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Abstract.  The comparative analysis of objective methods for determining 
the weights of criteria in the problems of multi-criteria decision-making is 
carried out. It is shown that the use of methods for determining the 
weights of criteria, based on formal processing of the decision matrix 
(Entropy, CRITIC, Standard deviation) for MCDM problems in some cases 
is not correct. It is demonstrated that the Entropy weighting method 
(EWM) is highly sensitive to evaluation of probabilities of states based on 
the decision matrix. For the Entropy method two modifications of 
estimation of probabilities of states are proposed that partially eliminate 
the contradictions of the basic EWM method. The first modification 
(EWM.df) is based on a statistical approach and it estimates the 
probabilities of states based on attribute distribution function. The second 
modification (EWM.dsp) estimates the probabilities of states based on the 
relative dispositions of attributes. Two options both have their supporting 
rationale. The analysis of integrated weighing methods is carried out and 
various options for aggregation of weights are given. An integrated EWM-
Corr-method is proposed which allows to re-allocate the weights obtained 
by the Entropy method among correlated criteria. 

Key words: Multi-criteria decision making, weights estimation, Entropy 
weighting method, CRITIC method, Standard Deviation method, integrated 
weighting methods. 
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1. Introduction  

A significant number of multi-criteria decision-making methods (MCDM) constructs 
the performance indicator of alternatives, taking into account the weights of the 
criteria (Hwang & Yoon, 1981; Triantaphyllou, 2000; Tzeng & Huang, 2011; Pamucar 
& Savin, 2020). The weights of the criteria quantify their importance and can 
significantly affect the outcome of the decision-making process. Many authors note 
the high sensitivity of the solution to variations in the weights of the criteria (Barron 
& Schmidt, 1988; Mareschal, 1988; Wolters & Mareschal, 1995; Li et al., 2013; 
Karande et al. 2016; Mukhametzyanov & Pamučar, 2018; Zolfani et al., 2020). Given 
the importance of the weighing procedure, the balanced choice  requires 
comprehensive analysis.  
As you know, the weights of the components of a complex system can be obtained in 
different ways. One of the generally accepted classifications of methods for assessing 
criteria weights divides methods into three categories based on subjective, objective 
and integrated or combined approach to weighing (Goodwin & Wright, 1998, Bobko 
et al., 2007; Ginevicius & Podvezko, 2005; Jahan et al., 2012, Odu, 2019; Ali et al., 
2021).  
The determination of the subjective weight is based on the opinion of experts or 
expert groups representing the views of various stakeholders. These are such 
methods as the direct ranking method (DR) (Goodwin & Wright, 1998; Roberts & 
Goodwin, 2002; Von Winterfeldt & Edwards, 1986), the point allocation (PA) method 
(Doyle et al., 1997; Roberts & Goodwin, 2002), the ranking method (Ahn & Park, 
2008; Barron, 1992, 1996; Roberts & Goodwin, 2002; Solymosi & Dombi, 1986; 
Milosevic et al., 2021), methods of programming (Pekelman & Sen, 1974; Shirland et 
al., 2003; Deng et al., 2004), Delphi method (Hwang & Yoon, 1981), pair-wise 
comparison (AHP) (Saaty, 1980; Takeda et al., 1987), step-wise weight assessment 
ratio analysis (SWARA) (Kersuliene et al., 2010), full consistency method (FUCOM) 
(Pamučar et al., 2018; Pamucar & Ecer, 2020), Level Based Weight Assessment 
(LBWA) (Žižović & Pamucar, 2019). One of the important problems of subjective 
methods is an assessment of the consistency of expert opinions. For example, the 
AHP-method defines a consistency index, which improves the reliability of the 
weight estimates. Other procedures for assessment of  the consistency of expert 
judgments are based on statistical methods and correlation. 
The category of objective assessment methods is based on the use of information 
about the criteria and their interactions contained in the decision-making matrix. 
These are such methods as entropy weighting method (EWM) (Lotfi & Fallahnejad, 
2010; Wu et al., 2011; He et al., 2016), CRiteria Importance Through Inter-criteria 
Correlation (CRITIC) (Diakoulaki et al., 1995), standard deviation (SD) and their 
modifications (Jahan et al., 2012; Žižović et al., 2020; Alosta et al., 2021). For these 
methods, there is no answer to the question of how fully and objectively the limited 
sample of attributes of alternatives describes the value of the criteria. Obviously, the 
result is completely determined by the decision matrix. In particular, this article 
provides examples of how strongly the weights obtained for this category of 
methods for specially constructed decision-making matrices can differ. This paper 
analyzes the impact of normalization of the decision matrix and inversion of cost 
attributes on the weights estimation results. The hypersensitivity of the Entropy 
method to the estimation of state probabilities based on the decision matrix is 
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shown. For the Entropy method, a statistical approach to assessing the probability of 
states is proposed, which partially eliminates the contradictions of the formal 
method. 
The essence of the integrated methods consists in combining the weighing results 
obtained by different methods with the subsequent use of the normalization of 
values by the Sum-method (Ma et al., 1999; Xu, 2004; Ustinovičius, 2001; Jahan et al., 
2012; Vinogradova et al., 2018; Đalić et al., 2020; Singh et al., 2020). It is believed 
that integration can overcome the disadvantages of subjective and objective 
weighing methods. The integration of weights obtained by different methods takes 
different forms. In some cases, the combination procedure strengthens (weakens) 
the weights for “strong” (“weak”) criteria, when the criterion had a greater (lower) 
weight in both weighing methods, in other cases, the weight of the criteria is 
smoothed out when the criterion had a larger one in one of the methods and less 
weight in a different weighing method.  
The paper presents various options for aggregating weights. Numerical examples 
show the importance of preliminary analysis of the results when choosing the final 
version of the aggregation procedure, taking into account the peculiarities of the 
decision-making problem. An integrated EWM-Corr method is proposed, which 
allows redistributing the weights obtained in the Entropy method between 
correlated criteria. 
The idea that the assessment of weights is purely technical in nature and therefore 
objective is erroneous. It is rather difficult to make them objective, since there can be 
different problems with different data structures, varying degrees of uncertainty, 
etc. The existence of many methods and their modifications leading to different 
results indicates that the estimation of weights requires serious analysis. Since the 
design and determination of weights can always be interpreted in terms of value 
judgments, the procedure should also include the subjective opinions of individual 
experts. The differencies in assessments of the surrounding world, as noted by the 
famous subjective idealist George Berkeley, are due to the fact that people's 
perceptions are far from identical. Their correct agreement limits the decision 
obtained by majority rule. 
The purpose of this work is to show the characteristic features, shortcomings and 
possible contradictions of some methods for evaluating the weights of criteria for 
complex and critical analysis when solving problems of making multi-criteria 
decisions.  

