+}\right]>$is an interval-valued neutrosophic set on V; and $B=<\left[T_{B}^{-}, T_{B}^{+}\right]$, $\left[F_{B}^{-}, F_{B}^{+}\right]>T_{B}^{-}: V \times V \rightarrow[0,1], T_{B}^{+}: V \times$ $V \rightarrow[0,1]$, and $\quad F_{B}^{-}: V \times V \rightarrow$ $[0,1], F_{B}^{+}: V \times V \rightarrow[0,1]$ are such that $T_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right]$, $T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right]$, $F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right]$, $F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right]$ such that $0 \leq T_{A}^{+}(x)^{3}+F_{A}^{+}(x)^{3} \leq 1$. $G=(A, B)$, where $\quad A=<$ $\left[T_{A}^{-}, T_{A}^{+}\right],\left[I_{A}^{-}, I_{A}^{+}\right],\left[F_{A}^{-}, F_{A}^{+}\right]>$is an intervalvalued Fermatean neutrosophic set on V; and $B=<\left[T_{B}^{-}, T_{B}^{+}\right],\left[I_{B}^{-}, I_{B}^{+}\right],\left[F_{B}^{-}, F_{B}^{+}\right]>$
E satisfying the following condition:
$T_{A}^{-}: V \rightarrow[0,1], T_{A}^{+}: V \rightarrow[0,1], I_{A}^{-}: V \rightarrow$ $[0,1], I_{A}^{+}: V \rightarrow[0,1]$ and $F_{A}^{-}: V \rightarrow$
$[0,1], F_{A}^{+}: V \rightarrow[0,1]$,
and $0 \leq T_{A}\left(v_{i}\right)+I_{A}\left(v_{i}\right)+F_{A}\left(v_{i}\right) \leq$
3 , for all $v_{i} \in V(i=1,2, \ldots, n$
The functions $T_{B}^{-}: V \times V \rightarrow[0,1], T_{B}^{+}: V \times$ $V \rightarrow[0,1], I_{B}^{-}: V \times V \rightarrow[0,1], I_{B}^{+}: V \times$ $V \rightarrow[0,1]$ and $\quad F_{B}^{-}: V \times V \rightarrow$ $[0,1], F_{B}^{+}: V \times V \rightarrow[0,1]$ are such that $T_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right]$,
$T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right]$,
$I_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{-}\left(v_{i}\right), I_{B}^{-}\left(v_{j}\right)\right]$,
$I_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{+}\left(v_{i}\right), I_{B}^{+}\left(v_{j}\right)\right]$,
$F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right]$,
$F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right]$,
denoting the degree of truth-membership, indeterminacy-membership and falsitymembership of the edge $\left(v_{i}, v_{j}\right) \in E$ respectively, where $0 \leq T_{B}\left(\left\{v_{i}, v_{j}\right\}\right)^{3}+$ $I_{B}\left(\left\{v_{i}, v_{j}\right\}\right)^{3}+F_{B}\left(\left\{v_{i}, v_{j}\right\}\right)^{3} \leq 2$ for all $\left\{v_{i}, v_{j}\right\} \in E(i, j=1,2, \ldots, n)$ means $0 \leq$ $\left(T_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3}+\left(I_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3}+\left(F_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3} \leq$ $2 \forall x \in \mathrm{X}$.

Definition 2.1 (Akram et al., 2013)
The Interval-valued Fuzzy Set (IVFS) A in V is defined by $=\left\{\left(x,\left\{\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right)\right\}\right.$: $x \in V\}$, where $\mu_{A}^{-}(x)$ and $\mu_{A}^{+}(x)$ are fuzzy subsets of V such that $\mu_{A}^{-}(x) \leq \mu_{\mathrm{A}}^{+}(\mathrm{x})$ for all $x \in V$. For any two interval-valued sets $A=\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]$ and $B=$ [$\left.\mu_{B}^{-}(x), \mu_{B}^{+}(x)\right]$ in V.
Define: $\cdot A \cup B=\left\{\left(x, \max \left(\mu_{A}^{-}(x), \mu_{B}^{-}(x)\right), \max \left(\mu_{A}^{+}(x), \mu_{B}^{+}(x)\right)\right): x \in V\right\}$,

- $A \cap B=\left\{\left(x, \min \left(\mu_{A}^{-}(x), \mu_{B}^{-}(x)\right), \min \left(\mu_{A}^{+}(x), \mu_{B}^{+}(x)\right)\right): x \in V\right\}$.

Definition 2.2 (Akram et al., 2013)
If $G^{*}=(V, E)$ is a graph, then by an Interval-valued Fuzzy Relation (IVFR) B on a set E we mean an interval-valued fuzzy set such that $\mu_{B}^{-}(x y) \leq$ $\min \left(\mu_{A}^{-}(x), \mu_{A}^{-}(y)\right), \mu_{B}^{+}(x y) \leq \min \left(\mu_{A}^{+}(x), \mu_{A}^{+}(y)\right)$ for all $x y \in E$.

Definition 2.3 (Akram et al., 2013)
By an Interval-valued Fuzzy Graph (IVFG) of a graph $G^{*}=(V, E)$ we mean a pair $G=(A, B)$, where $A=\left[\mu_{A}^{-}, \mu_{A}^{+}\right]$is an interval-valued fuzzy set on V and $B=$ [μ_{B}^{-}, μ_{B}^{+}] is an interval-valued fuzzy relation on E.

Example 2.4 (Akram et al., 2013)
Consider a graph $G^{*}=(V, E)$ such that $V=\{x, y, z\}, E=\{x y, y z, z x\}$. Let A be an interval-valued fuzzy set of V and B be an interval-valued fuzzy set of $E \subseteq V \times V$ defined by

$$
A=\left\langle\left(\frac{x}{0.2}, \frac{y}{0.3}, \frac{z}{0.4}\right),\left(\frac{x}{0.4}, \frac{y}{0.5}, \frac{z}{0.5}\right)\right\rangle, B=\left\langle\left(\frac{x}{0.2}, \frac{y}{0.3}, \frac{z}{0.4}\right),\left(\frac{x y}{0.3}, \frac{y z}{0.4}, \frac{z x}{0.4}\right)\right\rangle
$$

Figure 1. Interval-Valued Fuzzy Graph G
Akram et al. (2013) introduced certain types of interval-valued fuzzy graphs including balanced interval-valued fuzzy graphs, neighbourly irregular intervalvalued fuzzy graphs, neighbourly total irregular interval-valued fuzzy graphs, highly irregular interval-valued fuzzy graphs, and highly total irregular interval-valued fuzzy graph. Hossein et al. (2013) define three new operations on interval-valued fuzzy graphs; namely direct product, semi strong product and strong product.

Definition 2.5 (Mishra et al., 2013; Ismayil et al., 2014)
An Interval-valued Intuitionistic Fuzzy Set (IVIFS) A in X, is given by $A=$ $\left\{\left\langle x, \mu_{A}(x), \eta_{A}(x)\right\rangle / x \in X\right\}$ where $\mu_{A}: X \rightarrow[0,1], \eta_{A}: X \rightarrow D[0,1]$. The intervals $\mu_{A}(x)$ and $\eta_{A}(x)$ denote the degree of membership and the degree of non-membership of the element x to the set, where $\mu_{A}(x)=\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right]$ and $\eta_{A}(x)=\left[\eta_{A}^{-}(x), \eta_{A}^{+}(x)\right]$ with the condition $0 \leq \mu_{A}^{+}(x)+\eta_{A}^{+}(x) \leq 1$ for all $x \in X$.

Definition 2.6 (Mishra et al., 2013; Ismayil et al., 2014)
An Interval-valued Intuitionistic Fuzzy Graph (IVIFG) with underlying set V is defined to be a pair $G=(A, B)$ where

- the functions $\mu_{A}: V \rightarrow D[0,1] ; \eta_{A}: V \rightarrow D[0,1]$ denote the degree of membership and non-membership of the element $x \in V$ respectively, such that $0 \leq \mu_{A}(x)+\eta_{A}(x) \leq 1, \forall x \in V$
- the functions $\mu_{B}: E \subseteq V \times V \rightarrow D[0,1] ; \eta_{B}: E \subseteq V \times V \rightarrow D[0,1]$ are defined by

$$
\begin{aligned}
& \mu_{B}^{-}((x, y)) \leq \min \left(\mu_{A}^{-}(x), \mu_{A}^{-}(y)\right) ; \eta_{B}^{-}((x, y)) \geq \min \left(\eta_{A}^{-}(x), \eta_{A}^{-}(y)\right) \\
& \mu_{B}^{+}((x, y)) \leq \min \left(\mu_{A}^{+}(x), \mu_{A}^{+}(y)\right) ; \eta_{B}^{+}((x, y)) \geq \min \left(\eta_{A}^{+}(x), \eta_{A}^{+}(y)\right) \\
& \text { such that } 0 \leq \mu_{B}^{+}((x, y))+\eta_{B}^{+}((x, y)) \leq 1, \forall(x, y) \in E
\end{aligned}
$$

Example 2.7

$G=(A, B)$ defined on a graph $G^{*}=(V, E)$ such that $V=\{x, y, z\}, E=$ $\{x y, y z, z x\}, \mathrm{A}$ is an interval valued intuitionistic fuzzy set of V and let B is an intervalvalued intuitionistic fuzzy set of $E \subseteq V X V$.
here $A=\{\langle x,[0.5,0.7],[0.1,0.3]\rangle,\langle y,[0.6,0.7],[0.1,0.3]\rangle,\langle z,[0.4,0.6],[0.2,0.4]\rangle\}$ $B=\{\langle x y,[0.3,0.6],[0.2,0.4]\rangle,\langle y z,[0.3,0.5],[0.3,0.4]\rangle,\langle x z,[0.3,0.5],[0.2,0.4]\rangle\}$

$\langle y,[0.6,0.7],[0.1,0.3]\rangle$

Figure 2. Interval-Valued Intuitionistic Fuzzy Graph G
Mishra et al. (2013) introduced product of IVIFG and Ismayil et al. (2014) defined On Strong Interval-Valued Intuitionistic Fuzzy Graph. Akram et al. (2013) studied the certain types of interval-valued fuzzy graphs. Peng Xu et al. (2022) studied the concept of certain interval-valued intuitionistic fuzzy graphs and its applications. Xindong et al. (2016) introduced the concept of interval-valued Pythagorean fuzzy set. Mohamed et. al. (2018) introduced and studied interval-valued Pythagorean fuzzy graphs.

Definition 2.8 (Mohamed et. al., 2018)
An Interval- valued Pythagorean Fuzzy set (IVPFS) A defined in a finite universe of discourse X is given by $A=\left\{\left\langle x, \mu_{A}(x)=\left[\mu_{A}^{-}(x), \mu_{A}^{+}(x)\right], \eta_{A}(x)=\left[\eta_{A}^{-}(x), \eta_{A}^{+}(x)\right]\right\rangle /\right.$ $x \in X\}$ where $\mu_{A}^{-}(x), \mu_{A}^{+}(x): X \rightarrow[0,1]$ and $\eta_{A}^{-}(x), \eta_{A}^{+}(x): X \rightarrow[0,1]$ and $0 \leq$ $\left(\mu_{A}^{+}(x)\right)^{2}+\left(\eta_{A}^{+}(x)\right)^{2} \leq 1$. Here $\mu_{A}(x)$ and $\eta_{A}(x)$ denote the degree of membership and degree of non-membership of $x \in X$ in A.

