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Scientists recently focus on concrete’s hardening early age and its influence to solidity of a structure. Because of complex 
physical – chemical processes and developed strains, stresses appear in concrete and after they exceed tensile strength of 
concrete - develops cracks. In practice it is noted that a structure often cracks prior to commencement of exploitation. 
Therefore this article analyzes the influence of stresses caused by autogenous shrinkage over solidity of structure. The 
importance of stresses caused by concrete shrinkage significantly increases in places where a cross-section shifts. The stress 
concentration area develops at these points. One of the stress concentration areas is around the formwork’s transverse brace 
and stresses due to autogeneous shrinkage are solved. To define stresses, analytical and finite element methods are used. The 
stresses concentration area is calculated more precisely using the finite elements method, the results obtained are exhaustive 
and it allows to get a clearer picture of stresses.
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1.	 Introduction

In recent years, there have been a number of scientific 
works where the influence of concrete early age hardening 
upon development of cracks is researched. While concrete 
hardens there are complex chemical and physical processes 
under proceeding, if not controlled they can negatively 
impact a structure. 

When cracks appear in reinforced concrete structures, 
the structure loses solidity, bearing capacity and it has 
negative impact on exploitation. So it is important to 
assess impact from concrete shrinkage and to suppose 
possible areas of stress concentration. A concentration area 
develops in places where cross-section of structure changes, 
i.  e. decrease (Viau 2010). Therefore, it is important to 
know these weak points and to solve the problem as per 
technological and structural aspect reducing the impact of 
stresses upon solidity of structure.

One of those places is around transverse brace of 
formworks, where structure is weaken by transverse 
continuous opening. It is known from practice that cracks 
are often noticed at these places. It should be noted that 
similar problems, when the stress concentration fields 
develop, are researched by scientists (Rees et al. 2012, 
Luo et al. 2012 )The peculiarities of monolithic concrete 
pouring, factors determining the development of cracks 
as well as prevention methods were partly discussed in 

the publications analyzed (Žiogas and Jočiūnas 2007). 
Similar cases where concentration fields of cracks develop 
are investigated by scientists (Rees et al. 2012, Luo  
et al. 2012), who indicate the appearance of cracks because 
of stress concentration as negative impact on the exploitation 
of structure. Scientific works establish that depending on 
attenuation of cross-section, stresses can increase from 3 to 
4 times.

In practice it is noted that a structure often cracks prior 
to commencement of exploitation. During the hydration a 
volume of concrete changes and where areas are restricted 
because of the concrete shrinkage, inward stresses appear 
in concrete and after they exceed concrete tensile strength 
cracks appear (Hansen 2011). The factors that influence 
shrinkage of concrete are given in the picture 1 (Holt and 
Leivo 2004).

As mentioned above, after appearance of concrete 
strains, tensile stresses appear as well cct E εσ ⋅= . (here: 
Ec – modulus of elasticity of concrete; εc – strain of concrete). 
When tensile stresses appeared because of strains exceed 
concrete tensile strength ctmt f>σ  cracks occur. 

This article analyzes the development of concentration 
area around transverse brace of formwork when autogenous 
shrinkage strains are present, shrinkage conditional strain 
is not estimated because the structure are restricted with 
formworks that prevent moisture loses from the structure. 
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2.	 Methods

Calculation methods of concrete strain-stress at early age

One of the processes causing cracks in concrete at the 
early stage of hardening is total shrinkage which develops 
while concrete is hardening.

Total shrinkage strain consists of two components 
(Eurocode 2, 2005):

▪▪ drying shrinkage strain;
▪▪ autogenous shrinkage strain

Total shrinkage strain values depend on the 
composition of the mix, water-cement ratio, time of 
hardening, geometrical characteristics and the surroundings 
(relative humidity of the air). 

Since the structure is restrained by formwork, concrete 
strain caused by moisture loss is not considered,but the 
autogenous shrinkage is proceeded. Peak values of total 
shrinkage strain will be found along the xx direction of the 
wall. In this case stresses due to the developed strains can be 
calculated in the following manner: 
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 is the 

initial time of binding in days ; a and b are the coefficients taken from table 1. 

