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The application of FRP reinforcement in concrete structures is quite popular nowadays. In this article 
the cracking moment of flexural concrete structures reinforced by steel and FRP reinforcement bars is 
investigated. There is estimated that the behaviour of tensile concrete is nonlinear when crack opens. 
The nonlinearity was estimated by two different cases. In the first one the coefficient of elastic and plastic 
strain of tensile concrete were applied and in the second the stress-strain relationship were expressed 
by polynomial function. That function prepared according to compressed concrete stress-strain diagram 
described in design standard EN 1992-1-1. Those two different stress-strain relationships were used for 
cracking moment calculation. Also the cracking moment calculations were performed using mentioned 
standard EN and Technical building code STR 2.05.05:2005. In all cases the calculations were performed 
in assumption that the behaviour of compressed concrete is elastic when crack opens. The obtained 
results were analysed and presented base conclusions.

KEYWORDS: FRP reinforcement, cracking moment, stress-strain relationship, nonlinear behaviour, 
tensile concrete.

Introduction
The steel as base reinforcement in reinforced concrete structures is used many years, however it 
properties satisfy not all requirements to reinforcement, especially the requirements of resistance 
to corrosion. For this reason the durability of concrete reinforced by steel reinforcement is not so 
high in aggressive condition to corrosion (Abdala 2002, Al-Sunna, 2012, Toutanji 2003).

Nowadays the low durability problem could be solving applying the new type of reinforcement in 
concrete structures i.e. the FRP (fiber reinforced polymer) reinforcement which has higher tensile 
strength and higher resistance to corrosion (Barrs el.al. 2012, Barris et.al 2009, Ashour 2006). 

Such type of reinforcement could be used in concrete structures as reinforcement bars, meshes or 
reinforcing cages. The application of FRP reinforcement in concrete structures of buildings, engineering 
works or underground works increase the durability of them and resistance to various damages.



Journal of Sustainable Architecture and Civil Engineering 2014/4/9
60

However such type of reinforcement has lower elasticity and worse anchorage with concrete. The 
modulus elasticity of FRP reinforcement is several or more times less than modulus of steel. For 
this reason the stiffness and cracking problem arises to the flexural structures because into the 
cracked section the tensile forces are permitted only by tensile reinforcement. In this case into the 
concrete structures reinforced by FRP reinforcement the cracking moment will be reached earlier 
and the deflection will be higher in comparing with simply reinforced structures. So, it could be 
concluded that high tensile strength of FRP reinforcement in flexural structures could not be exhaust 
because of too high deformability and application so not effective economically and structurally.

In that case FRP reinforcement could be used with steel reinforcement together in order to increase 
the durability of structures. Because of different elasticity the stress in steel reinforcement will be 
higher than in FRP and the strength of structures significantly depend on amount and strength of 
steel reinforcement. 

But amount of steel reinforcement has no such significantly effect on cracking moment because 
it more depends on the concrete tensile strength and dimensions of cross section. For example 
according to principles of design standard EN 1992-1-1:2004 the amount of reinforcement has no 
effect on cracking moment (Mosley 2007) 

Also the FRP reinforcement is more brittle in compare with steel. So, the application of such 
reinforcement into the bridges structures could be limited.

The FRP reinforcement bar consists from the material (glass or basalt) strands of fibers connected 
by polymers (http://www.schoeck-combar.com, http://galen.su). Such structure of fibers 
materials describes the high strength that could be several or more times higher than strength of 
solid cross section materials. The FRP reinforcement has high strength in longitudinal direction. 
Because of high resistance to alkalinity medium in concrete the FRP reinforcement durability 
is about 100 year and more. It should be mentioned that the bond between concrete and steel 
reinforcement is better than FRP reinforcement but in this article it is not investigated.

The reinforcement could be in different types. The most popular is GFRP (Glass fiber reinforced 
polymer) and Basalt fiber reinforcement, but GFRP reinforcement more use in concrete structures 
because of less price. 

The main properties of GFRP and Basalt fiber reinforcement are presented in table 1. 