Definition 2.9 (Mohamed et. al., 2018)
An Pythagorean Fuzzy Graph (PFG) with underlying set V defined to be a pair $G=$ (A, B) where

- the functions $\mu_{A}: V \rightarrow D[0,1] ; \eta_{A}: V \rightarrow D[0,1]$ denote the degree of membership and non-membership of the element $x \in V$ respectively, such that $0 \leq \mu_{A}(x)+\eta_{A}(x) \leq 1, \forall x \in V$
- the functions $\mu_{B}: E \subseteq V \times V \rightarrow D[0,1] ; \eta_{B}: E \subseteq V \times V \rightarrow D[0,1]$ are defined by
$\mu_{B}^{-}((x, y)) \leq \min \left(\mu_{A}^{-}(x), \mu_{A}^{-}(y)\right) ; \eta_{B}^{-}((x, y)) \geq \min \left(\eta_{A}^{-}(x), \eta_{A}^{-}(y)\right)$
$\mu_{B}^{+}((x, y)) \leq \min \left(\mu_{A}^{+}(x), \mu_{A}^{+}(y)\right) ; \eta_{B}^{+}((x, y)) \geq \min \left(\eta_{A}^{+}(x), \eta_{A}^{+}(y)\right)$
such that $0 \leq \mu_{B}^{+}((x, y))^{2}+\eta_{B}^{+}((x, y))^{2} \leq 1, \forall(x, y) \in E$

Yahya et al. (2018) defined the strong interval-valued Pythagorean fuzzy graph and Cartesian product, composition and join of two strong interval-valued Pythagorean fuzzy graph are studied.

Definition 2.10 (Broumi et al., 2016d)
An Interval-valued Neutrosophic Set (IVNS) A in X is characterized by truthmembership function $T_{A}(x)$, indeterminacy-membership function $I_{A}(x)$ and falsitymembership function $F_{A}(x)$. For each point $x \in X$, we have that $T_{A}(x)=$ $\left[T_{A}^{-}(x), T_{A}^{+}(x)\right], I_{A}(x)=\left[I_{A}^{-}(x), I_{A}^{+}(x)\right], F_{A}(x)=\left[F_{A}^{-}(x), F_{A}^{+}(x)\right] \subseteq[0,1]$ and $0 \leq$ $T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3$.

Definition 2.11 (Broumi et al., 2016d)
An Interval- valued Neutrosophic Graph (IVNG) of a graph $G^{*}=(V, E)$ we mean a pair $G=(A, B)$, where $A=<\left[T_{A}^{-}, T_{A}^{+}\right],\left[I_{A}^{-}, I_{A}^{+}\right],\left[F_{A}^{-}, F_{A}^{+}\right]>$is an intervalvalued neutrosophic set on V; and $B=\left\langle\left[T_{B}^{-}, T_{B}^{+}\right],\left[I_{B}^{-}, I_{B}^{+}\right],\left[F_{B}^{-}, F_{B}^{+}\right]\right\rangle$is an interval valued neutrosophic relation on E satisfying the following condition:
i. $\quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such that $T_{A}^{-}: V \rightarrow[0,1], T_{A}^{+}: V \rightarrow[0,1], I_{A}^{-}: V \rightarrow$ $[0,1], I_{A}^{+}: V \rightarrow[0,1]$ and $F_{A}^{-}: V \rightarrow[0,1], F_{A}^{+}: V \rightarrow[0,1]$ denote the degree of truth-membership, the degree of indeterminacy-membership and falsitymembership of the element $y \in V$, respectively, and $0 \leq T_{A}\left(v_{i}\right)+I_{A}\left(v_{i}\right)+$ $F_{A}\left(v_{i}\right) \leq 3$, for all $v_{i} \in V(i=1,2, \ldots, n)$
ii. The functions $T_{B}^{-}: V \times V \rightarrow[0,1], T_{B}^{+}: V \times V \rightarrow[0,1], I_{B}^{-}: V \times V \rightarrow$ $[0,1], I_{B}^{+}: V \times V \rightarrow[0,1]$ and $F_{B}^{-}: V \times V \rightarrow[0,1], F_{B}^{+}: V \times V \rightarrow[0,1]$ are such that

$$
\begin{aligned}
& T_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right], \\
& T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right], \\
& I_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{-}\left(v_{i}\right), I_{B}^{-}\left(v_{j}\right)\right], \\
& I_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{+}\left(v_{i}\right),,_{B}^{+}\left(v_{j}\right)\right], \\
& F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right], \\
& F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right],
\end{aligned}
$$

denoting the degree of truth-membership, indeterminacy-membership and falsitymembership of the edge $\left(v_{i}, v_{j}\right) \in E$ respectively, where $0 \leq T_{B}\left(\left\{v_{i}, v_{j}\right\}\right)+$ $I_{B}\left(\left\{v_{i}, v_{j}\right\}\right)+F_{B}\left(\left\{v_{i}, v_{j}\right\}\right) \leq 3$ for all $\left\{v_{i}, v_{j}\right\} \in E(i, j=1,2, \ldots, n)$.

3. Interval-valued Fermatean neutrosophic graphs

Fuzzy sets, Intuitionistic fuzzy sets, Neutrosophic sets are the generalization of the classical set and which are also the most popular mathematical tools in the study uncertainty. Later, researchers combined these sets with graph structures and studied its properties in literature. These combinations, Fuzzy graphs, Intuitionistic fuzzy graphs and Neutrosophic graphs are useful in decision making problems. In an administrative setup, electing a leader among a group of people through the voting process, a judgement may give based on a candidate satisfies his expectations with a possibility of 0.80 and this candidate dissatisfies the expectations with a possibility of 0.95 and neutrally give 0.85 But their sum is $2.80(>2)$ and their square sum is 2.265 (>2) and the sum of the cubes is equal to $1.9835(<2)$. It is impossible to give an exact degree of membership in every instant, because the lack of knowledge, vague
information, and so forth may produce higher values to the membership values. To overcome this problem, we can use interval-valued fuzzy sets, which assign to each element a closed interval which approximates the "real," but unknown, membership degree. In this series, we are adding one more class of graphs namely, interval-valued Fermatean neutrosophic graphs and certain types of interval-valued Fermatean neutrosophic graphs are introduced and discussed in this section.

Definition 3.1

An interval-valued Fermatean neutrosophic set (IVFNS) A on the universe of discourse X is of the structure:
$A=\left\{\left\langle x, T_{A}(x), \mathrm{I}_{\mathrm{A}}(x), \mathrm{F}_{\mathrm{A}}(x)\right\rangle \mid x \in \mathrm{X}\right\}, \quad$ where $\quad T_{A}(x)=\left[\mathrm{T}_{\mathrm{A}}^{-}(x), T_{A}^{+}(x)\right], \mathrm{I}_{\mathrm{A}}(x)=$ $\left[\mathrm{I}_{\mathrm{A}}^{-}(x), \mathrm{I}_{\mathrm{A}}^{+}(\mathrm{x})\right]$ and $\mathrm{F}_{\mathrm{A}}(x)=\left[F_{A}^{-}(x), \mathrm{F}_{\mathrm{A}}^{+}(x)\right]$ represents the truth-membership degree, indeterminacy-membership degree and falsity-membership degree, respectively. Consider the mapping $T_{A}(x): X \rightarrow D[0,1], \mathrm{I}_{\mathrm{A}}(x): X \rightarrow D[0,1], F_{A}(x): X \rightarrow D[0,1]$ and $0 \leq\left(T_{A}(x)\right)^{3}+\left(F_{A}(x)\right)^{3} \leq 1$ and $0 \leq\left(I_{A}(x)\right)^{3} \leq 1$ $0 \leq\left(T_{A}(x)\right)^{3}+\left(F_{A}(x)\right)^{3}+\left(I_{A}(x)\right)^{3} \leq 2$ means
$0 \leq\left(T_{A}^{+}(\mathrm{x})\right)^{3}+\left(I_{A}^{+}(x)\right)^{3}+\left(F_{A}^{+}(x)\right)^{3} \leq 2 \quad \forall x \in \mathrm{X}$

Definition 3.2

An Interval-Valued Fermatean Neutrosophic Graph (IVFNG) of a graph $G^{*}=$ (V, E) we mean a pair $G=(A, B)$, where $A=\left\langle\left[T_{A}^{-}, T_{A}^{+}\right],\left[I_{A}^{-}, I_{A}^{+}\right],\left[F_{A}^{-}, F_{A}^{+}\right]\right\rangle$is an interval-valued Fermatean neutrosophic set on V ; and $B=$ $\left\langle\left[T_{B}^{-}, T_{B}^{+}\right],\left[I_{B}^{-}, I_{B}^{+}\right],\left[F_{B}^{-}, F_{B}^{+}\right\rangle\right]$is an interval valued Fermatean neutrosophic relation on E satisfying the following condition:
i. $\quad V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such that $T_{A}^{-}: V \rightarrow[0,1], T_{A}^{+}: V \rightarrow[0,1], I_{A}^{-}: V \rightarrow$ $[0,1], I_{A}^{+}: V \rightarrow[0,1]$ and $F_{A}^{-}: V \rightarrow[0,1], F_{A}^{+}: V \rightarrow[0,1]$ denote the degree of truth -membership, the degree of indeterminacy-membership and falsitymembership of the element $y \in V$, respectively, and $0 \leq T_{A}\left(v_{i}\right)+I_{A}\left(v_{i}\right)+$ $F_{A}\left(v_{i}\right) \leq 3$, for all $v_{i} \in V(i=1,2, \ldots, n)$.
ii. The functions $T_{B}^{-}: V \times V \rightarrow[0,1], T_{B}^{+}: V \times V \rightarrow[0,1], I_{B}^{-}: V \times V \rightarrow$ $[0,1], I_{B}^{+}: V \times V \rightarrow[0,1]$ and $F_{B}^{-}: V \times V \rightarrow[0,1], F_{B}^{+}: V \times V \rightarrow[0,1]$ are such that

$$
\begin{aligned}
& T_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right], \quad T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \leq \min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right], \\
& I_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{-}\left(v_{i}\right), I_{B}^{-}\left(v_{j}\right)\right], \quad I_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[I_{B}^{+}\left(v_{i}\right), I_{B}^{+}\left(v_{j}\right)\right], \\
& F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right], \quad F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right) \geq \max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right]
\end{aligned}
$$

denoting the degree of truth-membership, indeterminacy-membership and falsitymembership of the edge $\left(v_{i}, v_{j}\right) \in E$ respectively, where $0 \leq T_{B}\left(\left\{v_{i}, v_{j}\right\}\right)^{3}+$ $I_{B}\left(\left\{v_{i}, v_{j}\right\}\right)^{3}+F_{B}\left(\left\{v_{i}, v_{j}\right\}\right)^{3} \leq 2$ for all $\left\{v_{i}, v_{j}\right\} \in E(i, j=1,2, \ldots, n)$ means $0 \leq$ $\left(T_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3}+\left(I_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3}+\left(F_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3} \leq 2 \quad \forall x \in \mathrm{X}$.

