
58

Analysis of Stress Concentration Area about the Brace of the Concrete 
Wall at Early Age
 
Antanas Žiliukas1, Giedrius Žiogas1*

1Kaunas University of Technology, Strength and Fracture Mechanics Centre, Kęstučio st. 27, LT-44025 Kaunas, Lithuania 

* corresponding author: ziogas.giedrius@gmail.com 

Scientists	recently	focus	on	concrete’s	hardening	early	age	and	its	influence	to	solidity	of	a	structure.	Because	of	complex	
physical	–	chemical	processes	and	developed	strains,	stresses	appear	in	concrete	and	after	they	exceed	tensile	strength	of	
concrete	 -	develops	cracks.	 In	practice	 it	 is	noted	 that	 a	 structure	often	cracks	prior	 to	commencement	of	 exploitation.	
Therefore	 this	 article	 analyzes	 the	 influence	of	 stresses	 caused	by	autogenous	 shrinkage	over	 solidity	of	 structure.	The	
importance	of	stresses	caused	by	concrete	shrinkage	significantly	increases	in	places	where	a	cross-section	shifts.	The	stress	
concentration area develops at these points. One of the stress concentration areas is around the formwork’s transverse brace 
and	stresses	due	to	autogeneous	shrinkage	are	solved.	To	define	stresses,	analytical	and	finite	element	methods	are	used.	The	
stresses	concentration	area	is	calculated	more	precisely	using	the	finite	elements	method,	the	results	obtained	are	exhaustive	
and it allows to get a clearer picture of stresses.
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1. Introduction

In	recent	years,	there	have	been	a	number	of	scientific	
works	where	the	influence	of	concrete	early	age	hardening	
upon	development	of	cracks	is	researched.	While	concrete	
hardens	there	are	complex	chemical	and	physical	processes	
under proceeding, if not controlled they can negatively 
impact a structure. 

When	cracks	appear	in	reinforced	concrete	structures,	
the structure loses solidity, bearing capacity and it has 
negative	 impact	 on	 exploitation.	 So	 it	 is	 important	 to	
assess impact from concrete shrinkage and to suppose 
possible areas of stress concentration. A concentration area 
develops in places where cross-section of structure changes, 
i.  e. decrease (Viau 2010). Therefore, it is important to 
know these weak points and to solve the problem as per 
technological and structural aspect reducing the impact of 
stresses upon solidity of structure.

One of those places is around transverse brace of 
formworks, where structure is weaken by transverse 
continuous opening. It is known from practice that cracks 
are often noticed at these places. It should be noted that 
similar	 problems,	 when	 the	 stress	 concentration	 fields	
develop, are researched by scientists (Rees et al. 2012, 
Luo et al. 2012 )The peculiarities of monolithic concrete 
pouring, factors determining the development of cracks 
as well as prevention methods were partly discussed in 

the	 publications	 analyzed	 (Žiogas	 and	 Jočiūnas	 2007).	
Similar	cases	where	concentration	fields	of	cracks	develop	
are investigated by scientists (Rees et al. 2012, Luo  
et al. 2012), who indicate the appearance of cracks because 
of	stress	concentration	as	negative	impact	on	the	exploitation	
of	 structure.	 Scientific	works	 establish	 that	 depending	 on	
attenuation of cross-section, stresses can increase from 3 to 
4 times.

In practice it is noted that a structure often cracks prior 
to	commencement	of	exploitation.	During	 the	hydration	a	
volume of concrete changes and where areas are restricted 
because of the concrete shrinkage, inward stresses appear 
in	concrete	and	after	they	exceed	concrete	tensile	strength	
cracks	 appear	 (Hansen	 2011).	 The	 factors	 that	 influence	
shrinkage of concrete are given in the picture 1 (Holt and 
Leivo 2004).

As mentioned above, after appearance of concrete 
strains, tensile stresses appear as well cct E εσ ⋅= . (here: 
Ec –	modulus	of	elasticity	of	concrete;	εc – strain of concrete). 
When	 tensile	 stresses	 appeared	 because	 of	 strains	 exceed	
concrete tensile strength ctmt f>σ  cracks occur. 

This	article	analyzes	the	development	of	concentration	
area around transverse brace of formwork when autogenous 
shrinkage strains are present, shrinkage conditional strain 
is not estimated because the structure are restricted with 
formworks that prevent moisture loses from the structure. 
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2. Methods

Calculation methods of concrete strain-stress at early age

One of the processes causing cracks in concrete at the 
early stage of hardening is total shrinkage which develops 
while concrete is hardening.