Autogenous shrinkage of concrete (cement C=350 kg/m
3;

,W/C=0,415; concentration of coarse aggregate - 

φ
st
= 0,375) was calculated using these dependencies. 
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Where: εxx – autogenous shrinkage, Ec(t) – modulus of 
elasticity at age t.

To determine autogenous shrinkage according to the 
following mathematical model (JCI Technical Committee, 
Tazawa and Miyazawa, 2002):

( ) tctc CW βεγε ⋅⋅⋅= )/(0 	 (2)

when 0,2≤W/C≤0,5:
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here εc(t)·10-6 is the autogenous shrinkage of concrete at age 
t; γ is the coefficient which assesses the variety of cement, 
γ=1, when regular Portland cement is used; εc0·10-6 are the 
highest autogenous shrinkage strains of the cement stone 

with the corresponding ratio of water and binding material 
W/C; βt is a coefficient which assesses autogenous shrinkage 
in relation to time; W/C is the water- cement ratio; t is age 
of concrete in days; t0 is the initial time of binding in days; a 
and b are the coefficients taken from table 1.

Autogenous shrinkage of concrete (cement  
C=350  kg/m3,W/C=0,415; concentration of coarse 
aggregate – φst= 0,375) was calculated using these 
dependencies.

Table 1. Values of coefficients a and b

W/C
Coeff. 0,2 0,3 0,4 0,5 0,6

a 1,2 1,5 0,6 0,1 0,03
b 0,4 0,4 0,5 0,7 0,8

Fig. 2 shows the dependencies of concrete stresses 
due to its autogenous shrinkage and hardening time. These 
dependencies were obtained using formulas 1 and 5.

Compressive strength of hardening concrete were 
obtained by means of an industrial experiment (Žiogas et 
al. 2007), while its tensile strength and modulus of elasticity 
were calculated using the corresponding formulas and EC2 
regulations. Modulus of elasticity of concrete are given in 
table 2.

Table 2. Modulus of elasticity of concrete 

Hardening 
time, days 1 2 3 7 14 28

Ec, MPa 23920 26870 28290 30620 31990 33000

When values of internal stresses are known, the area 
of stress concentration around the hole can be calculated. 
Stresses are calculated by applying analytical and numerical 
methods. The former method of calculating the area of 
stresses concentration uses the recommended formulas 
(Žiliukas et al. 2010). 

Radial normal stresses around hole σrr are obtained 
from the formula given below:
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a=r, stresses σ
θθ

 are calculated from :  
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The stress concentration, i.e. σ
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 is formed when angle θ=90°. 

Moving further from the centre of the hole, i.e., when r>>a, stresses change with angle θ, σ
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When a=r, stresses σ
rθ 

are calculated: 
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3. Results and Discussion 

 

Stresses obtained analytically are presented in table 3. While calculating the area of stress concentration, 

the increment of stresses due to the decreased cross - section area A
net

=A-2r is taken into consideration (nominal 

stresses)  

 

Table 3.  Stresses around the hole calculated 

Hardening time, 

days  

Stresses , MPa 

σ
nom

 σ
1
 σ

2
 σ

i,a
 

1 0,62 1,87 0,62 1,65 

2 1,05 3,16 1,05 2,79 

3 1,31 3,92 1,31 3,46 

7 1,65 4,95 1,63 4,95 

14 2,15 6,44 2,15 5,68 

28 2,38 7,14 2,38 6,30 
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here: a is the radius of the hole 10 mm, r is the radius from 
the centre of the hole to any other point.
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Table 1 . Values of coefficients a and b  
W/C 

Coeff. 
0,2 0,3 0,4 0,5 0,6 

a 1,2 1,5 0,6 0,1 0,03 

b 0,4 0,4 0,5 0,7 0,8 

 

Fig. 2 shows the dependencies of concrete stresses due to its autogenous shrinkage and hardening time. 

These dependencies were obtained using formulas 1 and 5. 