Example 3.3

Consider a graph G^{*}, such that $V=\left\{x_{1}, x_{2}, x_{3}\right\}, E=\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{1}\right\}$. Let A be an interval valued Fermatean neutrosophic subset of V and B be an interval valued Fermatean neutrosophic subset of E, denoted by
$A=\left\{\begin{array}{c}\left.\left\langle x_{1}[0.85,0.95],[0.90,0.95],[0.85,0.85]\right\rangle,\left\langle x_{2},[0.85,0.90],[0.90,0.95],[0.85,0.90]\right\rangle\right\rangle \\ \left\langle x_{3},[0.85,0.95],[0.95,0.95],[0.85,0.95]\right\rangle\end{array}\right\}$
$B=\left\{\begin{array}{c}\left.\left\langle x_{1} x_{2},[0.80,0.90],[0.90,0.95],[0.80,0.85]\right\rangle,\left\langle x_{2} x_{3},[0.85,0.90],[0.90,0.95],[0.85,0.85]\right\rangle\right\rangle \\ \left\langle x_{3} x_{1},[0.85,0.95],[0.90,0.95],[0.85,0.85]\right\rangle\end{array}\right\}$

$\left\langle x_{3},[0.85,0.95],[0.95,0.95],[0.85,0.95]\right\rangle$

Figure 3. Interval-valued Fermatean Neutrosophic Graph G

Definition 3.4.

Let $G=(A, B)$ be an IVFNG. G is an interval valued regular Fermatean neutrosophic graph if it satisfies the following conditions:

$$
\begin{array}{cl}
\sum_{v_{1} \neq v_{2}} T_{B}^{-}\left(v_{1}, v_{2}\right) \text { constant } & ; \sum_{v_{1} \neq v_{2}} T_{B}^{+}\left(v_{1}, v_{2}\right)=\text { constant } \\
\sum_{v_{1} \neq v_{2}} I_{B}^{-}\left(v_{1}, v_{2}\right)=\text { constant } & ; \sum_{v_{1} \neq v_{2}} I_{B}^{+}\left(v_{1}, v_{2}\right)=\text { constant } \\
\sum_{v_{1} \neq v_{2}} F_{B}^{-}\left(v_{1}, v_{2}\right)=\text { constant } & ; \sum_{v_{1} \neq v_{2}} F_{B}^{+}\left(v_{1}, v_{2}\right)=\text { constant }
\end{array}
$$

Definition 3.5.

Let $G=(A, B)$ be an IVFNG. G is an interval valued regular strong neutrosophic graph if it satisfies the following conditions

$$
\begin{aligned}
& T_{B}^{-}\left(v_{1}, v_{2}\right)=\min \left(T_{A}^{-}\left(v_{1}\right), T_{A}^{-}\left(v_{2}\right)\right) ; \sum_{v_{1} \neq v_{2}} T_{B}^{-}\left(v_{1}, v_{2}\right)=\text { constant } \\
& T_{B}^{+}\left(v_{1}, v_{2}\right)=\min \left(T_{A}^{+}\left(v_{1}\right), T_{A}^{+}\left(v_{2}\right)\right) ; \sum_{v_{1} \neq v_{2}} T_{B}^{+}\left(v_{1}, v_{2}\right)=\text { constant } \\
& I_{B}^{-}\left(v_{1}, v_{2}\right)=\max \left(I_{A}^{-}\left(v_{1}\right), I_{A}^{-}\left(v_{2}\right)\right) ; \sum_{v_{1} \neq v_{2}} I_{B}^{-}\left(v_{1}, v_{2}\right)=\text { constant } \\
& I_{B}^{+}\left(v_{1}, v_{2}\right)=\max \left(I_{A}^{+}\left(v_{1}\right), I_{A}^{+}\left(v_{2}\right)\right) ; \sum_{v_{1} \neq v_{2}} I_{B}^{+}\left(v_{1}, v_{2}\right)=\text { constant } \\
& F_{B}^{-}\left(v_{1}, v_{2}\right)=\max \left(F_{A}^{-}\left(v_{1}\right), F_{A}^{-}\left(v_{2}\right)\right) ; \sum_{v_{1} \neq v_{2}} F_{B}^{-}\left(v_{1}, v_{2}\right)=\text { constant } \\
& F_{B}^{+}\left(v_{1}, v_{2}\right)=\max \left(F_{A}^{+}\left(v_{1}\right), F_{A}^{+}\left(v_{2}\right)\right) ; \sum_{v_{1} \neq v_{2}} F_{B}^{+}\left(v_{1}, v_{2}\right)=\text { constant }
\end{aligned}
$$

Definition 3.6.
Let $G=(A, B)$ be an IVFNG. G is a strong interval valued regular strong neutrosophic graph if it satisfies the following conditions:

$$
\begin{aligned}
T_{B}^{-}\left(v_{1}, v_{2}\right) & =\min \left(T_{A}^{-}\left(v_{1}\right), T_{A}^{-}\left(v_{2}\right)\right) ; \\
I_{B}^{-}\left(v_{1}, v_{2}\right) & =\max \left(I_{A}^{-}\left(v_{1}\right), I_{A}^{-}\left(v_{2}\right)\right) ; \\
F_{B}^{-}\left(v_{1}, v_{2}\right) & =\max \left(F_{A}^{-}\left(v_{1}\right), F_{A}^{-}\left(v_{2}\right)\right) ; \\
T_{B}^{+}\left(v_{1}, v_{2}\right) & =\min \left(T_{A}^{+}\left(v_{1}\right), T_{A}^{+}\left(v_{2}\right)\right) ; \\
I_{B}^{+}\left(v_{1}, v_{2}\right) & =\max \left(I_{A}^{+}\left(v_{1}\right), I_{A}^{+}\left(v_{2}\right)\right) ; \\
F_{B}^{+}\left(v_{1}, v_{2}\right) & =\max \left(F_{A}^{+}\left(v_{1}\right), F_{A}^{+}\left(v_{2}\right)\right) ;
\end{aligned}
$$

such that $\left.\left.\left.0 \leq T_{B}^{+}\left(v_{1}, v_{2}\right)\right)+\mathrm{I}_{B}^{+}\left(v_{1}, v_{2}\right)\right)+F_{B}^{+}\left(v_{1}, v_{2}\right)\right) \leq 3$, for all $v_{1}, v_{2} \in E$ and $0 \leq$ $\left(T_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3}+\left(I_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3}+\left(F_{B}^{+}\left(v_{i}, v_{j}\right)\right)^{3} \leq 2 \quad \forall x \in \mathrm{X}$

Example 3.7.

Let $G=(A, B)$ be an Interval-valued Fermatean Neutrosophic graph with $V=$ $\left\{x_{1}, x_{2}, x_{3}\right\}$.
$A=\left\{\begin{array}{c}\left\langle x_{1},[0.85,0.95],[0.90,0.95],[0.85,0.85]\right\rangle,\left\langle x_{2},[0.85,0.90],[0.90,0.95],[0.85,0.90]\right\rangle, \\ \left\langle x_{3},[0.85,0.95],[0.95,0.95],[0.85,0.95]\right\rangle,\end{array}\right\}$,
$B=\left\{\begin{array}{c}\left.\left\langle x_{1} x_{2},[0.85,0.90],[0.90,0.95],[0.80,0.90]\right\rangle,\left\langle x_{2} x_{3},[0.85,0.90],[0.95,0.95],[0.85,0.95]\right\rangle\right\rangle, \\ \left\langle x_{1} x_{3},[0.85,0.95],[0.95,0.95],[0.85,0.95]\right\rangle,\end{array}\right.$,

Figure 4. Strong Interval-valued Fermatean Neutrosophic Graph G

Definition 3.8.

Let A_{1} and A_{2} be interval-valued neutrosophic subsets of V_{1} and V_{2} respectively. Let B_{1} and B_{2} interval-valued neutrosophic subsets of E_{1} and E_{2} respectively. The Cartesian product of two IVFNGs G_{1} and G_{2} is denoted by $G_{1} \times G_{2}=\left(A_{1} \times A_{2}, B_{1} \times\right.$ B_{2}) and is defined as follows:

$$
\text { i. } \begin{aligned}
& \left(T_{A_{1}}^{-} \times T_{A_{2}}^{-}\right)\left(x_{1}, x_{2}\right)=\min \left(T_{A_{1}}^{-}\left(x_{1}\right), T_{A_{2}}^{-}\left(x_{2}\right)\right) \\
& \left(T_{A_{1}}^{+} \times T_{A_{2}}^{+}\right)\left(x_{1}, x_{2}\right)=\min \left(T_{A_{1}}^{+}\left(x_{1}\right), T_{A_{2}}^{+}\left(x_{2}\right)\right) \\
& \left(I_{A_{1}}^{-} \times I_{A_{2}}^{-}\right)\left(x_{1}, x_{2}\right)=\max \left(I_{A_{1}}^{-}\left(x_{1}\right), I_{A_{2}}^{-}\left(x_{2}\right)\right) \\
& \left(I_{A_{1}}^{+} \times I_{A_{2}}^{+}\right)\left(x_{1}, x_{2}\right)=\max \left(I_{A_{1}}^{+}\left(x_{1}\right), I_{A_{2}}^{+}\left(x_{2}\right)\right) \\
& \left(F_{A_{1}}^{-} \times F_{A_{2}}^{-}\right)\left(x_{1}, x_{2}\right)=\max \left(F_{A_{1}}^{-}\left(x_{1}\right), F_{A_{2}}^{-}\left(x_{2}\right)\right) \\
& \left(F_{A_{1}}^{+} \times F_{A_{2}}^{+}\right)\left(x_{1}, x_{2}\right)=\max \left(F_{A_{1}}^{+}\left(x_{1}\right), F_{A_{2}}^{+}\left(x_{2}\right)\right) \text { for all }\left(x_{1}, x_{2}\right) \in V \\
\text { ii. } \quad & \left(T_{B_{1}}^{-} \times T_{B_{2}}^{-}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\min \left(T_{A_{1}}^{-}(x), T_{B_{1}}^{-}\left(x_{2} y_{2}\right)\right) \\
& \left(T_{B_{1}}^{+} \times T_{B_{2}}^{+}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\min \left(T_{A_{1}}^{+}(x), T_{B_{1}}^{+}\left(x_{2} y_{2}\right)\right) \\
& \left(I_{B_{1}}^{-} \times I_{B_{2}}^{-}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(I_{A_{1}}^{-}(x), I_{B_{2}}^{-}\left(x_{2} y_{2}\right)\right) \\
& \left(I_{B_{1}}^{+} \times I_{B_{2}}^{+}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(I_{A_{1}}^{+}(x), I_{B_{2}}^{+}\left(x_{2} y_{2}\right)\right) \\
& \left(F_{B_{1}}^{-} \times F_{B_{2}}^{-}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(F_{A_{1}}^{-}(x), F_{B_{2}}^{-}\left(x_{2} y_{2}\right)\right) \\
& \left(F_{B_{1}}^{+} \times F_{B_{2}}^{+}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(F_{A_{1}}^{+}(x), F_{B_{2}}^{+}\left(x_{2} y_{2}\right)\right) \\
& \forall x \in V_{1} \text { and } \forall x_{2} y_{2} \in E_{2}
\end{aligned}
$$

iii. $\quad\left(T_{B_{1}}^{-} \times T_{B_{2}}^{-}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\min \left(T_{B_{1}}^{-}\left(x_{1} y_{1}\right), T_{A_{2}}^{-}(z)\right)$

$$
\begin{gathered}
\left(T_{B_{1}}^{+} \times T_{B_{2}}^{+}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\min \left(T_{B_{1}}^{+}\left(x_{1} y_{1}\right), T_{A_{2}}^{+}(z)\right) \\
\left(I_{B_{1}}^{-} \times I_{B_{2}}^{-}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(I_{B_{1}}^{-}\left(x_{1} y_{1}\right), I_{A_{2}}^{-}(z)\right) \\
\left(I_{B_{1}}^{+} \times I_{B_{2}}^{+}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(I_{B_{1}}^{+}\left(x_{1} y_{1}\right), I_{A_{2}}^{+}(z)\right) \\
\left(F_{B_{1}}^{-} \times F_{B_{2}}^{-}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(F_{B_{1}}^{-}\left(x_{1} y_{1}\right), F_{A_{2}}^{-}(z)\right) \\
\left(F_{B_{1}}^{+} \times F_{B_{2}}^{+}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(F_{B_{1}}^{+}\left(x_{1} y_{1}\right), F_{A_{2}}^{+}(z)\right) \\
\forall z \in V_{2} \text { and } \forall x_{1} y_{1} \in E_{1}
\end{gathered}
$$

Example 3.9.