Total shrinkage strain consists of two components 
(Eurocode 2, 2005):

 ▪ drying shrinkage strain;
 ▪ autogenous shrinkage strain

Total shrinkage strain values depend on the 
composition	 of	 the	 mix,	 water-cement	 ratio,	 time	 of	
hardening, geometrical characteristics and the surroundings 
(relative humidity of the air). 

Since the structure is restrained by formwork, concrete 
strain caused by moisture loss is not considered,but the 
autogenous shrinkage is proceeded. Peak values of total 
shrinkage	strain	will	be	found	along	the	xx	direction	of	the	
wall. In this case stresses due to the developed strains can be 
calculated in the following manner: 
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,W/C=0,415; concentration of coarse aggregate - 
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Where:	εxx – autogenous shrinkage, Ec(t) – modulus of 
elasticity at age t.

To determine autogenous shrinkage according to the 
following mathematical model (JCI Technical Committee, 
Tazawa	and	Miyazawa,	2002):

( ) tctc CW βεγε ⋅⋅⋅= )/(0  (2)

when	0,2≤W/C≤0,5:
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when	W/C>	0,5:
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here	εc(t)·10-6 is the autogenous shrinkage of concrete at age 
t;	γ	is	the	coefficient	which	assesses	the	variety	of	cement,	
γ=1,	when	regular	Portland	cement	is	used;	εc0·10-6 are the 
highest autogenous shrinkage strains of the cement stone 

with the corresponding ratio of water and binding material 
W/C;	βt	is	a	coefficient	which	assesses	autogenous	shrinkage	
in	relation	to	time;	W/C	is	the	water-	cement	ratio;	t	is	age	
of concrete in days; t0 is the initial time of binding in days; a 
and	b	are	the	coefficients	taken	from	table	1.

Autogenous shrinkage of concrete (cement  
C=350  kg/m3,W/C=0,415;	 concentration	 of	 coarse	
aggregate	 –	 φst= 0,375) was calculated using these 
dependencies.

Table 1. Values of coefficients a and b

W/C
Coeff. 0,2 0,3 0,4 0,5 0,6

a 1,2 1,5 0,6 0,1 0,03
b 0,4 0,4 0,5 0,7 0,8

Fig. 2 shows the dependencies of concrete stresses 
due to its autogenous shrinkage and hardening time. These 
dependencies were obtained using formulas 1 and 5.

Compressive strength of hardening concrete were 
obtained	by	means	of	 an	 industrial	 experiment	 (Žiogas	 et	
al. 2007), while its tensile strength and modulus of elasticity 
were calculated using the corresponding formulas and EC2 
regulations. Modulus of elasticity of concrete are given in 
table 2.

Table 2. Modulus of elasticity of concrete 

Hardening 
time, days 1 2 3 7 14 28

Ec, MPa 23920 26870 28290 30620 31990 33000

When	values	of	 internal	stresses	are	known,	the	area	
of stress concentration around the hole can be calculated. 
Stresses are calculated by applying analytical and numerical 
methods. The former method of calculating the area of 
stresses concentration uses the recommended formulas 
(Žiliukas	et	al.	2010).	

Radial	 normal	 stresses	 around	 hole	 σrr are obtained 
from the formula given below:
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a=r, stresses σ
θθ
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When a=r, stresses σ
rθ 

are calculated: 
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3. Results and Discussion 

 

Stresses obtained analytically are presented in table 3. While calculating the area of stress concentration, 

the increment of stresses due to the decreased cross - section area A
net

=A-2r is taken into consideration (nominal 

stresses)  

 

Table 3.  Stresses around the hole calculated 

Hardening time, 

days  

Stresses , MPa 

σ
nom

 σ
1
 σ

2
 σ

i,a
 

1 0,62 1,87 0,62 1,65 

2 1,05 3,16 1,05 2,79 

3 1,31 3,92 1,31 3,46 

7 1,65 4,95 1,63 4,95 

14 2,15 6,44 2,15 5,68 

28 2,38 7,14 2,38 6,30 

 

 
(6)
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here: a is the radius of the hole 10 mm, r is the radius from 
the centre of the hole to any other point.
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Table 1 . Values of coefficients a and b  
W/C 

Coeff. 
0,2 0,3 0,4 0,5 0,6 

a 1,2 1,5 0,6 0,1 0,03 

b 0,4 0,4 0,5 0,7 0,8 

 

Fig. 2 shows the dependencies of concrete stresses due to its autogenous shrinkage and hardening time. 