2. Preliminaries. Objective weighting methods: Entropy, CRITIC, SD 

The category of objective assessment methods is based on the use of information 
about the criteria and their interaction contained in the decision-making matrix. The 
standard deviation or an “entropy” measure of importance have been proposed for 
quantifying contrast intensity and thus deriving objective weights of criteria (Zeleny, 
1982). For objective weight estimation methods, it is believed that the greater the 
scatter of the values of the attribute of alternatives (the greater the difference 
between the values of the elements in the column, or the greater the variance, or the 
less entropy), the greater valuable information the criterion (indicator) contains and 
the higher the criterion weight. The criterion in which all alternatives have the same 
performance does not offer any additional information. The general structure of 
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objective methods for assessing weights is shown in the scheme in Figure 1. Data 
transformation (or normalization) is intended to co-ordinate the measurement 
scales of individual attributes. In order to maintain the proportions between natural 
and normalized values, linear transformations are used. 

 
 
 
 
 
 
 

Figure 1. General structure of objective methods for evaluating the weight of 

criteria. 

Entropy — EWM-method, multiplication of standard deviation and correlation — 
CRITIC-method and standard deviation — SD-method are used as key indicators. 
The weights of the criteria are determined as the intensities of the key indicators 
using the Sum-normalization. 
Below are step-by-step weight estimation algorithms using the three most 
commonly used methods for solving MCDM problems — Entropy, CRITIC and SD. 

Nomenclature: 

Ai   alternatives (objects) (i=1,…, m) 
Cj

+, Cj
-  criteria or objects properties (j=1,…, n), (+)benefit, (-) cost 

aij   elements of decision matrix (DM) 
rij  normalized elements of decision matrix 
𝑟̅j  average value of j-th criterion 
aj

max   maximum element in criteria j 
aj

min   minimum element in criteria j 
wj   weight or importance of criteria (j=1,…, n) 

2.1. Entropy weighting method (EWM) 

The values of the decision matrix are transformed into the segment [0; 1] using Max-
Min normalization (1) with simultaneous inversion (2) of cost criteria values: 
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The intensity (pij) of the j-th attribute of the i-th alternative is calculated for each 
criterion (Sum-method): 

Linear data 
transformation 

and inversion of the 
cost attributes 

Calculation 
of the key 
indicator 

 

Calculation 
of the weight as 

intensity of q 

aij rij qj wj=qj/∑ qj 
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To calculate the entropy (ej) and the key indicator (qj) of each criterion: 
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To calculate the weight of each criterion: 
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The entropy of the attributes of alternatives for each criterion is a measure of the 
significance of this criterion. It is believed that the lower the entropy of the criterion, 
the more valuable information the criterion contains. 

2.2. CRiteria Importance Through Inter-criteria Correlation (CRITIC)  

The values of the decision matrix are transformed based on the concept of the ideal 
point. To determine “best” (B=bj) and “worst” (T=tj) solution ([1xn]-vector) for all 
attributes and determine relative deviation matrix V[mxn]: 
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To determine standard deviation (s) ([1xn]-vector) for colls of V: 
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To determine the linear correlation matrix (cjk) ([nxn]-matrix) for colls of V is the 

(correlation coefficient between the vectors rj and rk): 
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To calculate the key indicator and weight of criteria by the formula (6): 

1

(1 ), 1,...,
n

j j jk

k
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

   
.                   (10) 

In the CRITIC method, the standard deviation sj is a measure of the significance of 
this criterion. Allowance for the relationship between the criteria is determined 
through the correlation matrix, which allows you to distribute the weight between 
the correlated criteria through the coefficients of reduction (1‒c). The amount 
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shown in expression (10) is a measure of the conflict created by j-th criterion in 
relation to the rest of the criteria. Finally, the amount of information contained in the 
j-th criterion is determined using multiplicative aggregation of measures by the 
formula (10). 
The Spearman rank correlation coefficient could be used instead of cjk, in order to 
provide a more general measure of the relationship between the rank orders of the 
elements included in the vectors rj and rk. 

2.3. Standard deviation (SD) 

The values of the decision matrix are transformed into the segment [0; 1] using Max-
Min normalization with simultaneous inversion of cost criteria values by formulas 
(1) and (2). 

To calculate the key indicator and weight of criteria by expression (6): 
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The standard deviation of rj is a measure of the value of that criterion to the decision 
making process. 

3. Features of methods for evaluating the weights of criteria in MCDM 
problems  

3.1. Estimating the probabilities of the object states in the Entropy method 

One of the main notes for the Entropy method is that the pij in the entropy method 
determines the probabilities of m possible and independent states (alternatives) of 
an object. It is not clear how the probabilities of states and intensities, obtained by 
the Sum-method according to expression (3), are related.  
If we combine expressions (1)‒(3) for profit criteria (similarly for cost criteria), we 
get: 

min

min( )
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.                   (12) 

The pij values are the relative distances of the j-th attribute of alternatives to the 
alternative with the smallest value. 
Obviously, a discrete random variable is determined by a pair (xi, pi) and the values 
of pi are needed to calculate the entropy. However, expression (3) determines pi with 
respect to xi. In Sections 4.2 and 4.3, to determine the probabilities of possible states 
of alternatives, it is proposed to use the distribution functions of the attributes of 
alternatives built on the values of the decision matrix and to use relative dispositions 
of attributes instead of pij. 
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3.2. Difference in weights of criteria when changing many alternatives 

Consider a decision-making problem in which some or all of the set of alternatives 
are different, and the attributes are assessed within the same criteria. Taking the 
principle of uniformity and continuity of changes in the properties of an object, such 
groups of alternatives exist and have attributes from a certain interval of the area of 
change. Table 1 presents decision matrices for two groups of alternatives to one 
problem in the context of the same criteria.  
Let's form a mix-matrix of solutions DM-3 obtained by replacing the first alternative 
A1 of the matrix DM-1 with the first alternative B1 from DM-2, and form more one 
decision matrix  DM-12 of dimension [16x5], obtained by the concatenation of the 
matrices DM-1 and DM-2. Both sets of alternatives Ai and Bi are related to the context 
of the problem: alternatives are objects of the same nature,  

Table 1. Decision matrices DM-1 and DM-2 for two groups of alternatives 
Ai and Bi in the context of the same criteria. 

  DM-1, criteria: benefit(+)/cost(–)  DM-2, criteria: benefit(+)/cost(–) 

  C1+ C2 – C3+ C4+ C5 –  C1+ C2 – C3+ C4+ C5 – 

Alter
nativ

es 

A1 71 4500 150 1056 478 B1 83 5322 170 1682 500 

A2 85 5800 145 2680 564 B2 84 6021 155 2140 513 
A3 76 5600 135 1230 620 B3 76 4219 155 1613 454 
A4 74 4200 160 1480 448 B4 73 6154 157 2047 582 
A5 82 6200 183 1350 615 B5 78 5453 173 2136 598 
A6 81 6000 178 2065 580 B6 82 6030 174 1238 587 
A7 80 5900 160 1650 610 B7 80 4344 172 1365 507 
A8 85 6500 140 1650 667 B8 77 6114 158 1585 592 

std 5.1 813 17.3 518 74.6  3.8 788 8.7 347 54.5 

having similar properties within the same criteria and having approximately the 
same range of variation. It should be expected that the criterion weights calculated 
by the same method for different decision matrices will be approximately the same. 
However, the weights of the criteria (and the ranks of alternatives) differ 
significantly (Table 2) not only for different methods, but within the same method 
for a different set of alternatives.  
To characterize the deviation of the weights obtained in various examples and 
methods, the relative error is used (the calculation is made for each j-th 
components) δs-k=|w(s)‒w(k)|/w(s)·100,%. 