Let $G_{1}^{*}=\left(A_{1}, B_{1}\right)$ and $G_{2}^{*}=\left(A_{2}, B_{2}\right)$ be two graphs where $V_{1}=\left\{u_{1}, u_{2}\right\}, V_{2}=$ $\left\{v_{1}, v_{2}\right\}$. Consider two interval valued Fermatean neutrosophic graphs:
$A_{1}=\left\{\left\langle\mathrm{u}_{1},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle u_{2},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle,\right\}$,
$B_{1}=\left\{\left\langle u_{1} u_{2},[0.85,0.90],[0.95,0.95],[0.95,0.95]\right\rangle\right\} ;$
$A_{2}=\left\{\left\langle v_{1},[0.80,0.90],[0.85,0.95],[0.95,0.85]\right\rangle,\left\langle v_{2},[0.95,0.90],[0.95,0.95],[0.80,0.85]\right\rangle,\right\}$,
$B_{2}=\left\{\left\langle v_{1} v_{2},[0.80,0.90],[0.95,0.95],[0.95,0.85]\right\rangle\right\}$.

Figure 5. Interval - valued Fermatean Neutrosophic Graphs $\mathrm{G}_{1}, \mathrm{G}_{2}$

Figure 6. Cartesian product of two IVFNGs $G_{1} \times \mathrm{G}_{2}$
Definition 3.10.
Let $G^{\$}=G_{1}^{\$} \times G_{2}^{\$}=\left(V_{1} \times V_{2}, E\right)$ be the composition of two graphs where $E=$ $\left\{\left(x, x_{2}\right)\left(x, y_{2}\right) / x \in V_{1}, x_{2} y_{2} \in E_{2}\right\} \cup\left\{\left(x_{1}, z\right)\left(y_{1}, z\right) / z \in V_{2}, x_{1} y_{1} \in E_{1}\right\} \cup$ $\left\{\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \mid x_{1} y_{1} \in E_{1}, x_{2} \neq y_{2}\right\}$, then the composition of interval valued Fermatean neutrosophic graphs $G_{1}\left[G_{2}\right]=\left(A_{1} \circ A_{2}, B_{1} \circ B_{2}\right)$ is an interval valued Fermatean neutrosophic graphs defined by:

$$
\begin{array}{ll}
\text { i. } & \left(T_{A_{1}}^{-} \circ T_{A_{2}}^{-}\right)\left(x_{1}, x_{2}\right)=\min \left(T_{A_{1}}^{-}\left(x_{1}\right), T_{A_{2}}^{-}\left(x_{2}\right)\right) \\
& \left(T_{A_{1}}^{+} \circ T_{A_{1}}^{+}\right)\left(x_{1}, x_{2}\right)=\min \left(T_{A_{1}}^{+}\left(x_{1}\right), T_{A_{1}}^{+}\left(x_{2}\right)\right) \\
& \left(I_{A_{1}}^{-} \circ I_{A_{2}}^{-}\right)\left(x_{1}, x_{2}\right)=\max \left(I_{A_{1}}^{-}\left(x_{1}\right), I_{A_{2}}^{-}\left(x_{2}\right)\right) \\
& \left(I_{A_{1}}^{+} \circ I_{A_{2}}^{+}\right)\left(x_{1}, x_{2}\right)=\max \left(I_{A_{1}}^{+}\left(x_{1}\right), I_{A_{2}}^{+}\left(x_{2}\right)\right) \\
& \left(F_{A_{1}}^{-} \circ F_{A_{A_{2}}}^{-}\right)\left(x_{1}, x_{2}\right)=\max \left(F_{A_{1}}^{-}\left(x_{1}\right), F_{A_{2}}^{-}\left(x_{2}\right)\right) \\
& \left(F_{A_{1}}^{+} \circ F_{A_{2}}^{+}\right)\left(x_{1}, x_{2}\right)=\max \left(F_{A_{1}}^{+}\left(x_{1}\right), F_{A_{2}}^{+}\left(x_{2}\right)\right) \forall x_{1} \in V_{1}, x_{2} \in V_{2} \\
\text { ii. } & \left(T_{A_{1}}^{-} \circ T_{A_{2}}^{-}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\min \left(T_{A_{1}}^{-}(x), T_{B_{2}}^{-}\left(x_{2} y_{2}\right)\right)
\end{array}
$$

Interval- valued Fermatean Neutrosophic Graphs

$$
\begin{array}{ll}
& \left(T_{A_{1}}^{+} \circ T_{A_{1}}^{+}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\min \left(T_{A_{1}}^{+}(x), T_{B_{2}}^{+}\left(x_{2} y_{2}\right)\right) \\
& \left(I_{A_{1}}^{-} \circ I_{A_{2}}^{-}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(I_{A_{1}}^{-}(x), I_{B_{2}}^{-}\left(x_{2} y_{2}\right)\right) \\
& \left(I_{A_{1}}^{+} \circ I_{A_{2}}^{+}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(I_{A_{1}}^{+}(x), I_{B_{2}}^{+}\left(x_{2} y_{2}\right)\right) \\
& \left(F_{A_{1}}^{-} \circ F_{A_{2}}^{-}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(F_{A_{1}}^{-}(x), F_{B_{2}}^{-}\left(x_{2} y_{2}\right)\right) \\
& \left(F_{A_{1}}^{+} \circ F_{A_{2}}^{+}\right)\left(\left(x, x_{2}\right)\left(x, y_{2}\right)\right)=\max \left(F_{A_{1}}^{+}(x), F_{B_{2}}^{+}\left(x_{2} y_{2}\right)\right) \forall x \in V_{1}, \forall x_{2} y_{2} \in E_{2} \\
\text { iii. } \quad\left(T_{B_{1}}^{-} \circ T_{B_{2}}^{-}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\min \left(T_{B_{1}}^{-}\left(x_{1} y_{1}\right), T_{A_{2}}^{-}(z)\right) \\
& \left(T_{B_{1}}^{+} \circ T_{B_{2}}^{+}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\min \left(T_{B_{1}}^{+}\left(x_{1} y_{1}\right), T_{A_{2}}^{+}(z)\right) \\
& \left(I_{B_{1}}^{-} \circ I_{B_{2}}^{-}\right)((x 1, z)(y 1, z))=\max \left(I_{B_{1}}^{-}\left(x_{1} y_{1}\right), I_{A_{2}}^{-}(z)\right) \\
& \left(I_{B_{1}}^{+} \circ I_{B_{2}}^{+}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(I_{B_{1}}^{+}\left(x_{1} y_{1}\right), I_{A_{2}}^{+}(z)\right) \\
& \left(F_{B_{1}}^{-} \circ F_{B_{2}}^{-}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(F_{B_{1}}^{-}\left(x_{1} y_{1}\right), F_{A_{2}}^{-}(z)\right) \\
& \left(F_{B_{1}}^{+} \circ F_{B_{2}}^{+}\right)\left(\left(x_{1}, z\right)\left(y_{1}, z\right)\right)=\max \left(F_{B_{1}}^{+}\left(x_{1} y_{1}\right), F_{A_{2}}^{+}(z)\right) \forall z \in V_{2}, \forall x_{1} y_{1} \\
\text { iv. } \quad & \left(T_{B_{1}}^{-} \circ T_{B_{2}}^{-}\right)\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\min \left(T_{A_{2}}^{-}\left(x_{2}\right), T_{A_{2}}^{-}\left(y_{2}\right), T_{B_{1}}^{-}\left(x_{1} y_{1}\right)\right) \\
& \left(T_{B_{1}}^{+} \circ T_{B_{2}}^{+}\right)\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\min \left(T_{A_{2}}^{+}\left(x_{2}\right), T_{A_{2}}^{+}\left(y_{2}\right), T_{B_{1}}^{+}\left(x_{1} y_{1}\right)\right) \\
& \left(I_{B_{1}}^{-} \circ I_{B_{2}}^{-}\right)\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\max \left(I_{A_{2}}^{-}\left(x_{2}\right), I_{A_{2}}^{-}\left(y_{2}\right), I_{B_{1}}^{-}\left(x_{1} y_{1}\right)\right) \\
& \left(I_{B_{1}}^{+} \circ I_{B_{2}}^{+}\right)\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\max \left(I_{A_{2}}^{+}\left(x_{2}\right), I_{A_{2}}^{+}\left(y_{2}\right), I_{B_{1}}^{+}\left(x_{1} y_{1}\right)\right) \\
& \left(F_{B_{1}}^{-} \circ F_{B_{2}}^{-}\right)\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\max \left(F_{A_{2}}^{-}\left(x_{2}\right), F_{A_{2}}^{-}\left(y_{2}\right), F_{B_{1}}^{-}\left(x_{1} y_{1}\right)\right) \\
\left(F_{B_{1}}^{+} \circ F_{B_{2}}^{+}\right)\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\max \left(F_{A_{2}}^{+}\left(x_{2}\right), F_{A_{2}}^{+}\left(y_{2}\right), F_{B_{1}}^{+}\left(x_{1} y_{1}\right)\right), \\
\forall\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in E^{0}-E, \text { where } E^{0}=E \cup\left\{\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \mid x_{1} y_{1}\right. \\
& \left.E E_{1}, x_{2} \neq y_{2}\right\} .
\end{array}
$$

Example 3.11.
Let $G_{1}^{*}=\left(A_{1}, B_{1}\right)$ and $G_{2}^{*}=\left(A_{2}, B_{2}\right)$ be two graphs where $V_{1}=\left\{u_{1}, u_{2}\right\}, V_{2}=$ $\left\{v_{1}, v_{2}\right\}$. Consider two interval valued Fermatean neutrosophic graphs:
$A_{1}=\left\{\left\langle\mathrm{u}_{1},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle\mathrm{u}_{2},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle\right\}$,
$B_{1}=\left\{\left\langle u_{1} u_{2},[0.85,0.90],[0.95,0.95],[0.95,0.95]\right\rangle\right\}$;
$A_{2}=\left\{\left\langle v_{1},[0.80,0.90],[0.85,0.95],[0.95,0.85]\right\rangle,\left\langle v_{2},[0.95,0.90],[0.95,0.95],[0.80,0.85]\right\rangle\right\}$,
$B_{2}=\left\{\left\langle v_{1} v_{2},[0.80,0.90],[0.95,0.95],[0.95,0.85]\right\rangle\right\}$.