These dependencies were obtained using formulas 1 and 5. 

Compressive strength of hardening concrete were obtained by means of an industrial experiment (Žiogas et 

al. 2007), while its tensile strength and modulus of elasticity were calculated using the corresponding formulas 

and EC2 regulations. Modulus of elasticity of concrete are given in table 2. 
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Fig. 2. Stresses developed during the hardening of concrete and tensile strength of concrete: calculated and 

experimental. Here : σ
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Fig. 3. Scheme for calculating around the transverse brace of formwork. Here : σ
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shrinkage of concrete; a is the radius of the hole ; r is a point removed a certain distance from the centre of the hole ; θ is the 

angle from axis x; t is the thickness of the member; W – is the width of the element 

 

When values of internal stresses are known, the area of stress concentration around the hole can be 

calculated. Stresses are calculated by applying analytical and numerical methods. The former method of 

calculating the area of stresses concentration uses the recommended formulas (Žiliukas et al. 2010).  
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Fig. 3. Scheme for calculating around the transverse brace of 
formwork. Here : σxx are the stresses due to autogenous shrinkage 
of concrete; a is the radius of the hole ; r is a point removed a 
certain distance from the centre of the hole ; θ is the angle from 
axis x; t is the thickness of the member; W – is the width of the 
element

Stresses near the hole are calculated, therefore the 
radius	a=r,	and	stresses	σrr=0.

When	 r>>a,	 stresses	 are	 calculated	 according	 to	 the	
formula given below:
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Radial normal stresses around hole σ
rr
 are obtained from the formula given below: 
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a=r, stresses σ
θθ
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When a=r, stresses σ
rθ 

are calculated: 
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When angle θ=0, σ
rθ 

=0, circular stresses σ
θθ 

are key stresses σ
1, 

and radial stresses σ
rr
 are key stresses σ

2
. 

When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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3. Results and Discussion 

 

Stresses obtained analytically are presented in table 3. While calculating the area of stress concentration, 

the increment of stresses due to the decreased cross - section area A
net

=A-2r is taken into consideration (nominal 
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σ
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1 0,62 1,87 0,62 1,65 

2 1,05 3,16 1,05 2,79 

3 1,31 3,92 1,31 3,46 

7 1,65 4,95 1,63 4,95 

14 2,15 6,44 2,15 5,68 

28 2,38 7,14 2,38 6,30 

 

 (7)

It	can	be	seen	from	the	formula	that	stresses	σrr depend 
on	angle	θ.	When	θ=0,	σrr≈	σxx	,	when	θ	=90,	σrr≈	0.

Circular normal stresses are calculated from the 
formula below:
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a=r, stresses σ
rθ 

are calculated: 

 

0=

θ
σ

r

                            …(11) 
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rθ 

=0, circular stresses σ
θθ 

are key stresses σ
1, 

and radial stresses σ
rr
 are key stresses σ

2
. 

When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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When	a=r,	stresses	σθθ are calculated from: 
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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It can be seen from the formula that stresses σ
rr
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When a=r, stresses σ
rθ 

are calculated: 
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When angle θ=0, σ
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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3. Results and Discussion 

 

Stresses obtained analytically are presented in table 3. While calculating the area of stress concentration, 
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Table 3.  Stresses around the hole calculated 
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1 0,62 1,87 0,62 1,65 
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3 1,31 3,92 1,31 3,46 

7 1,65 4,95 1,63 4,95 
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 (9)

The	stress	concentration,	i.		e.	σθθ=3	σxx is formed when 
angle	θ=90°.

Moving further from the centre of the hole, i.  e., when 
r>>a,	stresses	change	with	angle	θ,	σθθ(0)=0	ir	σθθ(90)=	σxx.

Tangential stresses are obtained from the following 
formula:
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Radial normal stresses around hole σ
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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When	a=r,	stresses	σrθ	are calculated:
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a=r, stresses σ
rθ 

are calculated: 
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When angle θ=0, σ
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=0, circular stresses σ
θθ 
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and radial stresses σ
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 are key stresses σ
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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When	 angle	 θ=0,	 σrθ	=0,	 circular	 stresses	 σθθ	are key 
stresses	σ1, and	radial	stresses	σrr	are	key	stresses	σ2.