Table 2. Weights of the criteria for the decision matrix DM-1 and DM-2 of Table 
1, the mix-matrix DM-3, and the concatenation matrix DM-12. 

Entropy w1 w2 w3 w4 w5    Rank (SAW) 

DM-1 0.146 0.228 0.211 0.223 0.191 A2>A4>A6>… 
DM-2 0.107 0.287 0.240 0.134 0.232 B3>B7>B1>… 
DM-3 0.144 0.216 0.200 0.249 0.191 A2>A4>B1>… 
DM-12 0.159 0.280 0.165 0.220 0.176 B3>A4>A2>… 
mean 0.139 0.253 0.204 0.207 0.198  
std 0.022 0.036 0.031 0.050 0.024  

CRITIC       
DM-1 0.144 0.147 0.322 0.214 0.173 A2>A6>A4>… 
DM-2 0.194 0.199 0.229 0.203 0.176 B3>B5>B1>… 
DM-3 0.179 0.147 0.292 0.219 0.164 A2>A6>A1>… 
DM-12 0.187 0.184 0.254 0.193 0.182 A2>B3>B1>… 
mean 0.176 0.169 0.274 0.207 0.174  
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std 0.022 0.026 0.041 0.012 0.007  
SD       

DM-1 0.210 0.203 0.207 0.183 0.196 A2>A4>A6>… 
DM-2 0.175 0.206 0.231 0.195 0.192 B3>B1>B5>… 
DM-3 0.216 0.181 0.220 0.189 0.193 A2>B1>A4>… 
DM-12 0.208 0.225 0.192 0.176 0.199 A2>B3>A4>… 
mean 0.202 0.204 0.213 0.186 0.195  
std 0.018 0.018 0.017 0.008 0.003  

 relative error of means δs-k. %  
Entropy-CRITIC 19.1 40.9 15.1 31.4 36.2  

CRITIC-SD 79.7 36.4 23.1 31.0 54.3  
Entropy-SD 45.3 19.4 4.4 10.1 1.5  

 
Table 2. (Continued) 

DM-1 w1 w2 w3 w4 w5      Rank (SAW) 

Entropy 0.146 0.228 0.211 0.223 0.191 A2>A4>A6>… 
CRITIC 0.144 0.147 0.322 0.214 0.173 A2>A6>A4>… 
SD 0.210 0.203 0.207 0.183 0.196 A2>A4>A6>… 

DM-2       
Entropy 0.107 0.287 0.240 0.134 0.232 B3>B7>B1>… 
CRITIC 0.194 0.199 0.229 0.203 0.176 B3>B5>B1>… 
SD 0.175 0.206 0.231 0.195 0.192 B3>B1>B5>… 

DM3       
Entropy 0.144 0.216 0.200 0.249 0.191 A2>A4>B1>… 
CRITIC 0.179 0.147 0.292 0.219 0.164 A2>A6>A1>… 
SD 0.216 0.181 0.220 0.189 0.193 A2>B1>A4>… 

DM-12       
Entropy 0.159 0.280 0.165 0.220 0.176 B3>A4>A2>… 
CRITIC 0.187 0.184 0.254 0.193 0.182 A2>B3>B1>… 
SD 0.208 0.225 0.192 0.176 0.199 A2>B3>A4>… 

In this particular example, the largest variation in weights in the Entropy method is 
185%, in the CRITIC method — 52% and SD — 24%. Such a wide spread leads to a 
change in the ranking of alternatives (Simple Additive Weighting method — SAW). 
On the one hand, all three matrices represent assessments of alternatives within the 
same criteria. However, the relative difference in the estimates of the weights for the 
given example for some criteria is up to 50% and more. Even when replacing one 
alternative, the weights of the criteria change significantly.  

3.3. Decision matrix transformations and influence on key parameters of 

CRITIC and SD methods 

Since key indicators (q) should not depend on scales of measurements of the 
attributes, the attributes should be normalized or reduced to dimensionless values. 
Considering that the number of methods of normalization and inversion totals about 
20 (Jahan et al., 2015), we should expect the ambiguity of the results. 6 basic linear 
methods of normalization, presented in Table 3, have a meaningful interpretation. 
The IZ-method (Mukhametzyanov, 2018, 2019, 2021) is a generalization of the Max-
Min method and will be used below in the Entropy-method. 
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Table 3. Basic linear methods for the normalization of the decision matrix. 

non displacement: / jij i jr a k  with displacement:
*( ) / jij i j jr a a k   

Max *) Sum Vec Max-Min dSum IZ 

     
max min

,j

j j

Z I
k

a a






 

*) The short name of the normalization methods is determined by the semantic value of the compression 
ratio k. The method abbreviation is also used as the name of a function that converts values in accordance 
with the normalization method. For example, rij=Max(aij)= aij/ajmax. dSum-method is a combination of Max-

Min and Sum methods (see the formula (12)) and 1‒r inversion. In the IZ-method, I and Z define a segment of 
normalized values that is fixed for all criteria (0 ≤ I < Z ≤ 1). 

 
The use of linear normalization methods is due to the fact that they retain the 

relative dispositions between the natural and normalized values of the alternatives: 

*

if , , 1,
rng( ) rng( )

ji j p j q j p j q j

i j

j j j

a a r r a a
r p q m

k r a

  
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,                   (13) 

where rng(rj)=rj
max‒rj

min is the range of values for each attribute. 

Preserving the “dispositions” of alternatives after normalization means that the 
normalized values preserve information about the system. For linear normalization 
without displacement, one degree of freedom is lost, and for normalization with 
displacement, two degrees of freedom are lost. Any nonlinear normalization leads to 
information distortion. 

When using a general linear transformation of natural values rij=( aij‒ aj
*)/kj, the 

standard deviation is scaled: 

( )
( )

j ij

j ij

j

s a
s r

k


,                   (14) 

and the matrix of pair-wise correlations does not change (invariant):  

( ) ( )ij ijcorr r corr a
.                   (15) 

This means that the result of CRITIC and SD depends on the choice of the decision 
matrix normalization method, since the proportions between kj in different 
normalization methods for different criteria will be different, and the intensity of the 
qj key indicators will be different. 
Figure 2 shows the domains of the normalized values of the attributes of the 
alternatives and shows the intervals (m‒sj; m+sj) of deviation from the mean m. For 
normalization methods, except for Max-Min and IZ, domains for different criteria 
have a different range of values rng(rj). The standard deviation s correlates with the 
range of domain sizes. 
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Figure 2. Domains of normalized values of attributes of alternatives and 
intervals (m‒s; m+s) for various transformations of the decision matrix DM-1. 