$\left\langle\mathrm{v}_{1},[0,80,0.90],[0,85,0.95],[0,95,0.85]><\mathrm{v}_{2},[0,95,0.90],[0,95,0.95],[0,80,0,85]>\right.$

Figure 7. Interval - valued Fermatean Neutrosophic Graphs $\mathrm{G}_{1}, \mathrm{G}_{2}$

Figure 8. Composition of interval valued Fermatean neutrosophic graphs $G_{1}\left[G_{2}\right]$
Definition 3.12.
The union $G_{1} \cup G_{2}=\left(A_{1} \cup A_{2}, B_{1} \cup B_{2}\right)$ of two interval valued Fermatean neutrosophic graphs of the graphs G_{1}^{*} and G_{2}^{*} is an interval-valued Fermatean neutrosophic graph of $G_{1}^{*} \cup G_{2}^{*}$.

- $\quad\left(T_{A_{1}}^{-} \cup T_{A_{2}}^{-}\right)(x)=\left\{\begin{array}{c}T_{A_{1}}^{-}(x), \text { if } x \in V_{1} \text { and } x \notin V_{2} \\ T_{A_{2}}^{-}(x) \text { if } x \notin V_{1} \text { and } x \in V_{2} \\ \min \left(T_{A_{1}}^{-}(x), T_{A_{2}}^{-}(x)\right) \text { if } x \in V_{1} \cap V_{2},\end{array}\right.$,
- $\quad\left(T_{A_{1}}^{+} \cup T_{A_{2}}^{+}\right)(x)=\left\{\begin{array}{c}T_{A_{1}}^{+}(x), \text { if } x \in V_{1} \text { and } x \notin V_{2} \\ T_{A_{2}}^{+}(x) \text { if } x \notin V_{1} \text { and } x \in V_{2} \\ \min \left(T_{A_{1}}^{+}(x), T_{A_{2}}^{+}(x)\right) \text { if } x \in \mathrm{~V}_{1} \cap V_{2},\end{array}\right.$
- $\quad\left(I_{A_{1}}^{-} \quad \cup I_{A_{2}}^{-}\right)(x)=\left\{\begin{array}{c}I_{A_{1}}^{-}(x), \text { if } x \in V_{1} \text { and } x \notin V_{2} \\ I_{A_{2}}^{-}(x) \text { if } x \notin V_{1} \text { and } x \in V_{2} \\ \max \left(I_{A_{1}}^{-}(x), I_{A_{2}}^{-}(x)\right) \text { if } x \in V_{1} \cap V_{2},\end{array}\right.$
- $\quad\left(I_{A_{1}}^{+} \cup I_{A_{2}}^{+}\right)(x)=\left\{\begin{array}{c}I_{A_{1}}^{+}(x), \text { if } x \in V_{1} \text { and } x \notin V_{2} \\ I_{A_{2}}^{+}(x) \text { if } x \notin V_{1} \text { and } x \in V_{2} \\ \max \left(I_{A_{1}}^{+}(x), I_{A_{2}}^{+}(x)\right) \text { if } x \in \mathrm{~V}_{1} \cap V_{2},\end{array}\right.$
- $\quad\left(F_{A_{1}}^{-} \cup F_{A_{2}}^{-}\right)(x)=\left\{\begin{array}{c}F_{A_{1}}^{-}(x), \text { if } x \in V_{1} \text { and } x \notin V_{2} \\ F_{A_{2}}^{-}(x) \text { if } x \notin V_{1} \text { and } x \in V_{2} \\ \max \left(F_{A_{1}}^{-}(x), F_{A_{2}}^{-}(x)\right) \text { if } x \in \mathrm{~V}_{1} \cap V_{2},\end{array}\right.$
- $\quad\left(F_{A_{1}}^{+} \quad \cup F_{A_{2}}^{+}\right)(x)=\left\{\begin{array}{c}F_{A_{1}}^{+}(x), \text { if } x \in V_{1} \text { and } x \notin V_{2} \\ F_{A_{2}}^{+}(x) \text { if } x \notin V_{1} \text { and } x \in V_{2} \\ \max \left(F_{A_{1}}^{+}(x), F_{A_{2}}^{+}(x)\right) \text { if } x \in \mathrm{~V}_{1} \cap \mathrm{~V}_{2},\end{array}\right.$
- $\quad\left(T_{B_{1}}^{-} \cup T_{B_{2}}^{-}\right)(x y)=\left\{\begin{array}{c}T_{B_{1}}^{-}(x y), \text { if } x y \in E_{1} \text { and } x y \notin E_{2} \\ T_{B_{2}}^{-}(x y) \text { if } x y \notin E_{1} \text { and } x y \in E_{2} \\ \min \left(T_{B_{1}}^{-}(x y), T_{B_{2}}^{-}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cap E_{2},\end{array}\right.$
- $\quad\left(T_{B_{1}}^{+} \cup T_{B_{2}}^{+}\right)(x y)=\left\{\begin{array}{c}T_{B_{1}}^{+}(x y), \text { if } x y \in E_{1} \text { and } x y \notin E_{2} \\ T_{B_{2}}^{+}(x y) \text { if } x y \notin E_{1} \text { and } x y \in E_{2} \\ \min \left(T_{B_{1}}^{+}(x y), T_{B_{2}}^{+}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cap E_{2},\end{array}\right.$
- $\left(I_{B_{1}}^{-} \quad \cup I_{B_{2}}^{-}\right)(x y)=\left\{\begin{array}{c}I_{B_{1}}^{-}(x y), \text { if } x y \in E_{1} \text { and } x y \notin E_{2} \\ I_{B_{2}}^{-}(x y) \text { if } x y \notin E_{1} \text { and } x y \in E_{2} \\ \min \left(I_{B_{1}}^{-}(x y), I_{B_{2}}^{-}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cap E_{2},\end{array}\right.$
- $\left(I_{B_{1}}^{+} \cup I_{B_{2}}^{+}\right)(x y)=\left\{\begin{array}{c}I_{B_{1}}^{+}(x y), \text { if } x y \in E_{1} \text { and } x y \notin E_{2} \\ I_{B_{2}}^{+}(x y) \text { if } x y \notin E_{1} \text { and } x y \in E_{2} \\ \max \left(I_{B_{1}}^{+}(x y), I_{B_{2}}^{+}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cap E_{2},\end{array}\right.$
- $\left.\quad F_{B_{1}}^{-} \cup F_{B_{2}}^{-}\right)(x y)=\left\{\begin{array}{c}F_{B_{1}}^{-}(x y), \text { if } x y \in E_{1} \text { and } x y \notin E_{2} \\ F_{B_{2}}^{-}(x y) \text { if } x y \notin E_{1} \text { and } x y \in E_{2} \\ \max \left(F_{B_{1}}^{-}(x y), F_{B_{2}}^{-}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cap E_{2},\end{array}\right.$
- $\left(F_{B_{1}}^{+} \cup F_{B_{2}}^{+}\right)(x y)=\left\{\begin{array}{c}F_{B_{1}}^{+}(x y), \text { if } x y \in E_{1} \text { and } x y \notin E_{2} \\ F_{B_{2}}^{+}(x y) \text { if } x y \notin E_{1} \text { and } x y \in E_{2} \\ \max \left(F_{B_{1}}^{+}(x y), F_{B_{2}}^{+}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cap E_{2},\end{array}\right.$

Definition 3.13.
The join of $G_{1}+G_{2}=\left(A_{1}+A_{2}, B_{1}+B_{2}\right)$ interval valued neutrosophic graphs G_{1} and G_{2} of the graphs G_{1}^{*} and G_{2}^{*} is defined as follows:

