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The magnetocaloric effect (MCE) is the thermal response of a magnetic material to an applied magnetic 
field. Magnetic cooling is a promising alternative to conventional vapor compression technology in 
near room temperature applications and has experienced significant developments over the last five 
years. Although further improvements are necessary before the technology can be commercialized. 
Researchers were mainly focused on the development of materials and optimization of a flow system 
in order to increase the efficiency of magnetic heat pumps. The project, presented in this paper, is 
devoted to the improvement of heat pump and cooling technologies through simple tests of prospective 
regenerator designs. A brief literature review and expected results are presented in the paper. It is 
mainly focused on MCE technologies and provides a brief introduction to the magnetic cooling as an 
alternative for conventional vapor compression technology.

KEYWORDS: heat pump, heat transfer, magnetic refrigeration, magnetocaloric effect, test device 
modelling. 

The magnetocaloric effect (MCE) was discovered by French and Swiss physicists Weiss and Pic-
card (Smith et al. 2012). In the mid-1920s Debye and Giauque proposed a method of adiabatic 
demagnetization to reach very low temperatures (Smith et al. 2012). The discovery of magneto-
caloric materials (MCM) with Curie temperatures (TC) near room temperature (RT) has opened 
an opportunity for magnetic refrigeration (MR) to become an alternative to conventional vapor 
compression devices. Furthermore, MR technology is environmentally friendly since it has zero 
vapor pressure, no Ozone Depletion Potential (ODP), no direct Global Warming Potential (GWP), it 
has potential to be more compact layout since the working material is solid, and has the potential 
to work more silently than conventional compressors (Bahl et al. 2008, Barbosa et al. 2014, En-
gelbrecht et al. 2011, Eriksen et al. 2015, Lei et al. 2016, Smith et al. 2012).

The MC cooling technique is based on the thermal response of a magnetic material when magne-
tized/demagnetized, such as a temperature increases when the field is increased and vice versa. 
The isothermal entropy change is negative upon magnetization and positive upon demagnetiza-
tion, see Fig. 1. This scenario is valid when an ordinary MCE takes place and is analogous to the 
negative change in entropy associated with the isothermal compression of a gas. 

MR near RT is a desirable, but at the same time technically challenging idea. Challenges are re-
lated to device engineering. Barclay et al. (1981) patented the active magnetocaloric regenerator 
(AMR) with its own ‘distributed refrigeration’ cycle which can provide refrigeration over a tem-
perature span that is much larger than the adiabatic temperature change of the material. Never-
theless, an efficient AMR device requires a large magnetic field. Rowe et al. (2006) concluded that 
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the lower magnetic field might be compensated by increasing the operating frequency. However, 
Nielsen and Engelbrecht (2012) showed that in case of a long AMR (200 mm) the importance of 
the thermal conductivity increases when a device is operated at a high frequency – the higher the 
operating frequency, the higher the thermal conductivity is necessary.

Seeking to optimize the configuration of machines, attention is mainly paid to the performance of 
it. There are several ways to increase the efficiency of an MR such as optimizing the flow system, 
optimizing the magnet assembly, improving regenerator geometry, and investigating new MCMs, 
etc. Nevertheless, the main attention of other researchers is paid on the investigation of materials 
such as changing their composition (Kaštil et al. 2013).

On the other hand, to build an MR with a high COP, an efficient heat exchanger is required. Since 
the adiabatic temperature span in the MCE (in the magnetic field up to 1.5 T) is limited to a max-
imum 5.8 K per one layer of MCM, conventional heat exchangers are not sufficient to be directly 
implemented in this application. The temperature span is required to be at least 30 K for con-
ventional devices (Kitanovski et al. 2015). This suggests considering a novel concept of heat ex-
changer. It has long been a goal to design a heat exchanger with a high heat transfer rate and low 
pressure drop, but now it turned to be crucially important for the successful implementation of 
novel cooling technologies.