Review 
of main 

properties 
of FRP 

reinforcement

Characteristics of 
materials 

Steel 
reinforcement 

S400 class

GFRP 
reinforcement

„Schőck ComBAR“

GFRP 
reinforcement
„ROCKBAR“

Bazalt fiber 
reinforcement
„ROCKBAR“

Tensile strength MPa 360 1200 1000 1200

Density, t/m3 7 2,2 2,0 2,0

Corrosion Corrosion 
materals

No corrosion material satisfy to the first group of chemical 
resistance 

Length of reinforcement 
product, m

Bars of 6-12m 
length

Bars of 10-14m 
length

Bars until 12m length

Elastic Modulus, N/mm2 200000 60000 45000 50000-55000

Cover, mm According to 
codes, STR

Ø+10mm,
For precast reinforced concrete Ø+5mm

Table 1
The main propeties 

of steel and FRP 
reinforcement (http://

www.schoeck-combar.
com, http://galen.su)
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In this investigation the concrete stress-strain relationship were expressed in two cases.

1 case. Analysing the elastic plastic behaviour of tensile concrete should be note that 
c cσ ε−  

relationship could have quite significant influence to the crack moment crcM . The EC2 standard 
presents 

c cσ ε−  relation for compressed concrete but not describe the tensile concrete. If to 
assume that ultimate strain of tensile concrete correspond the ultimate tensile stress ( )ctmf , and 
the form of tensile concrete 

c cσ ε−  curve correspond to the form of compressed concrete until 
the peak of stress, it is possible to apply the EC2 standard expression of stress-strain relationship. 

In all figures the font of text are changed in “times new roman” and in fig. 1 and fig. 2 are presented 
units of tensile stress

So, if to calculate the tensile stress 
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concrete is presented in fig. 3 where the are used not the 
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(fctk0,05). For this reason the factor 0,7 were applied to the 

values obtained by equation (5). According to that figure the 
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The tensile concrete 
stress-strain relationship 
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expression is used. 
Concrete class C40/50

Fig. 2
The stress-strain 
relationship expressed 
according to the equation 
(4) (1-curve) and equation 
(1) (2-curve)
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Then the member k to the tensile concrete would be obtained from the other equation

When the ultimate concrete strain it is known the tensile stress could be expressed according to 
the adjusted EC2 equation:

The tensile stress of concrete (class 40/50) obtained according to the equation (4) is presented in 
fig. 2 where the peak of stress is reached at the strain equal to 0.000165.

The obtained expression (4) is not so convenient to the resultant calculation of the tensile and 
compressed concrete zones and to the crack moment also, because the strain member is in the 
denominator. Such not well on calculation of integrals. In this case more convenient the tensile stress 
expressed by polynomials (Židonis 2007, 2009, 2010). Then the stress of tensile concrete will be equal 
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The stress-strain relationships expressed according to the equation (5) and equation (7) to the 
C30/37 class concrete is presented in fig. 3 where the are used not the average values of stress 
( ctmf ) but characteristic values (fctk0,05). For this reason the factor 0,7 were applied to the values 
obtained by equation (5). According to that figure the curves is differ but it should be note that the 
ultimate strain is differ also.

In this section the cracking moments are calculated with assumption that the behaviour of 
compressed concrete is elastic because not high the amount of reinforcement was predicted. For 
calculations the stress and strain schemes presented in fig. 4 were used.

Calculating the cracking moment of elements reinforced by FRP reinforcement, were assumed 
that the bond between reinforcement and concrete is quite enough. 
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For tensile concrete at the short term failure case this coefficient approximately equal to ~0.5, i.e., 
0 5lim .λ =  (Baikov 1991). Of course it is average value that could vary. But if to admit that value, 
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When the cracking moment is calculating according to 
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Fig. 4. Strain and stress of element when compressive concrete 

behaviour is elastic. 
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behaviour is elastic. 
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the results obtained according to the equation (8) is between 

the results of EC2 and STR methods but there is higher 

increase of cracking moment when the amount of 
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Analysing the influence of stress-strain relationship to 

the cracking moment it is important to evaluate the elastic 

modulus of reinforcement. Calculated the cracking moment 

values according to the standard EC2 and STR methods and 

equation (9) with vary elastic modulus of reinforcement is 

presented in figure 9.  
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In this figure could be seen that curves obtained using 

different expressions of stress-strain diagram of tensile is 

quite similar.  