Of the six normalization options in Table 3, the Max-Min and IZ method is preferable, 
since in this case the range of values of all attributes is the same and the standard 
deviation for the normalized values sj(aij)/kj of various attributes does not depend 
on the range and has a natural interpretation as the degree of dispersion of values. 
In all other cases of normalization, the key indicators qj = sj for various criteria are 
not consistent with each other, and the result depends on the transformation 
method of criteria and measurement scales. The numerical results of the example 
under consideration are shown in Table 4. 
The results demonstrate a significant difference in criterion weights for different 
methods, which indicates the importance of choosing the correct normalization 
method. For the Max-Min and IZ normalization methods, the standard deviation is 
proportional to the factor (Z‒I). Therefore, the criteria weights will be equal 
(highlighted in the table). 

Table 4. The values of the standard deviation and weights of the criteria of the 
decision matrix DM-1 for various transformation methods. 

Norm. 
method 

Standard deviation   Weights of criteria 
C1+ C2 – C3+ C4+ C5 –  w1 w2 w3 w4 w5 

Max 0.060 0.125 0.095 0.193 0.112  0.103 0.214 0.162 0.331 0.191 

Sum 0.008 0.018 0.014 0.039 0.016  0.084 0.190 0.144 0.411 0.170 

Vec 0.023 0.051 0.039 0.107 0.046  0.086 0.192 0.147 0.403 0.172 

Max-Min 0.366 0.354 0.361 0.319 0.341  0.210 0.203 0.207 0.183 0.196 

dSum 0.111 0.111 0.081 0.063 0.099  0.239 0.239 0.175 0.135 0.213 

IZ(0.2; 0.7) 0.183 0.177 0.180 0.160 0.170  0.210 0.203 0.207 0.183 0.196 

For the CRITIC method, the general transformation (7), in contrast to the Max-Min 
normalization by the formula (1) is not correct, because the “best” (B) and “worst” 
(T) solution may differ from the maximum and/or minimum value. For example, if 
“best” and “worst” are absolute (from the entire set of possible alternatives, and not 
from a private sample in the investigated decision-making problem), then the 
normalized values are within the interval (0; 1), and for each criterion the domain 
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range will be different. The normalized values will be offset relative to the segment 
[0; 1] with all the consequences of changing the standard deviation of the attributes 
of individual criteria and changing their weight. Therefore, the correct application of 
the CRITIC method is possible only with the Max-Min transformation. 
To invert the attributes of cost criteria, it is recommended the ReS-algorithm in two 
forms (Mukhametzyanov, 2020): 

1) for natural values of attributes 

max min *
* * * * ,ij ij j j ja a a a j C      

.                   (16) 

2) for the normalized values of attributes 

max min *
* * * *

1) ( ), 1,...,

2) ,

ij ij

ij ij j j j

r Norm a j n

r r r r j C 

  

     
 ,                   (17) 

where Norm() is one of the linear normalization methods applied to both benefit and 
cost attributes; the j* index meets the cost criteria. The abbreviation of the 
normalization method (Table 3) or inversion is also used as the name of the function 
that transforms values in accordance with the selected method: rij=Vec(rij), vij=ReS(rij). 
ReS-algorithm is universal for any linear and non-linear transformations and ReS-
inversion algorithm preserves dispositions of natural and normalized attribute 
values. For the Max-Min normalization method, the inversion by the expression (2) 
and the inversion using the ReS-algorithm have the same results. 
According to the standard deviation expression, inverting cost attributes does not 
affect the outcome. 
However, in the matrix of pair-wise correlations, the sign of some of the coefficients 
changes according to the rule: 

(ReS( )) ( ) g
T

ij ijcorr r corr r g  
,                   (18) 

where  is the element-wise product of two matrices of dimension [nxn]; 

1 2(sgn ,sgn ,...,sgn )ng C C C   [1xn]-vector 

1,
sgn

1, cos

j

j

j

if C benefit criteria
C

if C t criteria

 
 

  . 

For example, for the test matrix DM-1 used in this paper: 

1 1 1 1 1 1

1 1 1 1 1 1

g (1 1 1 1 1)1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

T

g

    
   
   
   
          
   

    
          .  

Negative correlation should not increase the weight of the key factor in expression 
(10). Therefore, in expression (10), the correlation must be absolute and this is the 
correct expression for CRITIC.  
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3.4. How much do the weights of the Entropy method vary depending on the 

distribution in the data? 

To answer this question, let us turn to the graphical illustration (Fig. 3), which shows 
the function f (x) = ‒x·lnx; the values pij of attributes of each alternative after 
transformation Sum; the values of the components of the entropy of the j-th criterion 
eij = –pij·lnpij of each alternative; and domains of values of eij for each criterion, 
allowing to observe the nature of the distribution. The values –pij·lnpij for all j are 
actually on the line of the function ‒x·lnx and, for clarity the images, are separated by 
a parallel translation along the 0Y axis. 
The entropy function f (x) has a maximum at the point 1/e≈0.368. For m states, the 
probabilities pi have, on average, less value than 1/e, and are concentrated in the 
vicinity of the point 1/m. Accordingly, the entropy component –pi·lnpi is 
concentrated in the vicinity of the point 1/m·ln(1/m). 
The values of the weight of the criterion and the entropy of the criterion are 
opposite. In accordance to the expression (4), the maximum value of the criterion 
entropy is equal to 1, and the criterion weight is equal to 0. This state is achieved 
when all probabilities pij = 1/m for a fixed j.  

 

 

Figure 3. Entropy and entropy components (‒x·lnx) for the DM-1 matrix. 

This is possible provided that all alternatives have the same value for the j-th 
attribute pij = Const. The greater the difference between the values of the j-th 
attribute for various alternatives, the lower the value of the criterion entropy and, in 
accordance to the expression (5), the greater the value of the criterion weight. This 
is due to the specifics of data normalization by the Sum-method.  
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Therefore, the criterion j, the attributes of the alternatives of which are concentrated 
closer to the smallest value aj

min, will have more weight. This is believed to indicate 
that the criterion contains valuable information. A very controversial assumption. 
The weak point of the entropy method for assessing weight is the high sensitivity 
(hypersensitivity) of weight to the values of the entropy of various criteria. This 
hypersensitivity is due to the exponential behavior of the logarithm in the vicinity of 
0. Indeed, the rate of change of entropy along the i-th component is determined by 
expression: 

1
(ln 1)

ln

j

ij

i

e
p

p m


   

 ,                   (19) 

therefore, small changes in the values of the j-th attribute of the i-th alternative can 
change the weights. For example, (see Table 2 and Fig. 3) the entropies for criteria 2 
and 3 differ by 1.5%, while the weights differ by 8%. A slight error in the estimates 
of the attribute of alternatives will lead to a significant change in the estimates of the 
weights.  
Another weak point of the entropy method is the sensitivity to the distribution of 
data in the domain of pij values. The concentration of the normalized values of one of 
the attributes in the vicinity of 0 sharply decreases the entropy and leads to an 
increase in the weight of this criterion. Figure 4 illustrates this feature. When 
replacing only one element a12 in the decision matrix DM-1 from 85 to 72, entropy of 
the first criterion decreased from 0.8897 to 0.8065, and the weight of the first 
criterion increased from 0.146 to 0.231 (by 158%). The ranking of alternatives has 
also changed. 