- $\left(T_{A_{1}}^{-}+T_{A_{2}}^{-}\right)(x)=\left\{\begin{array}{c}T_{A_{1}}^{-}(x) \text { if } x \in V_{1} \\ T_{A_{2}}^{-}(x) \text { if } x \in V_{2} \\ \min \left(T_{A_{1}}^{-}, T_{A_{2}}^{-}\right)(x) \text { if } x \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2},\end{array}\right.$,
- $\left(T_{A_{1}}^{+}+T_{A_{2}}^{+}\right)(x)=\left\{\begin{array}{c}T_{A_{1}}^{+}(x) \text { if } x \in V_{1} \\ T_{A_{2}}^{+}(x) \text { if } x \in V_{2} \\ \min \left(T_{A_{1}}^{+}, T_{A_{2}}^{+}\right)(x) \text { if } x \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2},\end{array}\right.$
- $\quad\left(I_{A_{1}}^{-}+I_{A_{2}}^{-}\right)(x)=\left\{\begin{array}{c}I_{A_{1}}^{-}(x) \text { if } x \in V_{1} \\ I_{A_{2}}^{-}(x) \text { if } x \in V_{2} \\ \max \left(I_{A_{1}}^{-}, I_{A_{2}}^{-}\right)(x) \text { if } x \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2},\end{array}\right.$
- $\left(I_{A_{1}}^{+}+I_{A_{2}}^{+}\right)(x)=\left\{\begin{array}{c}I_{A_{1}}^{+}(x) \text { if } x \in V_{1} \\ I_{A_{2}}^{+}(x) \text { if } x \in V_{2} \\ \max \left(I_{A_{1}}^{+}, I_{A_{2}}^{+}\right)(x) \text { if } x \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2},\end{array}\right.$
- $\left(F_{A_{1}}^{-}+F_{A_{2}}^{-}\right)(x)=\left\{\begin{array}{c}F_{A_{1}}^{-}(x) \text { if } x \in V_{1} \\ F_{A_{2}}^{-}(x) \text { if } x \in V_{2} \\ \max \left(F_{A_{1}}^{-}, F_{A_{2}}^{-}\right)(x) \text { if } x \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2},\end{array}\right.$
- $\left(F_{A_{1}}^{+}+F_{A_{2}}^{+}\right)(x)=\left\{\begin{array}{c}F_{A_{1}}^{+}(x) \text { if } x \in V_{1} \\ F_{A_{2}}^{+}(x) \text { if } x \in V_{2} \\ \max \left(F_{A_{1}}^{+}, F_{A_{2}}^{+}\right)(x) \text { if } x \in \mathrm{~V}_{1} \cup \mathrm{~V}_{2},\end{array}\right.$
$\bullet \quad\left(T_{B_{1}}^{-}+T_{B_{2}}^{-}\right)(x y)=\left\{\begin{array}{c}T_{B_{1}}^{-}(x y), \text { if } x y \in E_{1} \\ T_{B_{2}}^{-}(x y) \text { if } x y \in E_{2} \\ \min \left(T_{B_{1}}^{-}(x y), T_{B_{2}}^{-}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cup E_{2},\end{array}\right.$
- $\left(T_{B_{1}}^{+}+T_{B_{2}}^{+}\right)(x y)=\left\{\begin{array}{c}T_{B_{1}}^{+}(x y), \text { if } x y \in E_{1} \\ T_{B_{2}}^{+}(x y) \text { if } x y \in E_{2} \\ \min \left(T_{B_{1}}^{+}(x y), T_{B_{2}}^{+}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cup E_{2},\end{array}\right.$
- $\left.I_{B_{1}}^{-}+I_{B_{2}}^{-}\right)(x y)=\left\{\begin{array}{c}I_{B_{1}}^{-}(x y), \text { if } x y \in E_{1} \\ I_{B_{2}}^{-}(x y) \text { if } x y \in E_{2} \\ \max \left(I_{B_{1}}^{-}(x y), I_{B_{2}}^{-}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cup E_{2},\end{array}\right.$
- $\left(I_{B_{1}}^{+}+I_{B_{2}}^{+}\right)(x y)=\left\{\begin{array}{c}I_{B_{1}}^{+}(x y), \text { if } x y \in E_{1} \\ I_{B_{2}}^{+}(x y) \text { if } x y \in E_{2} \\ \max \left(I_{B_{1}}^{+}(x y), I_{B_{2}}^{+}(x y)\right) \text { if xy } \in \mathrm{E}_{1} \cup E_{2},\end{array}\right.$
- $\left.\quad F_{B_{1}}^{-}+F_{B_{2}}^{-}\right)(x y)=\left\{\begin{array}{c}F_{B_{1}}^{-}(x y), \text { if } x y \in E_{1} \\ F_{B_{2}}^{-}(x y) \text { if } x y \in E_{2} \\ \max \left(F_{B_{1}}^{-}(x y), F_{B_{2}}^{-}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cup E_{2},\end{array}\right.$
- $\left(F_{B_{1}}^{+}+F_{B_{2}}^{+}\right)(x y)=\left\{\begin{array}{c}F_{B_{1}}^{+}(x y), \text { if } x y \in E_{1} \\ F_{B_{2}}^{+}(x y) \text { if } x y \in E_{2} \\ \max \left(F_{B_{1}}^{+}(x y), F_{B_{2}}^{+}(x y)\right) \text { if } x y \in \mathrm{E}_{1} \cup E_{2},\end{array}\right.$
- $\left(T_{B_{1}}^{-}+T_{B_{2}}^{-}\right)(x y)=\min \left(T_{B_{1}}^{-}(x), T_{B_{2}}^{-}(x)\right)$
- $\left(T_{B_{1}}^{+}+T_{B_{2}}^{+}\right)(x y)=\min \left(T_{B_{1}}^{+}(x), T_{B_{2}}^{+}(x)\right)$
- $\left(I_{B_{1}}^{-}+I_{B_{2}}^{-}\right)(x y)=\max \left(I_{B_{1}}^{-}(x), I_{B_{2}}^{-}(x)\right)$
- $\left(I_{B_{1}}^{+}+I_{B_{2}}^{+}\right)(x y)=\max \left(I_{B_{1}}^{+}(x), I_{B_{2}}^{+}(x)\right.$
- $\left(F_{B_{1}}^{-}+F_{B_{2}}^{-}\right)(x y)=\max \left(F_{B_{1}}^{-}(x), F_{B_{2}}^{-}(x)\right)$
- $\left(F_{B_{1}}^{+}+F_{B_{2}}^{+}\right)(x y)=\max \left(F_{B_{1}}^{+}(x), F_{B_{1}}^{+}(x)\right)$ if $x y \in E^{\prime}$,
where E^{\prime} is the set of all edges joining the nodes of V_{1} and V_{2}, assuming $V_{1} \cap V_{2}=$ \emptyset.

Example 3.14.
Let $G_{1}^{*}=\left(A_{1}, B_{1}\right)$ and $G_{2}^{*}=\left(A_{2}, B_{2}\right)$ be two graphs where $V_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, V_{2}=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$. Consider two interval valued fermatean neutrosophic graphs:
$A_{1}=\left\{\begin{array}{l}\left\langle u_{1},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle u_{2},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle, \\ \left\langle u_{3},[0.90,0.95],[0.85,0.95],[0.85,0.85]\right\rangle,\left\langle u_{4},[0.90,0.95],[0.95,0.90],[0.80,0.85]\right\rangle\end{array}\right\}$,
B_{1}
$=\left\{\begin{array}{c}\left\langle u_{1} u_{2},[0.85,0.90],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle u_{2} u_{3},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle, \\ \left.\left\langle u_{3} u_{4},[0.90,0.95],[0.95,0.95],[0.85,0.85]\right\rangle,\left\langle u_{1} u_{4},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle,\right\} ; \\ \left\langle u_{1} u_{3},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle\end{array}\right\} ;$
$A_{2}=\left\{\begin{array}{c}\left\langle u_{1},[0.80,0.90],[0.85,0.95],[0.95,0.85]\right\rangle,\left\langle u_{2},[0.95,0.90],[0.95,0.95],[0.80,0.85]\right\rangle, \\ \left\langle u_{3},[0.90,0.90],[0.95,0.95],[0.80,0.80]\right\rangle\end{array}\right\}$,
$B_{2}=\left\{\begin{array}{c}\left.\left\{u_{1} u_{2},[0.80,0.90],[0.95,0.95],[0.95,0.85]\right\rangle,\left\langle u_{2} u_{3},[0.90,0.90],[0.95,0.95],[0.80,0.85]\right\rangle\right\rangle, \\ \left\langle u_{1} u_{3},[0.80,0.90],[0.95,0.95],[0.95,0.85]\right\rangle\end{array}\right\}$.

Interval- valued Fermatean Neutrosophic Graphs

Figure 9. Interval - valued Fermatean Neutrosophic Graph G_{1}

Figure 10. Interval - valued Fermatean Neutrosophic Graph G_{2}

Figure 11. Union two Interval - valued Fermatean Neutrosophic Graphs $G_{1} \cup G_{2}$

$$
\left\{\begin{array}{c}
\left\langle u_{1} u_{2},[0.80,0.90],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle u_{2} u_{3},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle, \\
\left.\left\langle u_{3} u_{4},[0.90,0.95],[0.95,0.95],[0.85,0.85]\right\rangle,\left\langle u_{1} u_{4},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle,\right\} \\
\left\langle u_{1} u_{3},[0.80,0.90],[0.95,0.95],[0.95,0.95]\right\rangle
\end{array}\right\}
$$

Example 3.15

Let $G_{1}^{*}=\left(A_{1}, B_{1}\right)$ and $G_{2}^{*}=\left(A_{2}, B_{2}\right)$ be two graphs where $V_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}, V_{2}=$ $\left\{y_{1}, y_{2}, y_{3}\right\}$. Consider two interval valued Fermatean neutrosophic graphs:

$$
\begin{aligned}
A_{1} & =\left\{\begin{array}{c}
\left.\left\langle x_{1},[0.85,0.95],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle x_{2},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle\right\rangle, \\
\left\langle u_{3},[0.90,0.95],[0.85,0.95],[0.85,0.85]\right\rangle
\end{array}\right\} \\
B_{1} & =\left\{\left\langle x_{1} x_{2},[0.85,0.90],[0.95,0.95],[0.95,0.95]\right\rangle,\left\langle x_{2} x_{3},[0.90,0.90],[0.95,0.95],[0.85,0.85]\right\rangle\right\} \\
A_{2} & =\left\{\begin{array}{c}
\left.\left.\left.1 y_{1},[0.85,0.85],[0.95,0.95],[0.90,0.90]\right\rangle,\left\langle y_{2},[0.95,0.90],[0.90,0.95],[0.80,0.85]\right\rangle\right\rangle,\right\}, \\
\left.y_{3},[0.95,0.95],[0.85,0.85],[0.85,0.85]\right\rangle
\end{array}\right. \\
B_{2} & =\left\{\left\langle y_{1} y_{2},[[0.85,0.85],[0.95,0.95],[0.90,0.90]\rangle,\left\langle y_{2} y_{3},[0.95,0.90],[0.90,0.95],[0.85,0.85]\right\rangle\right\}\right.
\end{aligned}
$$

Said Broumi et al./Decis. Mak. Appl. Manag. Eng. 5 (2) (2022) 176-200

Figure 12. Interval - valued Fermatean Neutrosophic Graph G ${ }_{1}$

Figure 13. Interval - valued Fermatean Neutrosophic Graph G_{2}

Figure 14. Join of Interval - valued Fermatean Neutrosophic Graphs $G_{1}+G_{2}$

$$
\begin{aligned}
& E\left(G_{1}+G_{2}\right): \\
< & x_{1} x_{2},[0.85,0.90],[0.95,0.95],[0.95,0.95]>,<x_{2} x_{3},[0.90,0.90],[0.95,0.95],[0.85,0.85]> \\
< & y_{1} y_{2},[0.85,0.85],[0.95,0.95],[0.90,0.90]>,<y_{2} y_{3},[0.95,0.90],[0.90,0.95],[0.85,0.85]> \\
< & x_{1} y_{1},[0.85,0.85],[0.95,0.95],[0.95,0.95]>,<x_{1} y_{2},[0.85,0.90],[0.95,0.95],[0.95,0.95]> \\
< & <x_{1} y_{3},[0.85,0.95],[0.95,0.95],[0.95,0.95]> \\
< & x_{2} y_{1},[0.85,0.90],[0.95,0.95],[0.90,0.90]>,<x_{2} y_{2},[0.90,0.90],[0.95,0.95],[0.85,0.85]> \\
< & <x_{2} y_{3},[0.90,0.90],[0.95,0.95],[0.85,0.85]> \\
< & x_{3} y_{1},[0.85,0.85],[0.95,0.95],[0.90,0.90]>,<x_{3} y_{2},,[0.90,0.90],[0.90,0.95],[0.85,0.85]> \\
& <x_{3} y_{3},[0.90,0.95],[0.85,0.95],[0.85,0.85]>
\end{aligned}
$$

Definition 3.16.