Compressive strength of hardening concrete were obtained by means of an industrial experiment (Žiogas et 

al. 2007), while its tensile strength and modulus of elasticity were calculated using the corresponding formulas 

and EC2 regulations. Modulus of elasticity of concrete are given in table 2. 
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Fig. 3. Scheme for calculating around the transverse brace of formwork. Here : σ
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  are the stresses due to autogenous 

shrinkage of concrete; a is the radius of the hole ; r is a point removed a certain distance from the centre of the hole ; θ is the 

angle from axis x; t is the thickness of the member; W – is the width of the element 

 

When values of internal stresses are known, the area of stress concentration around the hole can be 

calculated. Stresses are calculated by applying analytical and numerical methods. The former method of 

calculating the area of stresses concentration uses the recommended formulas (Žiliukas et al. 2010).  
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Fig. 3. Scheme for calculating around the transverse brace of 
formwork. Here : σxx are the stresses due to autogenous shrinkage 
of concrete; a is the radius of the hole ; r is a point removed a 
certain distance from the centre of the hole ; θ is the angle from 
axis x; t is the thickness of the member; W – is the width of the 
element

Stresses near the hole are calculated, therefore the 
radius a=r, and stresses σrr=0.

When r>>a, stresses are calculated according to the 
formula given below:
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 
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When a=r, stresses σ
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When a=r, stresses σ
rθ 

are calculated: 
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and radial stresses σ
rr
 are key stresses σ
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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3. Results and Discussion 
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It can be seen from the formula that stresses σrr depend 
on angle θ. When θ=0, σrr≈ σxx , when θ =90, σrr≈ 0.

Circular normal stresses are calculated from the 
formula below:
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Radial normal stresses around hole σ
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
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When a=r, stresses σ
rθ 
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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3. Results and Discussion 
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When a=r, stresses σθθ are calculated from: 
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When a=r, stresses σ
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are calculated: 
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When angle θ=0, σ
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and radial stresses σ
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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3. Results and Discussion 
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The stress concentration, i.  e. σθθ=3 σxx is formed when 
angle θ=90°.

Moving further from the centre of the hole, i.  e., when 
r>>a, stresses change with angle θ, σθθ(0)=0 ir σθθ(90)= σxx.

Tangential stresses are obtained from the following 
formula:
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Radial normal stresses around hole σ
rr
 are obtained from the formula given below: 
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 

 

[ ])2cos(1

2

1

θσσ +=
xxrr

                          (7) 

 

It can be seen from the formula that stresses σ
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θθ

=3 σ
xx

 is formed when angle θ=90°. 

Moving further from the centre of the hole, i.e., when r>>a, stresses change with angle θ, σ
θθ(0)

=0 ir σ
θθ(90)

= 

σ
xx. 

 

Tangential stresses are obtained from the following formula: 

 

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

+
⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−−=
2

2

2

2

3112sin

2 r

a

r

a
xx

r

θ

σ

σ
θ

                   …(10) 
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When angle θ=0, σ
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=0, circular stresses σ
θθ 
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and radial stresses σ
rr
 are key stresses σ
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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3. Results and Discussion 
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When a=r, stresses σrθ are calculated:
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Radial normal stresses around hole σ
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here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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When angle θ=0, σ
rθ 

=0, circular stresses σ
θθ 
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1, 

and radial stresses σ
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 are key stresses σ
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When a biaxial stress state is present, equivalent stresses are calculated according to Mises (Liu, 2005): 
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When angle θ=0, σrθ =0, circular stresses σθθ are key 
stresses σ1, and radial stresses σrr are key stresses σ2.

When a biaxial stress state is present, equivalent 
stresses are calculated according to Mises (Liu, 2005):
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Radial normal stresses around hole σ
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 are obtained from the formula given below: 

 

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−⋅
⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−−
⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−=
2

2

2

2

2

2

3

112cos

2

1

2
r

a

r

a

r

a
xxxx

rr

θ

σσ

σ

               

(6) 

 

here: a is the radius of the hole 10 mm, r is the radius from the centre of the hole to any other point. 

Stresses near the hole are calculated, therefore the radius a=r, and stresses σ
rr
=0 

When r>>a, stresses are calculated according to the formula given below: 
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3.	 Results and Discussion

Stresses obtained analytically are presented in table 
3. While calculating the area of stress concentration, the 
increment of stresses due to the decreased cross – section 
area Anet=A-2r is taken into consideration (nominal stresses). 