When	 a	 biaxial	 stress	 state	 is	 present,	 equivalent	
stresses are calculated according to Mises (Liu, 2005):
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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3. Results and Discussion

Stresses obtained analytically are presented in table 
3.	While	 calculating	 the	 area	 of	 stress	 concentration,	 the	
increment of stresses due to the decreased cross – section 
area Anet=A-2r is taken into consideration (nominal stresses). 

Table 3. Stresses around the hole calculated

Hardening time, 
days 

Stresses, MPa
σnom σ1 σ2 σi,a

1 0,62 1,87 0,62 1,65
2 1,05 3,16 1,05 2,79
3 1,31 3,92 1,31 3,46
7 1,65 4,95 1,63 4,95
14 2,15 6,44 2,15 5,68
28 2,38 7,14 2,38 6,30

In	 the	 numerical	 calculation	 of	 stresses,	 the	 finite	
element method uses the Ansys 12 program; the results 
obtained	 are	 presented	 in	 table	 4.	 In	 the	 finite	 element	
method calculation, a geometrical model is made for ¼ of 
the structural member, and it is indicated in the program that 
the	member	is	symmetrical	around	the	x	and	y	axes.	Such	
a model does not impact calculation results; besides, fewer 
computer resources are used.

Table 4. Stresses calculated using the finite element method (with 
Ansys 12 program)

Hardening 
time 
Days 

Stresses, MPa Margin

σxx σ1 σ2 σi,s (σi,s-σi,a)/	σi,s·100%

1 0,57 1,71 0,56 1,71 3,51
2 0,96 2,88 0,95 2,88 3,13
3 1,19 3,57 1,18 3,57 3,08
7 1,65 4,95 1,63 4,95 0,00
14 1,96 5,87 1,94 5,88 3,40
28 2,18 6,47 2,11 6,46 2,48
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Maximum	 margin	 is	 3,5	 %	 in	 the	 analytically	 and	
numerically	calculated	equivalent	stresses	σi.
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Fig. 5. Comparison of stresses and tensile strengths of concrete. 
Here: σxx are stresses caused by autogenous shrinkage of 
concrete; fct(exp) is the tensile strength of concrete calculated from 
experimental compressive strength; σi,a are the stresses obtained 
using the analitical method; σi,s are the stresses obtained using the 
numerical method with program Ansys

The numerical problem solution allows to calculate 
the stress distribution around the transverse braces at any 
angle	 θ	 and	 the	 radius	 of	 the	 hole.	 Numerical	 method	
obtained the stress distribution throughout the structure, 
which allows a better analysis of the construction work and 
predict crack growth. Numerical method is more accurate 
and comprehensive as analytical method.

It is obvious from the results obtained, that stresses 
three	 times	 as	 big	 as	 those	 impacting	 the	 member	 σxx 
develop	near	 the	hole;	 they	exceed	 the	 tensile	 strength	of	
concrete	within	 the	 first	 days	 of	 hardening.	Micro	 cracks	
appear	at	these	locations	even	before	the	exploitation	of	the	
structural member begins. 

After the removal of the formwork, total shrinkage 
strain due to drying starts developing; its limit value depends 
on the characteristics of the concrete structure and the 
surrounding environment. Later, both the total shrinkage and 

stresses round the hole continue increasing, accompanied by 
the growth of the crack which can be noticed with the naked 
eye after the removal of the formwork .

4. Conclusions

1. An area of stress concentration round the transverse 
bracing	 of	 the	 formwork,	 there	 the	 value	 of	 equivalent	
stresses is three times as big as the acting stresses appearing 
due to autogenous strains of concrete. The numerical 
problem solution allows calculate the stress distribution 
around	the	transverse	braces	at	any	angle	θ	and	the	radius	
of the hole.

2. The	 equivalent	 stresses	 exceed	 concrete’s	 tensile	
strength during the early days of concrete hardening and 
cause the opening of a crack.

3. To	 improve	 the	 quality	 of	 monolithic	 reinforced	
concrete	structures	as	well	as	the	reliability	of	exploitation,	
it	is	necessary	to	assess	all	the	factors	that	influence	strain-
stresses	 behavior:	 when	 concrete	 mix	 is	 poured,	 when	
it hardens inside the formwork, when the formwork is 
removed	and	during	the	subsequent	stages	of	hardening	at	
surrounding environment.
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