An interval valued Fermatean neutrosophic graph $\mathrm{G}=(\mathrm{A}, \mathrm{B})$ is called complete if

$$
\begin{aligned}
& T_{B}^{-}\left(\left\{v_{i}, v j\right\}\right)=\min \left[T_{A}^{-}\left(v_{i}\right), T_{A}^{-}\left(v_{j}\right)\right], T_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right)=\min \left[T_{A}^{+}\left(v_{i}\right), T_{A}^{+}\left(v_{j}\right)\right] \\
& I_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right)=\max \left[I_{B}^{-}\left(v_{i}\right), I_{B}^{-}\left(v_{j}\right)\right], I_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right)=\max \left[I_{B}^{+}\left(v_{i}\right), I_{B}^{+}\left(v_{j}\right)\right] \\
& F_{B}^{-}\left(\left\{v_{i}, v_{j}\right\}\right)=\max \left[F_{B}^{-}\left(v_{i}\right), F_{B}^{-}\left(v_{j}\right)\right], F_{B}^{+}\left(\left\{v_{i}, v_{j}\right\}\right)=\max \left[F_{B}^{+}\left(v_{i}\right), F_{B}^{+}\left(v_{j}\right)\right]
\end{aligned}
$$

Definition 3.17.
Let $\mathrm{G}=(\mathrm{A}, \mathrm{B})$ be an interval-valued Fermatean neutrosophic graph where $A=$ $\left\langle\left[T_{A}^{-}, T_{A}^{+}\right],\left[I_{A}^{-}, I_{A}^{+}\right],\left[F_{A}^{-}, F_{A}^{+}\right]\right\rangle$is an interval-valued Fermatean neutrosophic set on V ; and $B=\left\langle\left[T_{B}^{-}, T_{B}^{+}\right],\left[I_{B}^{-}, I_{B}^{+}\right],\left[F_{B}^{-}, F_{B}^{+}\right]\right\rangle$is an interval valued Fermatean neutrosophic relation on E satisfying $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, such that $T_{A}^{-}: V \rightarrow[0,1], T_{A}^{+}: V \rightarrow$ $[0,1], I_{A}^{-}: V \rightarrow[0,1], I_{A}^{+}: V \rightarrow[0,1]$ and $F_{A}^{-}: V \rightarrow[0,1], F_{A}^{+}: V \rightarrow[0,1]$ denote the degree of truth-membership, the degree of indeterminacy-membership and falsitymembership of the element $y \in V$, respectively. The positive degree of a vertex $u \in$ $V(G) \quad$ is $\quad T^{+}(u)=\sum_{u v \in E(G)}\left[T_{A}^{+}\right] ; \quad I^{+}(u)=\sum_{u v \in E(G)}\left[I_{A}^{+}\right] ; F^{+}(u)=$ $\sum_{u v \in E(G)}\left[F_{A}^{+}\right]$and $d^{+}(u)=\left(T_{A}^{+}, I_{A}^{+}, F_{A}^{+}\right) . \quad T^{-}(u)=\sum_{u v \in E(G)}\left[T_{A}^{-}\right] ; \quad I^{-}(u)=$ $\sum_{u v \in E(G)}\left[I_{A}^{-}\right] ; F^{-}(u)=\sum_{u v \in E(G)}\left[F_{A}^{-}\right]$and $d^{-}(u)=\left(T_{A}^{-}, I_{A}^{-}, F_{A}^{-}\right)$. The degree of a vertex u is $d(u)=\left[d^{+}(u), d^{-}(u)\right]$.
If $d^{+}(u)=k_{1}, d^{-}(u)=k_{2}$ for all $u \in V, k_{1}, k_{2}$ are two real numbers, then the graph is called $\left[k_{1}, k_{2}\right]$-regular interval valued Fermatean neutrosophic graph.

Example 3.18.

We consider an interval-valued Fermatean neutrosophic graph

Figure 15. Interval- valued Fermatean Neutrosophic Graph G

$$
\begin{aligned}
& d\left(\mathrm{x}_{1}\right)=([1.65,1.80,1.65],[1.85,1.90,1.70]) ; \\
& \mathrm{d}\left(\mathrm{x}_{2}\right)=([1.65,1.8,1.65],[1.8,1.9,1.7]) ; \mathrm{d}\left(\mathrm{x}_{3}\right)=([1.7,1.8,1.7],[1.85,1.9,1.7]) .
\end{aligned}
$$

4. Proposed IVFNG framework for MCDM problem

The most of real life problems deal with uncertain domain. Recently, researchers (Sriganesh et al. 2021; Sundareswaran et al. 2022) have been studied the assessment of structural cracks in buildings using single-valued neutrosophic DEMATEL model and graph theoretical approach. The new concepts of IVFNG are employed to find the best materials that are used for making dental implants in the case of smokers. There are many researchers developed and studied different types uncertainty sets and their application in Multi-Criteria Decision- Making (MCDM) (Duran et al., 2021; Ejegwa et al. 2022; Mohanta et al., 2020; Li et al., 2022; Smarandache, 2020; Smarandache, 2022; Wang et al., 2022; Zhang et al., 2022). Mahesh et al. (2022), made a comparative study
of Dental Implant Materials Using Digraph Techniques. Dental implants are the most popular option to replace missing teeth. They create direct contact with the bone which mimics the root of the tooth, upon which dental prosthesis can be fitted. These implants are designed in such a way that they can last for a long time without any failure. They get adhered to the bone without intervening in any connective tissue and this phenomenon is known as osseointegration. Titanium is considered the gold standard as it is the most commonly used dental implant material in use since the 1960s Zirconia is a non-metallic alternative to metal dental implants like Ti alloy ($\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$) and $T i$ alloys.

Figure 16. Fishbone diagram with the various factors and subfactors
In this section, the concept of Interval-valued Fermatean neutrosophic graphtheoretic approach has been used to selection of material. The condition of osseointegration in smokers is taken into consideration to compare the different material dental implants namely Ti alloy ($\mathrm{Ti}-6 \mathrm{Al}-4 V$), Ti alloy, and zirconia. The material to be chosen should exhibit certain properties to satisfy the purpose. While designing a dental implant, many factors come into consideration such as materials, dimensions, shape, etc. Material selection is the most important property for a dental implant to serve the required function. The material of the implant must be affordable and available. Following are the factors that are important for the selection of the material.

Biocompatibility (B): A biocompatible material does not invoke an immune response and does not release any toxic substances. The major subfactors of biocompatibility are corrosion, inflammation, and allergy.

Surface Properties (S): Surface properties refer to macroscopic and microscopic features of the implant surface and it plays a major role in determining the level of osseointegration between the implant and the bone. The major subfactors of surface properties are Surface Tension and Surface Energy, Surface Roughness, Porosity.

Mechanical Properties(M): The implant biomaterial should possess a high degree of modulus of elasticity, to withstand the forces applied to the implant, thus preventing its deformation. It also ensures uniform stress distribution, thus reducing the implant movement concerning the bone.

Cost (C): Dental implants in India range from 30,000-50,000 rupees. The price depends on many factors like the type of tooth implant, material, and design of the implant, etc. Titanium is more expensive than stainless steel. The cost of titanium is slightly lower than zirconia.

Interval- valued Fermatean Neutrosophic Graphs

Titanium (M_{1}) and Titanium Alloys (M_{2}): Titanium is an excellent corrosionresistant material due to the formation of Ti alloy ($\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$) when Ti atoms react with water molecules and oxygen. They show excellent biocompatibility properties and support osseointegration. Titanium-based dental implants are strong and resist fracture. The cost of titanium is slightly lower than the zirconia. However, titanium implants are less aesthetically pleasing than zirconia and hence they are not preferable to use in the case of front teeth implant placement. Zirconia could be preferred in this case due to its ivory color.

Zirconia (M_{3}): Zirconia is a non-metallic alternative to metal dental implants like Ti. An advantage of zirconia over titanium is its ivory color. Its low modulus of elasticity and thermal conductivity, low affinity to plaque, and high biocompatibility, in addition to its white color, have made zirconia ceramics a very attractive alternative to titanium. It is highly corrosion resistant and does not involve any release of ions hence no cytotoxicity.

Figure 17. Types of Dental Implants
In the process of applying IVFNG in identifying the best material. IVFNG can be represented as a matrix whose rows and columns are the sub-factors. $V=$ $\left\{M_{1}, M_{2}, M_{3}\right\}$ be the three different material under the selection on the basis of wishing param eters or attributes set $A=\{B, S\}$.

Figure 18. IVFNG based on Biocompatibility \& Surface Properties
We construct the adjacency matrix for $M(B), M(S)$ listed below:

$$
\begin{gathered}
\boldsymbol{M}(\boldsymbol{B})=\left(\begin{array}{ccc}
\langle[0,0],[0,0],[0,0]\rangle & \langle[0.85,0.95],[0.95,0.95],[0.85,0.85]\rangle & <[0,0],[0,0],[0,0]\rangle \\
\langle[0.85,0.95],[0.95,0.95],[0.85,0.85]\rangle & <[0,0],[0,0],[0,0]\rangle & \langle[0.85,0.85],[0.95,0.95],[0.85,0.95]\rangle \\
<[0,0],[0,0],[0,0]\rangle & \langle[0.85,0.85],[0.95,0.95],[0.85,0.95]\rangle & <[0,0],[0,0],[0,0]\rangle
\end{array}\right) \\
\boldsymbol{M}(\boldsymbol{S})=\left(\begin{array}{ccc}
\langle[0,0],[0,0],[0,0]\rangle & \langle[0.85,0.95],[0.90,0.95],[0.85,0.85]\rangle & <[0.85,0.90],[0.95,0.95],[0.95,0.85]\rangle \\
\langle[0.85,0.95],[0.90,0.95],[0.85,0.85]\rangle & <[0,0],[0,0],[0,0]\rangle & <[0.85,0.90],[0.95,0.95],[0.95,0.85]\rangle \\
\langle[0.85,0.90],[0.95,0.95],[0.95,0.85]\rangle & \langle[0.85,0.90],[0.95,0.95],[0.95,0.85]\rangle & <[0,0],[0,0],[0,0]\rangle
\end{array}\right)
\end{gathered}
$$

We obtain the resultant interval valued Fermatean neutrosophic graph G by performing some operation (AND or OR). The incidence matrix of resultant interval Fermatean neutrosophic graph is

Sahin (2015) defined the average possible membership degree of element x to interval valued neutrosophic set $A=\left\langle\left[T_{A}^{-}(x), T_{A}^{+}(x)\right],\left[I_{A}^{-}(x), I_{A}^{+}(x)\right],\left[F_{A}^{-}(x), F_{A}^{+}(x)\right]\right\rangle$ as follows:

$$
S_{k}(x)=\frac{T_{A}^{-}(x)+T_{A}^{+}(x)+4-I_{A}^{-}(x)-I_{A}^{+}(x)-F_{A}^{-}(x)-F_{A}^{+}(x)}{6}
$$

Based on $S_{k}(x)$, Table 2 depicted the score value of adjacency matrix of resultant interval valued Fermatean neutrosophic graph G with S_{k} and choice value for both materials.

Table 2. Score value of adjacency matrix

Materials	$\boldsymbol{M}_{\boldsymbol{1}}$	$\boldsymbol{M}_{\mathbf{2}}$	$\boldsymbol{M}_{\mathbf{3}}$	Overall
$\boldsymbol{M}_{\mathbf{1}}$	0	0.383	0	0.383
$\boldsymbol{M}_{\mathbf{2}}$	0.383	0	0.317	0.7
$\boldsymbol{M}_{\mathbf{3}}$	0	0.317	0	0.317

Further, it is noticed from Table 2, Ti alloy $(T i-6 A l-4 V)$ has higher level of osseointegration in smokers followed by $T i$ and zirconia. Therefore, we may claim that IVFNG is a new way to tackle the uncertainty in Fermatean Neutrosophic environment.

5. Conclusion

The concept of uncertainty plays a vital role in all science and engineering problems. Especially, Fuzzy theory, Intuitionistic fuzzy theory and then Neutrosophic theory are the most valuable tools to find the optimum solution in mutli-criteria decision making problems. In this work, we include one more concept called intervalvalued Fermatean neutrosophic graphs in the list which has Pythagorean Neutrosophic, Single Valued Neutrosophic, Bipolar Neutrosophic graphs. We have discussed various types of Interval-valued Fermatean Neutrosophic graphs and the other types of these graphs in this paper. We also apply this new type of graph in a decision making problem. We are extending our research on this new concept to introduce Interval-valued Fermatean Neutrosophic number and Interval-valued Fermatean triangle and trapezoidal Neutrosophic number and its applications in our future work.