Table 3. Stresses around the hole calculated

Hardening time, 
days 

Stresses, MPa
σnom σ1 σ2 σi,a

1 0,62 1,87 0,62 1,65
2 1,05 3,16 1,05 2,79
3 1,31 3,92 1,31 3,46
7 1,65 4,95 1,63 4,95
14 2,15 6,44 2,15 5,68
28 2,38 7,14 2,38 6,30

In the numerical calculation of stresses, the finite 
element method uses the Ansys 12 program; the results 
obtained are presented in table 4. In the finite element 
method calculation, a geometrical model is made for ¼ of 
the structural member, and it is indicated in the program that 
the member is symmetrical around the x and y axes. Such 
a model does not impact calculation results; besides, fewer 
computer resources are used.

Table 4. Stresses calculated using the finite element method (with 
Ansys 12 program)

Hardening 
time 
Days 

Stresses, MPa Margin

σxx σ1 σ2 σi,s (σi,s-σi,a)/ σi,s·100%

1 0,57 1,71 0,56 1,71 3,51
2 0,96 2,88 0,95 2,88 3,13
3 1,19 3,57 1,18 3,57 3,08
7 1,65 4,95 1,63 4,95 0,00
14 1,96 5,87 1,94 5,88 3,40
28 2,18 6,47 2,11 6,46 2,48
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In the numerical calculation of stresses, the finite element method uses the Ansys 12 program; the results 

obtained are presented in table 4. In the finite element method calculation, a geometrical model is made for ¼ of 

the structural member, and it is indicated in the program that the member is symmetrical around the x and y axes. 

Such a model does not impact calculation results; besides, fewer computer resources are used. 
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Fig. 4. Distribution of the area of stress concentration (N/mm
2
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In the numerical calculation of stresses, the finite element method uses the Ansys 12 program; the results 

obtained are presented in table 4. In the finite element method calculation, a geometrical model is made for ¼ of 

the structural member, and it is indicated in the program that the member is symmetrical around the x and y axes. 

Such a model does not impact calculation results; besides, fewer computer resources are used. 

Maximum margin is 3,5 % in the analytically and numerically calculated equivalent stresses σ
i 
 

 

Table 4. Stresses calculated using the finite element method (with Ansys 12 program) 
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Fig. 5. Comparison of stresses and tensile strengths of concrete. 
Here: σxx are stresses caused by autogenous shrinkage of 
concrete; fct(exp) is the tensile strength of concrete calculated from 
experimental compressive strength; σi,a are the stresses obtained 
using the analitical method; σi,s are the stresses obtained using the 
numerical method with program Ansys

The numerical problem solution allows to calculate 
the stress distribution around the transverse braces at any 
angle θ and the radius of the hole. Numerical method 
obtained the stress distribution throughout the structure, 
which allows a better analysis of the construction work and 
predict crack growth. Numerical method is more accurate 
and comprehensive as analytical method.

It is obvious from the results obtained, that stresses 
three times as big as those impacting the member σxx 
develop near the hole; they exceed the tensile strength of 
concrete within the first days of hardening. Micro cracks 
appear at these locations even before the exploitation of the 
structural member begins. 

After the removal of the formwork, total shrinkage 
strain due to drying starts developing; its limit value depends 
on the characteristics of the concrete structure and the 
surrounding environment. Later, both the total shrinkage and 

stresses round the hole continue increasing, accompanied by 
the growth of the crack which can be noticed with the naked 
eye after the removal of the formwork .

4.	 Conclusions

1.	 An area of stress concentration round the transverse 
bracing of the formwork, there the value of equivalent 
stresses is three times as big as the acting stresses appearing 
due to autogenous strains of concrete. The numerical 
problem solution allows calculate the stress distribution 
around the transverse braces at any angle θ and the radius 
of the hole.

2.	 The equivalent stresses exceed concrete’s tensile 
strength during the early days of concrete hardening and 
cause the opening of a crack.

3.	 To improve the quality of monolithic reinforced 
concrete structures as well as the reliability of exploitation, 
it is necessary to assess all the factors that influence strain-
stresses behavior: when concrete mix is poured, when 
it hardens inside the formwork, when the formwork is 
removed and during the subsequent stages of hardening at 
surrounding environment.
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