 

Figure 4. Weights of criteria and entropy with decreasing variance of the 
1st attribute in the decision matrix DM-1. 

Note that when the data changed, the standard deviation for the first criterion 
increased from 5.120 to 5.125 (natural). The SD-method shows weight changes of 
only 0.1% — from 0.2102 to 0.2104. This example demonstrates the high sensitivity 
(hypersensitivity) of EWM-method to the distribution of data in the domain. 
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The apparent efficiency of the entropy method can most likely be attributed to a 
situation in which the attributes of the alternatives have approximately the same 
distribution and approximately the same variance. In such a situation, the weights of 
the criteria differ less significantly. 

3.5. Do you need to transform (normalize) the natural values of the attributes 

before applying the Entropy method? 

Some studies when estimating weights do not use preliminary data transformation 
(by formulas (1) and (2)), believing that it is obvious that the transformation Sum 
(formula (3)) is sufficient, or they use normalization methods other than Max-Min. 
For example, in (Wu et al., 2011; Li et al., 2011), values are normalized and inverted 
for cost criteria using the Max and Vec methods. 
The peculiarity of the transformation according to the expression expression (3) 
(Sum-method) is that the normalized pij values are converted into the interval (0; 1) 
with the preservation of the dispositions of natural values, but the domains for 
different criteria have different sizes and are shifted relative to each other. This is 
clearly seen in the diagrams for pij in Figure 5. For more details on the displacement 
of domains during normalization, see the study by Mukhametzyanov (2020, 2021). 
The displacement of the pij values by the j-th criterion, according to the analysis 
carried out above in Section 3.4, strongly affects the entropy of the ej criteria, which 
is reflected in the weights. 
Normalization based on linear methods without displacement (Max, Sum, Vec) fully 
preserves the proportions of natural and normalized values of attributes. However, 
after the re-normalization, the equalities are valid (Mukhametzyanov, 2020): 

pij =Sum(aij/kj)=Sum(Max(aij))=Sum(Sum(aij))= Sum(Vec(aij))= Sum(aij).               (20) 

 

Figure 5. Probabilities (p) of possible states of alternatives and entropy 
components (‒p·lnp) of the Entropy method for the DM-1 matrix and the normalized 

decision matrix DM-1 by the Max-Min and dSum methods. Two-axis technique. 
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Therefore, the result of calculating the weights of the criteria will not change. In 
Figure 4, in particular, pij coincides for the case when the preliminary data 
transformation is not performed and for the cases of linear transformation without 
displacement (1 fragment). 
Normalization based on linear methods with displacement (Max-Min, dSum) retains 
only the dispositions of the values. However the probabilities change:  

pij =Sum( (aij‒aj
*)/kj ) # Sum(aij),                  (21) 

and therefore the entropies of the criteria will change. 
In a significant part of the studies (Liang et al., 2006; Dong et al., 2016; Zhao et al., 
2017; Chen et al., 2019; Wu et al., 2018), the entropy method uses preliminary 
transformation of the initial data using normalization of Max-Min with simultaneous 
inversion of the values of the cost criteria. 
The Max-Min transformation maps attribute values of all criteria to the interval [0; 
1], which aligns the domains for all criteria and eliminates their relative 
displacement. The Max-Min and inverse transformation for Max-Min also preserve 
the relative proportions of the values. 
The subsequent transformation by the Sum-method leads to different values of the 
intensities (probabilities) pij than for the natural data of the decision matrix. At least 
one of the values after transformation by the Sum method is equal to 0. The 
transformed system is not identical to the original one. Despite the fact that 
agreement of domains for different criteria has been achieved, within the domain 
there is a shift in data towards a decrease in the contribution of individual attributes 
to the entropy of the criterion and a decrease in the entropy of the criterion. At least 
one of the values after the stepwise transformation by the Max-Min and Sum method 
is equal to 0. The transformations are uneven for various criteria (except for the 
distribution in the data that is symmetric with respect to transformation). Therefore, 
the previously transformed system is a different system, not identical to the original 
one, and the results of the weight estimation differ significantly. 
Table 5 and Figure 4 shows an example of such calculations for the first criterion of 
the DM-1 matrix.  

Table 5. Probabilities of states of alternatives (p), entropy (e) and weights of 
criterion (w) for matrix DM-1 and normalized matrix of solutions DM-1 by Max-
Min and dSum methods. EWM-method. 

 pi1    
 DM-1 Max-Min dSum  transform e1 e2 e3 e4 e5 

A1 0.112 0 0.099  DM-1 0.9991 0.9949 0.9974 0.9804 0.9961 
A2 0.134 0.212 0.143  Max-Min 0.8897 0.8280 0.8410 0.8323 0.8558 
A3 0.120 0.076 0.115  dSum 0.9965 0.9961 0.9982 0.9989 0.9971 

A4 0.117 0.046 0.109   w1 w2 w3 w4 w5 
A5 0.129 0.167 0.134  (1) DM-1 0.028 0.160 0.079 0.612 0.121 
A6 0.129 0.152 0.130  (2) Max-Min 0.146 0.228 0.211 0.223 0.191 
A7 0.126 0.136 0.127  (3) dSum 0.265 0.295 0.137 0.081 0.222 
A8 0.134 0.212 0.143  δ1-2 421.4 42.5 167.1 63.6 57.9 

     δ2-3 81.5 29.4 35.1 63.7 16.2 

The values of the entropy and weights of the criteria calculated after performing 
the preliminary data transformation can significantly differ from the analogous 
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values without transformation. The largest variation in weights in the Entropy 
method is over 400%, with no strong case for data transformation. 

3.6. Do you need to apply value inversion for cost criteria before applying 

Entropy?  

The answer to this question is not obvious. On the one hand, the criteria are 
independent and the entropy (ej) of the criterion is not related to the direction of 
improving the values of alternatives. On the other hand, attribute values are ordered 
from lowest to highest value. When the direction of the coordinate axis and the 
origin is changed, the state probability distribution function is reflected. If the 
distribution does not have symmetry with respect to such a transformation, then 
formally the entropy of the system will change due to the relative displacement of 
values within the domain (even in the case of using the best of the inversion 
algorithms — ReS (Mukhametzyanov, 2020), which preserves the positions of the 
boundaries of the domain of inverted values). For example, for the example 
considered in Table 2, the weights calculated without preliminary inversion of the 
values of the cost criteria (Table 6) will differ from the weights calculated with 
preliminary inversion. 