In these calculations were accepted such parameters.: 

30 37C / , 0 2b . m= , 0 4h . m= , 
1

0 05d . m= , 
2

10
s

A cm= .  

If some part of steel reinforcement to change by FRP 

reinforcement the cracking moment will be obtained 

between values of element reinforced only by steel 

reinforcement and reinforced only by FRP reinforcement. 

 

4. Conclusions 

1. The application of FRP reinforcement has 

significant influence to the cracking moment of flexural 

elements in compare with steel reinforcement and it 

influence increase when the area of FRP reinforcement 

arises. 

2. The application of different stress-strain diagrams 

has no significant influence to the cracking moment 

calculated to the flexural elements reinforced by FRP and 

steel reinforcement. 

3. In all investigated cases the calculated cracking 

moment values varied between values obtained by standard 

EC2 and STR methods. This is because of rectangular 

EC2 method describes highest reserve. 
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“Mcrc,F” means the cracking moment 
of element reinforced by FRP 
reinforcement, “Mcrc,F” – reinforced by 
steel reinforcement, “Mec2” – cracking 
moment calculated according to EC2 
method and “Mstr” – cracking moment 
calculated according to STR method.

When the cross section area is constant 
and varies the reinforcement area, 
the relationship of cracking moment 
and reinforcement ratio is presented 
in fig. 6. At this case also the results 
obtained according to the equation (8) 
is between the results of EC2 and STR 
methods but there is higher increase 
of cracking moment when the amount 
of reinforcement arises.

When the cracking moment is 
calculating according to the stress-
strain expression (5) the resultant of 
the tensile concrete zone will be equal:

The calculation of cracking moment 
was performed analogically as before 
using the scheme presented in figure 4. 
The calculated cracking moment 
values according to the stress-strain 
expression (5) and expression (7) is 
presented in figure 7 and figure 8. 

The cracking moment obtained 
some higher when the polynomial 
stress-strain relationship were used. 
This increase is evaluated by higher 
value of the ultimate strain that is 

,1 0,0001656ctε = . In case when the 
expression (7) were used the ultimate 
strain value is 0 000133ct ,lim ,ε = . i.e., 
some lower.

Analysing the influence of stress-
strain relationship to the cracking 
moment it is important to evaluate 
the elastic modulus of reinforcement. 
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λ  when crack 
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For tensile concrete at the short term failure case this 
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(Baikov 1991). Of course it is average value that could vary. 

But if to admit that value, the ultimate strain will be equal to 
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Fig. 4. Strain and stress of element when compressive concrete 

behaviour is elastic. 
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Calculated the cracking moment 
values according to the standard EC2 
and STR methods and equation (9) with 
vary elastic modulus of reinforcement 
is presented in figure 9. 

In this figure could be seen that curves 
obtained using different expressions 
of stress-strain diagram of tensile is 
quite similar. 

In these calculations were accepted 
such parameters: 30 37C / , 0 2b . m= , 

0 4h . m= , 1 0 05d . m= , 210sA cm= . 

were used the ultimate strain value is 0 000133
ct ,lim

,ε = . 

i.e., some lower. 
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constant and varies the height of cross section. (Mcrc,Fo and 

Mcrc,So curves when the equation (5) is applied and Mcrc,F and 

Mcrc,S curves when the equation (7) is applied).  
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1. The application of FRP reinforcement has 

significant influence to the cracking moment of flexural 

elements in compare with steel reinforcement and it 

influence increase when the area of FRP reinforcement 

arises. 

2. The application of different stress-strain diagrams 

has no significant influence to the cracking moment 

calculated to the flexural elements reinforced by FRP and 

steel reinforcement. 

3. In all investigated cases the calculated cracking 

moment values varied between values obtained by standard 

EC2 and STR methods. This is because of rectangular 

diagram that is described in STR. Also it could be state that 

EC2 method describes highest reserve. 
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