Interval-valued Fermatean Neutrosophic graph has many advantages in MCDM problems such as mobile networking, supply chain management system, bio-medical applications, e-waste management and networking, etc. In future, one may determine the optimum alternatives in MCDM problems using IVFNG based score and accuracy functions.

Author Contributions: Conceptualization, S.B and F.S; methodology, S.B., M.T., and A.B; software, R.S.; validation, R.S. and M.S.; formal analysis, R.S.; investigation, S.B.; resources, S.B., R.S., and M.S.; writing-original draft preparation, R.S., and M.S.; writing-review and editing, R.S., and M.S.; visualization, R.S., and M.S.; supervision,

Interval- valued Fermatean Neutrosophic Graphs

S.B and G.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research is not financially supported by any funding agencies.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the management of Sri Sivasubramaniya Nadar College of Engineering for giving the needed facilities to complete this research work.

Conflicts of Interest: Authors declares that no competing interests for this research article.

References

Ajay, D., \& Chellamani, P. (2020). Pythagorean Neutrosophic Fuzzy Graphs. International Journal of Neutrosophic Science, 11, 108-114.

Ajay, D., Karthiga, S., \& Chellamani, P. (2021). A study on labelling of pythagorean neutrosophic fuzzy graphs. Journal of Computational Mathematica, 5, 105-116.

Ajay, D., Chellamani, P., Rajchakit, G., Boonsatit, N., \& Hammachukiattikul, P. (2022). Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM. AIMS Mathematics, 7, 9424-9442.

Ajay, D., \& Chellamani, P. (2021). Pythagorean Neutrosophic Dombi Fuzzy Graphs with an Application to MCDM. Neutrosophic Sets and Systems, 47, 411-431.

Akalyadevia, K., Antony Crispin Sweety, C., \& Sudamani Ramaswamy, A. R. (2022). Spherical neutrosophic graph coloring. AIP Conference Proceedings, 2393, 020217.

Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets System, 20, 87-96.
Aydın, S., \& Kutlu Gündoğdu, F. (2021). Interval-Valued Spherical Fuzzy MULTIMOORA Method and Its Application to Industry 4.0. In: Kahraman, C., Kutlu Gündoğdu, F. (eds) Decision Making with Spherical Fuzzy Sets. Studies in Fuzziness and Soft Computing, 392. Springer, Cham.

Broumi, S., Talea, M., Bakali, A., \& Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New Theory, 10, 86-101.

Broumi, S., Bakali, A., Talea, M., \& Smarandache, F. (2016a). Isolated single valued neutrosophic graphs. Neutrosophic Sets Systems, 11, 74-78.

Broumi, S., Smarandache, F., Talea, M., \& Bakali, A. (2016b). An introduction to bipolar single valued neutrosophic graph theory. Applied Mechanics and Materials, 841, 184191.

Broumi, S., Talea, M., Bakali, A., \& Smarandache, F. (2016c). On bipolar single valued neutrosophic graphs. New Trends in Neutrosophic Theory and Applications, 11, 203221.

Broumi, S., Mohamed Tale., Assia Bakali., \& Smarandache, F. (2016d). Interval Valued Neutrosophic Graphs. Critical Review, Volume XII.

Broumi, S., Sundareswaran, R., Shanmugapriya, M., Bakali, A. \& Talea, M. (2022). Theory and Applications of Fermatean Neutrosophic Graphs. Neutrosophic Sets and Systems, 50, 248-286.

Donghai Liu., Yuanyuan Liu., \& Lizhen Wang. (2019). Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods. Journal of Intelligent Systems, 1-28.

Duran, V., Topal, S., \& Smarandache, F. (2021). An application of neutrosophic logic in the confirmatory data analysis of the satisfaction with life scale. Journal of Fuzzy Extension and Applications, 2(3), 262-282.

Duleba, S., Kutlu Gündoğdu, F., \& Moslem, S. (2021). Interval-Valued Spherical Fuzzy Analytic Hierarchy Process Method to Evaluate Public Transportation Development. Informatica, 32(4), 661-686.

Ejegwa, P., \& Zuakwagh, D. (2022). Fermatean fuzzy modified composite relation and its application in pattern recognition. Journal of Fuzzy Extension and Applications, $3(2), 140-151$.

Ganie, A. H. (2022). Multicriteria decision-making based on distance measures and knowledge measures of Fermatean fuzzy sets. Granular Computing, 1-20.

Hossein Rashmanlou., \& Young Bae Jun. (2013). Complete interval-valued fuzzy graphs. Annals of Fuzzy Mathematics and Informatics, 6(3), 677-687.

Jeevaraj, S. (2021). Ordering of interval-valued Fermatean fuzzy sets and its applications. Expert Systems with Applications, 185, 115613.

Jun, Y.B., Smarandache, F., \& Kim, C.S. (2017). Neutrosophic Cubic sets. New Mathematics and Natural Computation, 13, 41-54.

Kartick Mohanta, Arindam Dey \& Anita Pal. (2020). A Study on Picture Dombi Fuzzy Graph. Decision Making: Applications in Management and Engineering, 3(2), 119-130.

Kutlu Gündoğdu, F., \& Kahraman, C. (2021). Hospital Performance Assessment Using Interval-Valued Spherical Fuzzy Analytic Hierarchy Process. In: Kahraman, C., Kutlu Gündoğdu, F. (eds) Decision Making with Spherical Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol 392. Springer, Cham.

Kutlu Gündoğdu, F., \& Kahraman, C. (2019). A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Engineering Applications of Artificial Intelligence, 85, 307-323.

Lakhwani, T.S., Mohanta, K., \& Dey, A. (2022). Some operations on Dombi neutrosophic graph. Journal of Ambient Intelligence and Humanized Computing, 13, 425-443.

Lathamaheswari, M., Nagarajan, D., Garg, H., \& Kavikumar, J. (2021). Interval Valued Spherical Fuzzy Aggregation Operators and Their Application in Decision Making Problem. In: Kahraman, C., Kutlu Gündoğdu, F. (eds) Decision Making with Spherical Fuzzy Sets. Studies in Fuzziness and Soft Computing, 392. Springer, Cham.

Li, J., Alburaikan, A. \& de Fátima Muniz, R. (2022), Evaluation of safety-based performance in construction projects with neutrosophic data envelopment analysis, Management Decision, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/MD-02-2022-0237

Mahesh, V., Sundareswaran, R., Nikileswari, L., Varsha, S., \& Harsha, B. Comparative Study of Dental Implant Materials Using Digraph Techniques. AIP Conference Proceedings, (accepted for publication).

Mishra, S. N. \& Pal, A. (2013). Product of interval-valued intuitionistic fuzzy graph. Annals of Pure and Applied Mathematics, 5(1), 37-46.

Mohamed Ismayil, A. \& Mohamed Ali, A. (2014). On Strong Interval-Valued Intuitionistic Fuzzy Graph. International Journal of Fuzzy Mathematics and Systems, 4(2), 161-168.

Mohamed S.Y., \& Ali A.M. (2018). Interval-valued Pythagorean fuzzy graph. Journal of Computer and Mathematical Sciences, 9(10), 1497-1511.

Muhammad Akram., Noura Omair Alshehri., \& Wieslaw A. Dudek. (2013). Certain Types of Interval-Valued Fuzzy Graphs. Journal of Applied Mathematics, 857070, 1-11.

Nagarajan, D., Lathamaheswari, M., Broumi, S., \& Kavikumar, J. (2019). Dombi interval valued neutrosophic graph and its role in traffic control management. Neutrosophic Sets and Systems, 124, 114-133.

Peng Xu., Hao Guan., Talebi, A. A., Ghassemi, M., \& Hossein Rashmanlou. (2022). Certain Concepts of Interval-Valued Intuitionistic Fuzzy Graphs with an Application. Advances in Mathematical Physics, 6350959, 1-12.

Polymenis, A. (2021). A neutrosophic Student's t-type of statistic for AR (1) random processes. Journal of Fuzzy Extension and Applications, 2(4), 388-393.

Sanapati, T., \& Yager. R. Yager. (2019). Fermatean Fuzzy Sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674.

Şahin, R. (2015). Cross-entropy measure on interval neutrosophic sets and its applications in multicriteria decision making. Neural Computing and Applications, 111.

Smarandache, F. (2019). Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set (Atanassov's Intuitionistic Fuzzy Set of second type), q-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, and n-Hyper Spherical Fuzzy Set, while Neutrosophication is a Generalization of Regret Theory, Grey System Theory, and Three-Ways Decision (revisited), Journal of New Theory. 29, 01-35.

Smarandache, F. (2017). Spherical Neutrosophic Numbers, in the book Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications, Second extended and improved edition. Pons Publishing House Brussels. Section II.2, 28-29.

Smarandache, F. (2020). Generalizations and alternatives of classical algebraic structures to neutroAlgebraic structures and antiAlgebraic structures. Journal of Fuzzy Extension and Applications, 1(2), 81-83.

Smarandache, F. (2022). Plithogeny, Plithogenic Set, Logic, Probability and Statistics: A Short Review.

Stephen, S., \& Helen, M. (2021). Interval-valued Neutrosophic Pythagorean Sets and their Application Decision Making using IVNP-TOPSIS. International Journal of Innovative Research in Science. Engineering and Technology, 10 (1), 14571-14578.

Sriganesh, R., Sundareswaran, R., Shanmugapriya, M., \& Pandikumar, M. (2021). A Study of power plant selection process - A graph theoretic approach. Journal of Physics.: Conference Series, 1921, 012081.

Sundareswaran R., Sangeetha, P., Shanmugapriya, M., Thaga Sheriff, M., Benasir, M., Shri Thrisha, A., \& Sathyaprakash, R. Assessment of structural cracks in buildings using single-valued neutrosophic DEMATEL model, https://doi.org/10.1016/j.matpr.2022.04.156, Materials Today: Proceedings (accepted for publication).
Wang, C., Hu, Z. \& Bao, Z. (2022), Evaluation of the government entrepreneurship support by a new dynamic neutrosophic operator based on time degrees. Management Decision, 2022-0305.

Xindong P., \& Yong Y. (2016). Fundamental properties of interval-valued Pythagorean fuzzy Aggregation Operators. International Journal of Intelligent Systems, 31, 444487.

Yahya, S., Mohamed \& Mohamed Ali, A. (2018). On Strong Interval-valued Pythagorean Fuzzy Graph. Journal of Applied Science and Computations, 5(10), 699- 713.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338-353.
Zhang, K., Xie, Y., Noorkhah, S.A., Imeni, M. and Das, S.K. (2022), Neutrosophic management evaluation of insurance companies by a hybrid TODIM-BSC method: a case study in private insurance companies, Management Decision, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/MD-01-2022-0120

© 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

[^0]: * Corresponding author. broumisaid78@gmail.com, s.broumi@flbenmsik.ma

 E-mail addresses: sundareswaranr@ssn.edu.in (R. Sundareswaran),
 shanmugapriyma@ssn.edu.in (M. Shanmugapriya), giorgio.nordo@unime.it (G. Nordo), taleamohamed@yahoo.fr (M. Talea), assiabakali@yahoo.fr (A. Bakali),
 fsmarandache@gmail.com (F. Smarandache)