Fig. 1 
An MR material with 

randomly oriented 
spins is magnetized  – 

the temperature of 
a material increases 

adiabatically (a) and then 
entropy decreases under 
isothermal conditions (b)
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Fig. 1.  temperature of a material increases adiabatically 
(a) and then entropy decreases under isothermal conditions (b). 
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Discovered compositions are available in a variety of shapes and packing of new materials should 
be tested before applying them in larger and more complex prototypes. The properties of a series 
of such MCMs are tested in a vertically oriented versatile device – the test machine, see Fig. 2. It 
is designed in a way to allow the variation and control of many experimental parameters. A brief 
introduction to the main parts and operation of the test machine are given in this paper, more 
detailed description of the device and operational conditions are given in Bahl et al. (2008) and 
Engelbrecht et al. (2012). The device is built in a temperature controlled cabinet. The hot reservoir 
(1) is placed above the regenerator (2) and is linked to the forced convection heat exchanger (HEX) 
(3) and the cold reservoir (4) (below the regenerator) is covered by thermal insulation (not shown). 
A Halbach cylinder permanent magnet is used as a magnetic field source, with an average flux 
density in the bore of 1.03 T. The temperature of the hot end (Thot) is controlled via the ambient (air 
inside the cabinet) temperature. 

During operation a regenerator is moved vertically by a stepper motor while the magnet is kept 
in a stationary position (see Fig. 3). Magnetization and demagnetization of the MCM is achieved 
in this way and a temperature span across the thermal reservoirs is built up. The heat transfer 
fluid is moved through the regenerator by mean of a displacer in the cold end. The entire device 
is in thermal contact with the same ambient air i.e. hot end is thermally linked to the ambient via 
a forced convection heat exchanger while the cold end is thermally insulated using foam tubing.

Methods
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The test machine can be operated in 
different combinations of various pa-
rameters, such as a different piston 
(displacer) stroke (amplitude) and ve-
locity. The heat transfer fluid flow is 
provided by pushing the piston back-
wards and forwards. In this manner the 
fluid velocity and volume of the flow can 
be controlled. The velocity of the fluid 
directly affects utilization, which rep-
resents the ratio of the thermal capacity 
of the fluid that moves into regenerator 
to the thermal capacity of the solid re-
generator material. The expression to 
define utilization (φ) is given below:

Fig. 2 
A photo of the test 
machine installed in the 
temperature controlled 
cabinet (a) and the 
schematic drawing (b) 
(Engelbrecht et al. 2012)

Fig. 3 
The test machine with the 
magnetic regenerator a) 
outside and b) inside the 
magnet 
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Fig. 3. The test machine with the magnetic regenerator a) outside and b) inside the magnet.  

The test machine can be operated in different combinations of various parameters, such as a different piston (displacer) 
stroke (amplitude) and velocity. The heat transfer fluid flow is provided by pushing the piston backwards and forwards. In 
this manner the fluid velocity and volume of the flow can be controlled. The velocity of the fluid directly affects utilization, 
which represents the ratio of the thermal capacity of the fluid that moves into regenerator to the thermal capacity of the solid 
regenerator material. The expression to define utilization () is given below: 

      
     (1) 

where: ṁf – mass of the fluid pushed through the regenerator in one direction; cf and cs – specific heat of the fluid and 
the solid, respectively; ms –mass of the solid regenerator (Neves Bez et al. 2016). 

To find the optimal working point of the MCM, Thot is set slightly above the TC of the working material and series of 
tests are run under the following conditions: 

1.  At different piston amplitudes, when the utilization (Eq. 1) of a regenerator is known. The sample is tested 
at the same temperature (slightly above the TC) and piston velocity conditions. The point where the temperature span is the 
highest is selected to be the optimal piston amplitude for the remaining tests of the same regenerator. 

2.  At different piston velocities, when the optimal piston amplitude is known. The sample is tested at the same 
temperature (same as at the first step) and piston amplitude conditions. The point where the temperature span is at the peak is 
selected to be the optimal piston velocity for the remaining tests of the same regenerator. 