Table 6. Weights and ranks of decision matrices, calculated without 
preliminary inversion of the values of the cost criteria. EWM-method. 

 w1 w2 w3 w4 w5  w1 w2 w3 w4 w5 
DM-1 0.028 0.148 0.081 0.625 0.117 DM-2 0.030 0.278 0.036 0.525 0.132 
rank A2 > A6 > A4 >… (SAW) rank B2 > B5 > B4 >… (SAW) 

Thus, the second argument is strongly pointing in favor of pre-inverting the cost 
attribute values. For the inverse of values of cost criteria, the ReS-algorithm 
presented in 3.3 above is recommended.  
It is not desirable to use non-linear inversion. For example, in the works of Li, et al., 
(2011), Wu, et al., (2011), a nonlinear transformation iMax=aij*

min/aij*, is used, which 

transforms the original system to another system that is not equivalent to the 
original one, the weights of which are different. 

3.7. IZ-transformation of natural values of attributes for the Entropy method 

Applying linear operations of shift to a fixed point, tension-compression and 
subsequent displacement, it is possible to transform the natural values of all criteria 
into a fixed (or predetermined) interval of values [a; b] (Mukhametzyanov, 2018, 
2019, 2021) while maintaining the relative dispositions of natural values for each 
attribute. A special case of such a transformation is the Max-Min normalization 
method, which converts the attribute values for all criteria into the segment [0; 1]. 
An example of IZ-transformation of the matrix of solutions DM-1 into the segment 
[0.2; 0.7] is shown above in Figure 2. IZ-transformation is in no way inferior, and 
even more correct than transformation in [0; 1], which has problems with null 
values. For example, there is no contribution of min-value of attributes to entropy. 
As a result of the IZ-transformation, in comparison with the Max-Min 
transformation, the standard deviation and the matrix of pairwise correlations will 
not change. This means that such data transformation does not affect the result of 
the CRITIC and SD methods. However, pij will change, and due to the nonlinearity of 
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the entropy components (–pij·lnpij), both the entropy and the weights of the criteria 
will change. 
It is natural to ask how the choice of the IZ-transformation interval [a; b] affects the 
entropy and weights of the criteria?  
Due to the strict monotonicity of the entropy components on the interval [0, 1/e] 
(see Fig. 3), all changes will also be strictly monotonic, except for the cases when any 
of the values of pij are greater than 1/e. Figure 6 shows a color map of entropy values  

 

Figure 6. Color map of entropy values for the 5th criterion of DM-1 depending on 
the size and position of the transformation interval [a; b] with respect to [0; 1].  

for the 5th criterion (the results are similar for other criteria) depending on the size 
and position of the transformation interval [a; b] with respect to [0; 1]. According to 
such a map, entropy changes nonlinearly and strictly monotonically depending on 
changes in the size and position of the domain of normalized values. 
Non-linear changes in entropy leads to the fact that the dynamics of the weight 
coefficients, firstly, is also non-linear (Figure 7). Secondly, there are points of change 
in the priority of criteria (intersection points), for which the priority of the criterion 
(its weight) changes. This indicates the dependence of the weighing result on the 
choice of the size and position of the domain. 
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Figure 7. Dynamics of entropy and weight coefficients depending on the size and 
position of the domain [a; b] at IZ-transformation (correspondence according to the 

Figure 6). DM-1. 

The conclusion from the analysis is not encouraging. When manipulating data 
transformation in the Entropy-method, you can manipulate the criteria weights. 

3.8. Integrated methods  

The essence of integrated methods (or aggregation methods) is to combine weighing 
results obtained by different methods. For example, weights obtained using 
subjective and objective weighing methods such as AHP and Entropy are often 
corrected. It is assumed that the combined weighing method will reduce the 
potential bias of a single subjective or objective weight, or can make up for the 
deficiency of the subjective weight. 
Let the weights wj

(1) of the j-th criterion be obtained by one of the available methods, 
and the weights wj

(2) be obtained by another method. A common aggregation 
procedure has the following multiplicative form: 

(1) (2)

j j jq w w                     (22) 

Aggregation (21) strengthens (weakens) the weights for “strong” (“weak”) criteria, 
when the criterion has a greater (lower) weight in both weighing methods. In other 
cases, the weight of the criteria is smoothed, when the criterion had greater weight 
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in one of the methods and less weight in the other weighing method. In some cases, 
such a procedure is dangerous from the point of view of amplifying the error. 
The qj value can be arranged in various forms, for example, as different variants of 
the average value in N weighing methods: 
‒ harmonic mean (HM) 

( )
1

1
/

N

j k
k j

q N
w

 
                   (23) 

‒ geometric mean (GM) 

1/
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k

j j
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                   (24) 

‒ arithmetic mean (AM) 
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q w
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                   (25) 

‒ root sum of squares (RSSq) 
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                   (26) 

The weights are calculated as the intensities of the integrated indicator qj by formula 
(6): 

1

/
n

j j j

j

w q q


 
                                (27) 

For different means, the following inequalities hold: 

 min ≤ HM ≤ GM ≤ AM ≤ max ≤ RSSq                   (28) 

The choice of the method for the mean is not formalized and is determined by the 
context of the problem. 
The weights aggregation method is compensating. It compensates for low criterion 
weights in some intermediate weighing methods with high values in others. If 
compensation is acceptable, then a higher weight value for the same criterion in a 
different weighing method will be required to obtain a higher weight value. With 
multiplicative aggregation, a higher value of the weight of one of the criteria can be 
obtained by reducing the weight of the other criterion. 
Given the variability of aggregation and compensation, the integrated methods are 
not general. Rather, they give the researcher a formal opportunity to eliminate the 
discrepancy between the criteria weights in a particular problem. 
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4. EWM modification 

4.1. Modification of the entropy method using correlation: EWM-Corr 

As discussed in section 3.8 above, key indicators of different methods can be 
combined to assess criterion weights. The combination of entropy and correlation in 
the following multiplicative form is relevant: 

 1

(1 ) (1 ), 1,...,
n

j j jk

k

q e c j n


    
                   (29) 

where ej is the entropy of the criterion determined by formulas (1)‒(4), cjk is the 
matrix of pairwise correlations determined by the formula (9). 
The first factor determines the dispersion of the attribute values, and the second 
factor allows the weight to be distributed among the correlated criteria in terms of 
reduction factors (1-c). 
The weights of the criteria are determined by the intensity of the key indicator qj 
using the Sum-normalization by the formula (6). 

Table 7 shows the results of calculating the weights by the proposed EWM-Corr 
method. 

Table 7. Weights of the criteria and rank for the decision matrix DM-1, DM-2, 
DM-3, DM-12, obtained using the EWM-Corr method. 

Decision matrix w1 w2 w3 w4 w5    Rank (SAW) 

DM-1  0.098  0.161  0.321  0.255  0.165 A2>A6>A4>… 
DM-2  0.121  0.281  0.241  0.141  0.216 B3>B7>B1>… 
DM-3  0.118  0.173  0.263  0.285  0.160 A2>A6>AB1>… 

DM-12  0.145  0.230  0.219  0.244  0.163 A2>B3>B5>… 
mean 0.139 0.253 0.204 0.207 0.198  

std 0.022 0.036 0.031 0.050 0.024  

Analysis of the results shows the redistribution of weights due to correlation 
between the attributes of the alternatives. There was an increase in the weight of 
3rd criterion (weak correlation of attributes with the rest) and a weakening in the 
weight of 1st criterion (significant correlation of attributes with the rest). 
Comparison of the results with similar estimates by the Entropy and CRITIC 
methods (Table 2) does not reveal any definite pattern. 
Since there are no criteria for the adequacy of various weight assessment methods, 
the effectiveness of the EWM-Corr modification is relative. The choice of a particular 
weighing method and its appropriateness is assessed by the presence of arguments 
“for and against”. This applies to all methods without exception. In our case, the 
argument is the redistribution of weights between correlated and uncorrelated 
attributes. 

4.2. Assessment of the entropy of the criterion using the distribution function of 

the attribute of alternatives: EWM.df modification 

After the decision matrix is normalized using the Max-Min transformation, the 
domains of the normalized values of attribute are consistent with each other. The 
priority of individual criteria due to different measurement scales is eliminated. 
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Information about the states of an object is determined by the distribution of values 
within the domain, not by the values themselves. Therefore, the calculation of 
entropy by values is not correct. A discrete random variable is determined by the 
pair (xi, pi), and the values of the probabilities pi are needed to calculate the entropy. 
To estimate the probabilities of possible states of alternatives for a fixed criterion, it 
is necessary to construct a discrete distribution using a statistical approach by 
performing the transition to frequency characteristics. 
For the case of small samples, the distribution of a random variable can be 
determined based on estimates of the parameters of a hypothetical distribution of a 
random variable (for example, normal). The distribution assessment includes a 
statistical test for testing a hypothetical distribution law (for example, the Jarque-
Bera test for checking normality (Jarque & Bera, 1987). Next, it is necessary to divide 
the domain of observed values into m intervals [xij, xi+1,j] and calculate the 
probability of the attribute falling into a certain interval. It does not matter that 
some of the intervals obtained by dividing the domain of values remain 
“unoccupied” by the actual values of the decision matrix. The frequency of the 
attribute values is taken into account through the distribution parameters. This does 
not exclude the existence of alternatives with such states. Potential probabilities of 
states are calculated by the expression: 

1

1 2( , , ,...)

i j

ij

x

ij

x

p f x dx 


 
,                   (30) 

where f is the density of the feature distribution, θ1, θ2, ... are the distribution 
parameters. 
Below is a fragment of the calculation procedure for the case of a normal feature 
distribution law, performed in MatLab using built-in functions: 

%  define DM(m,n) 
mu=mean(DM); sigma=std(DM);  

mx=max(DM); mn=min(DM); h=(mx-mn)/(m-1); 

for j=1:n 

     [hJB, pJB] = jbtest(DM(:,j));       %  Jarque-Bera test 
     if hJB==0 

         xN=mn(j)-h(j)/2 : h(j) : mx(j)+h(j)/2; 

         xN1=xN(1:m); 

         xN2=xN(2:m+1); 

         pd = makedist('Normal',mu(j),sigma(j)); 

         y = cdf(pd,xN2)-cdf(pd,xN1);   %  cumulative distribution functions 

     end 

     pij(:,j)=y'; 

end 

 

The calculations and illustration for the described algorithm are shown below in 
Figure 8 and Table 8. 
When calculating the probability of possible states of alternatives, the mean value, 
standard deviation, the smallest and largest values of the attribute of alternatives 
are used. The results of evaluating the weight of the same criteria based on a 
different set of alternatives (DM-1, DM-2, DM-3, DM-12) are not so much different, as 
in the case of calculating the probabilities of possible states of alternatives using 
expression (1), in which aij is used to determine pij . 
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What to do in the absence of information about the distribution of features or 
rejection of the statistical test 0 hypothesis of distribution? 
It remains to apply an expert approach. The subjectivity of the assessment with a 
good expert is minimal. The expert's preferences are a reflection of the frequency of 
the feature, which is formed intuitively on the basis of experience. Expert scores are, 
in our opinion, better than statistics, which rarely have integrity and comprehensive 
coverage. 

 

Fugure 8. Probabilities of states of attributes of alternatives of the first criterion 
(normal distribution, Decision Matrix from Table 1). 

Table 8. Estimation of the entropy and weithts of the criterion using the EWM.df 
method. 

Decision EWM.df 
Rank (SAW) 

matrix w1 w2 w3 w4 w5 
DM-1 0.205 0.205 0.187 0.221 0.182 A2>A6>A8>… 
DM-2 0.156 0.233 0.238 0.177 0.196 B5>B4>B2>… 
DM-3 0.205 0.220 0.174 0.229 0.173 A2>A6>A8>… 

DM-12 0.211 0.231 0.171 0.215 0.173 A2>A6>A8>… 
mean 0.194 0.222 0.192 0.210 0.181  

std 0.025 0.013 0.031 0.023 0.011  
 Entropy (base)  

DM-1 0.146 0.228 0.211 0.223 0.191 A2>A4>A6>… 
DM-2 0.107 0.287 0.240 0.134 0.232 B3>B7>B1>… 
DM-3 0.144 0.216 0.200 0.249 0.191 A2>A4>B1>… 

DM-12 0.159 0.280 0.165 0.220 0.176 B3>A4>A2>… 
mean 0.139 0.253 0.204 0.207 0.198  

std 0.022 0.036 0.031 0.050 0.024  
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4.3. Estimation of the entropy of the criterion using the relative disposition of 

alternatives: EWM.dsp modification 

Let us arrange the values of the j-th attribute of alternatives in ascending order and 
calculate the relative disposition of the ordered set of alternatives for each j-th 
criterion using expression (13): 

( , ' ')i j i j
i

u sort a ascend
,                   (31) 

max min
, , 1,...,

q j p jpq

j

j j

u u
d p q m

u u


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
.                   (32) 

We get a discrete set (m‒1) of values: 

1,2 2,3 ( 1),{ , ,..., }m m

j j j jd d d d 
.                   (33) 

dj
pq

 are the normalized distances between adjacent alternatives (in an ordered list) 
for the j-th attribute. 
To estimate the probabilities of the states of the j-th attribute for the EWM-method, 
we apply not the normalized values of the attributes pij, but a discrete set (33) 
consisting of (m‒1) the values of the relative dispositions of alternatives for each 
criterion. 

Let's justify this decision: 

1) set (33) characterizes the degree of order. If the distribution of the values of 
the j-th attribute is uniform: 

1,2 2,3 ( 1), 1
...