3.  At the different temperature range, when the piston amplitude and velocity is constant. When working point 
is known, a test against temperature change is made in order to find the peak of the temperature span of the tested sample. 

a)   b) c)   
Fig. 4. The MCM regenerator a) stacked plate regenerator b) top view and c) side view. Geometry of the housing of the 
regenerators ø~38mm (outer) and h=40mm. 

Two types of regenerators have been tested in the test machine. The parallel plate regenerator is shown in the Fig. 4. 
a). The irregular particle regenerator is shown in Fig. 4 b) and c). The MCM and their characteristics are not discussed further 
in this paper. More information about the both types of the regenerators might be found in Bahl et al. (2016) and Neves Bez 
et al. (2016), respectively. 

The results for three regenerators, in the form of irregular particles (see Fig. 4 b and c) are presented in this paper. All 
of the presented regenerators were bonded with a small amount of epoxy which is meant to maintain the mechanical integrity 
of the regenerator. A water based solution (2 wt%) of anti-corrosion inhibitor ENTEK FNE was used as a heat transfer liquid. 
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where: 

       – mass of the fluid pushed through 
the regenerator in one direction; 

cf and cs – specific heat of the fluid and 
the solid, respectively; 

ms – mass of the solid regenerator 
(Neves Bez et al. 2016).

To find the optimal working point of the 
MCM, Thot is set slightly above the TC of 
the working material and series of tests 
are run under the following conditions:

1 At different piston amplitudes, when the utilization (Eq. 1) of a regenerator is known. The 
sample is tested at the same temperature (slightly above the TC) and piston velocity condi-

tions. The point where the temperature span is the highest is selected to be the optimal piston 
amplitude for the remaining tests of the same regenerator.

2 At different piston velocities, when the optimal piston amplitude is known. The sample is 
tested at the same temperature (same as at the first step) and piston amplitude conditions. 

The point where the temperature span is at the peak is selected to be the optimal piston velocity 
for the remaining tests of the same regenerator.

3 At the different temperature range, when the piston amplitude and velocity is constant. 
When working point is known, a test against temperature change is made in order to find 

the peak of the temperature span of the tested sample.

Two types of regenerators have been tested in the test machine. The parallel plate regenerator is 
shown in the Fig. 4. a). The irregular particle regenerator is shown in Fig. 4 b) and c). The MCM and 
their characteristics are not discussed further in this paper. More information about the both types 
of the regenerators might be found in Bahl et al. (2016) and Neves Bez et al. (2016), respectively.

The results for three regenerators, in the form of irregular particles (see Fig. 4 b and c) are pre-
sented in this paper. All of the presented regenerators were bonded with a small amount of epoxy 
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which is meant to maintain the mechanical integrity of the regenerator. A water based solution (2 
wt%) of anti-corrosion inhibitor ENTEK FNE was used as a heat transfer liquid. All the samples 
have the same mass (95 g), and average specific heat (500 J/kgK) (the difference in the specific 
heat of the samples might be neglected) (Neves Bez et al. 2016). The bonding epoxy has poorer 
thermal properties than pure MCM, nevertheless it is necessary for structural integrity of the 
regenerator. Thus it is important to measure the MCE characteristics of the regenerators before 
applying the material on a larger prototypes or magnetic heat pumps. Particularly this material 
is will be used in the ENOVHEAT (Efficient Novel Magnetocaloric Heat Pumps) prototype, which is 
under design at DTU Energy. More information can be found at the project’s home page http://
www.enovheat.dk/.

Fig. 4
The MCM regenerator a) 

stacked plate regenerator 
b) top view and c) side 

view. Geometry of 
the housing of the 

regenerators ø~38mm 
(outer) and h=40mm.

a)  b)  
Fig. 3. The test machine with the magnetic regenerator a) outside and b) inside the magnet.  
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In order to measure and log the temperature of the ambient, cold and hot end, the type E thermo-
couples and Pico TC-08 thermocouple data logger (Pico logger) were used. 