1

m m

j j jd d d
m

   
 ,                   (34) 

then the entropy of the j-th criterion is ej = 1, and its weight is 0. The order “in the 
line” is ideal when the distance between neighboring elements is equal. Any 
violation of the order leads to a decrease in entropy, 

2) in accordance with expression (12), the pij values are the relative distances of 
the ordered list of alternatives of the j-th attribute to the alternative with the 
smallest value, i.e. tied to a reference point. In contrast to this, dj

pq characterizes not 
the position, but the state, and do not depend on the position of the point on the 
scale [0; 1], 

3) if the distribution of system states is uniform, then the values pij determine the 
probability that the random value  X  of the j-th attribute belongs to the interval 
[aj

min; aij]: 

min

min

min
P( <X< )= P(0<X< )=

( )

ij j

ij j ij ij

ij j

i

a a
p a a p

a a





.                   (35) 

pij depends on the position of the attribute on the scale [0; 1] and contradicts the 
concept of the probability of a state. 
The dj

pq values determine the probability that the random value X of the j-th 
attribute belongs to the interval [ujp; ujp] for ordered set of alternatives: 
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max min
 =P(  <X<  )= 

q j p jpq

j pj qj

j j

u u
d u u

u u




.                   (36) 

and correspond to the concept of the probability of a state as the probability of 
belonging to a localized range of values, 

4) as noted above, the relative disposition of the attribute of alternatives is 
invariant with respect to linear data transformation (according to the formula (13)) 
or retains almost all information about the system (minus two degrees of freedom), 

5) each of the elements of the set (33) represents the intensity of the state 

1
( 1) ( 1)

1

0 1, 1
m

i i i i

j j

i

d d


   



  
,                   (37) 

6) set (33) represents a differentiated series or the relative rate of change of 
values in individual sections, 

7) unlike pij by the formula (12) the sets {dj} for different j are not subject to 
displacement relative to each other, and the size of the domains does not depend on 
the normalization of Sum, 

8) set (33) can be considered as an analogue of the distribution histogram. 

Thus, to calculate the entropy of each criterion, we use the quantities {dj}: 

1
,( 1) ,( 1)

1

1
ln( ),  ( if =0 ln( )= 0)

ln( 1)

m
i i i i pq pq pq

j j j j j j

ij

e d d d d d
m


 



     



.                (38) 

where mj is dimension of the set {dj
pq } of different attribute (without 0) values by 

the j-th criterion (without zeros). 

Next, we calculate the weights of the criteria using expression (6). 

Notes: 

i. in the EWM.dsp method we used the concept that the probability of a state 
is proportional to the length of the localized gap. This concept is adequate 
for the even distribution of attributes. If the distribution is not uniform (or 
very different from uniform), then it is better to use the EWM.df approach 
described in section 4.2 above. In any case, EWM.dsp is better than 
estimates of the probability of states using expression (35) for the basic 
EWM-method. 

ii. the proposed approach does not require inversion of values for cost criteria, 
iii. if ej = 1 for all j, then the weights should be taken equal, 
iv. if k alternatives have the same attributes, then dj

pq = 0. (k‒1) values are 
excluded from the calculations and the entropy is calculated from the (m‒k) 
values. 

The results of evaluating the entropy and weight of criteria by the proposed 
EWM.dsp method for matrices DM-1, DM-2, DM-3, DM-12 are presented in Table 9. 
The weights of the criteria are not as different as in the case of using the basic EWM-
method (Table 2).  
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Figure 9 shows the summary probability diagrams of alternative states and entropy 
components (‒p∙lnp) for the decision matrix DM-1, obtained in various modifications 
of the EWM-method.  

Table 9. Estimation of the entropy and weights of the criterion using the 
EWM.dsp method. 

decision 
matrix 

    
e1 e2 e3 e4 e5   

DM-1 0.934 0.813 0.914 0.885 0.825  
DM-2 0.949 0.671 0.686 0.793 0.700  
DM-3 0.916 0.806 0.946 0.822 0.857  

DM-12 0.977 0.802 0.917 0.756 0.844  
mean 0.944 0.773 0.866 0.814 0.807  

std 0.026 0.068 0.121 0.054 0.072  
 w1 w2 w3 w4 w5 Rank (SAW) 

DM-1 0.105 0.298 0.137 0.182 0.278 A4>A2>A1>… 
DM-2 0.043 0.274 0.261 0.172 0.250 B3>B7>B1>… 
DM-3 0.128 0.297 0.082 0.273 0.220 A2>A4>B1>… 

DM-12 0.033 0.281 0.118 0.347 0.221 A2>B3>A4>… 
mean 0.077 0.288 0.150 0.244 0.242  

std 0.046 0.012 0.078 0.083 0.028  

Due to the equality of the attributes for some alternatives, in the calculations of the 
EWM.dsp method of the presented example, the number of states involved is less 
than (m‒1). The problem under study, defined by the DM-1 matrix, is weakly 
sensitive to weight variation. Therefore, for all modifications of the EWM-method, 
the ranking for the studied example is the same. 

 

Fugure 9. Probabilities (p) of possible states of alternatives and entropy 

components (‒p∙lnp) of the Entropy method for the decision matrix DM-1 

for various modifications of the EWM-method. Two-axis technique. 
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5. Conclusion 

The importance of the weights when aggregating the attributes of alternatives is 
such that alternatives with a priority on the attribute and a higher weight will 
receive priority in the performance indicator. Therefore, the quality of weight 
estimation for MCDM tasks is critical. 
The conducted comprehensive analysis shows that the rationality of all objective 
methods for evaluating the criteria weights for MCDM tasks is questionable. Specific 
algorithms for objective methods for evaluating the weights of criteria still require 
further study. 
The first decision that needs to be made and which will greatly affect the final 
results, is the choice between equal and different weights. Equal weighting is the 
preferred procedure in most applications and makes the weights estimation less 
subjective. 
Differential weighing requires choosing the most appropriate approach for 
determining the weights. The solution should be supported by theoretical 
considerations that give meaning to each indicator or take into account its effect on 
synthesis in accordance with the structure of the problem. 
It is important to compare weighting results for different methods. Since there are 
no criteria for the effectiveness of weighing methods, the discrepancy in the results 
of weighting requires serious analysis. The design and determination of weights can 
be interpreted in terms of value judgments, that methods based on the subjective 
opinions of individual experts are preferred. 
It is obvious that the use of various objective (and other classes) methods and 
modifications lead in many cases to completely different values in the estimates of 
the weights of the criteria. There are also no criteria for the effectiveness of the 
methods. Therefore, further research, in our opinion, can be aimed at a constructive 
solution to the problem — building a decision support system (DSS) for weight 
estimation, including a wide range of methods, a knowledge base and an intelligent 
system for analyzing and synthesizing of results. In fact, it is an extended component 
of DSS for multi-criteria decision support systems. 
All the algorithms described in this paper are implemented by the author in the 
MatLab system, posted in a file hosting service “File Exchange MathWorks” and are 
available for free use at the link (Math Works, 2021). 
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