The measurable temperature range for E type thermocouple is -270 +870 °C. Standard accuracy 
is +/- 1.7°C or +/- 0.5%.

A Pico logger has 8 channels for thermocouples and the cold junction compensation (CJC) mea-
suring ambient temperature is used in this work. The features of the device are as follow:

 _ measureable temperature range is -270 +1820 °C;

 _ temperature accuracy sum of +/- 0.2% of reading and +/- 0.5 °C;

 _ voltage accuracy sum of +/- 0.2% of reading and +/-10mV;

 _ conversion time 100 ms per thermocouple channel;

 _ sampling rate is up to 10 samples per second;

 _ resolution 20 bits.

Set-up for 
measurements

The optimal working point of the tested 
regenerators was at a piston amplitude 
of 20 mm and piston velocity 15 mm/s  
(φ = 0.45), see Fig. 5 and Fig. 6. The work-
ing point was tested only for the sample of 
2 wt.% epoxy. All of the presented samples 
kept their mechanical integrity during the 
tests, indicating that 2 wt % epoxy is ade-
quate from a mechanical standpoint. The 
volume of the epoxy bonding the MCM par-
ticles was varied in order to find the min-
imum necessary amount to maintain the 
mechanical integrity of the regenerators.

Results and 
discussion

All the samples have the same mass (95 g), and average specific heat (500 J/kgK) (the difference in the specific heat of the 
samples might be neglected) (Neves Bez et al. 2016). The bonding epoxy has poorer thermal properties than pure MCM, 
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Fig. 5. No-load temperature span as a  layers regenerator.  

Fig. 5 
No-load temperature 
span as a function of 
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The regenerators with 3 wt% and 4 wt% 
of epoxy were tested at the same working 
point. As it was expected, the regenera-
tor with 2 wt% of epoxy showed the best 
performance: ∆Tspan = 13.6 K at Thot = 301 K 
(28 ºC). The peaks of the samples with 
3  wt% and 4 wt% were ∆Tspan = 12.8 K (at 
Thot = 301 K (28 ºC)) and ∆Tspan = 12.2 K (at 
Thot = 300 K (27 ºC)), respectively.

The obtained results agree with the pre-
viously published knowledge and sug-
gest that increasing the number of layers 
in the regenerator in the form of powders 
may lead to a broader temperature span 
(Eriksen 2016, Neves Bez et. al 2016). 
However, a more powerful and more 
efficient machine is necessary to allow 
us to perform a full test of multilayered 
regenerators. Thus, it is planned to build 
an advanced testing device with higher 
operating frequency and an adjustable 
magnetic field. The main purpose of the 
machine would be kept the same – to test 
and optimize active magnetic regenera-
tors on a small scale before implement-
ing them in larger, more complex proto-
types, such as the rotary prototypes, built 
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No-load temperature spans have been presented for the regenerators with varying amounts of 
bonding epoxy. It is seen that the smaller amount of epoxy in the volume of the regenerator, 
the better is the performance. The minimal amount of epoxy should be incorporated in order 
to sustain the mechanical integrity of the regenerator, though. As it is presented in the results 
section, the utilisation for all of the tested regenerators was φ = 0.45, which corresponded to a 
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piston amplitude 20 mm. The sample with the least amount of epoxy showed the best perform 
and temperature span ΔTspan=13.6°C, while the sample with 4% of epoxy showed the lowest tem-
perature span ΔTspan=12.2°C. The regenerator with 3% of epoxy showed the temperature span of 
ΔTspan=12.8°C.

The experiments on the same MCM with the 2% of epoxy will be continued in order to find the best 
configuration of the particles geometry and number of the layers in a regenerator.

The authors are grateful to Vacuumschmelze GmbH for providing the samples. This work was 
partly financed by the ENOVHEAT project which is funded by Innovation Fund Denmark (contract 
no 12-132673).
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