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Nowadays, in the construction sector, some methods are being investigated to detect and minimize 
their environmental impact. The Life Cycle Assessment (LCA) is a tool that allows the evaluation of the 
environmental burden of a product or process, with a scientific recognition increment; and therefore 
the aim of this work is to verify the feasibility of the use of LCA in the construction sector. For this 
purpose, the environmental impacts of the use of conventional reinforced concrete (RC) columns, and 
Glulam (G) as an alternative material, were compared. The scope of the LCA included the extraction and 
manufacture of materials and construction of the columns; the software tools used were LCA Manager 
1.3 and database Ecoinvent 2.0. The study showed that the most critical stage is the production of 
materials. RC reports 3.5 times more damage to ecosystem quality, requires a 32% more extraction 
of natural resources, and produces effects on human health 53% higher than G; while G generates 108 
times more damage to land occupation; however, considering environmental measures, this effect can 
be mitigated, since it is a material 100% renewable. Finally, it was verified that LCA is a feasible option 
to use in the construction field and, it provides a wide range of results.

KEYWORDS: Glulam, LCA, Reinforced-Concrete, Sustainable-Construction.



Journal of Sustainable Architecture and Civil Engineering 2015/2/11
22

The construction sector transforms the environment with important consequences and impacts 
on it. It is responsible for high-energy consumption, 30-40% of total worldwide energy (Ortiz et al. 
2009, Erlandsson and Borg 2003, Kellenberger and Althaus 2008, Ramesh et al. 2010, Xing et al. 
2008, Carvalho-Filho 2001). It is also a waste generator; an emitter of greenhouse gases, 40% of 
total emissions (Ramesh et al. 2010, Carvalho-Filho 2001); responsible for environmental dam-
age; and consumer of natural resources, 40% on a global scale (Ortiz et al. 2009, Erlandsson and 
Borg 2003, Kellenberger and Althaus 2008, Ramesh et al. 2010, O´Reilly-Díaz et al. 2010, Xing et 
al. 2008, Zhang et al. 2006, Carvalho-Filho 2001).

The implementation of reduction strategies (in energy demand, material consumption and waste 
generation, effluents and emissions generation) may be alternatives to mitigate these problems. 
However, it is necessary to unite criteria and channel them to a single address: sustainability. LCA 
of materials is the current tool, which is been implemented for this purpose. In some previous 
studies (Ortiz et al. 2009), there is evidence of its use in the construction sector since the 90s with 
satisfactory results.

In spite of the fact that LCA is a promising tool to improve the sustainable aspect of the construc-
tion sector, it still requires further studies. For example, Peuportier (2000) concluded that using 
the LCA as evaluative tool is still difficult, due to the lack of information. While more recently, 
Ortiz et al. (2009) concluded that the use of LCA is very important to minimize the environmental 
impact, improving the sustainability indicators. For what, Khasreen et al. (2009) carried out a re-
view about the LCA in construction, concluding that despite the limitations that still exist, LCA is a 
powerful tool for the evaluation of environmental impact of buildings.

One limitations of the LCA in construction is the lack of specific Life Cycle Inventory (LCI) in each 
region or sector, especially in developing countries. The development of specific inventory of each 
area is necessary, for example, in Spain there is not an exclusive database, so that in some stud-
ies, such as this, the importance of creating local inventories with specific information is empha-
size. Althaus et al. (2005), analyzed the Swiss database Ecoinvent (LCI based on Swiss and Euro-
pean generic data). While Bilec et al. (2006) proposed a hybrid model of LCA and analyzed existing 
models. Both concluded that the creation of local, current and specific LCI in each geographical 
region and construction area is necessary.

Moreover, although the operation phase is the most representative in the environmental impact of 
buildings, approximately 80-90% of the entire lifecycle (Cabeza et al. 2014, Khasreen, Banfill and 
Menzies 2009, Ramesh et al. 2010, Radhi and Sharples 2013, Utama et al. 2012), the construc-
tion (and pre-construction) phase should not be neglected for its high environmental impact and 
because the energy efficiency of the operation stage depends on it. It can also provide positive 
impacts at the end of the life cycle, considering potential return materials to new lifecycles.

According to the above, studies have been carried out to identify the impacts of the different stages 
in the life cycle. Venkatarama et al. (2003) studied about embodied energy, concluding that the use 
of alternative materials and high-energy efficiency is very important for the environment. Mean-
while, Horvath et al. (2005) when studying the construction and pre-construction phase (stage of 
embodied energy) of buildings, concluded that the environmental effects can be mitigated care-
fully selecting the primary materials, secondary materials and construction equipment. In the 
same year Pérez-García et al. (2005), found that woodland materials generate a high reduction in 
atmospheric carbon emissions in housing construction. Similarly Rivela et al. (2006) suggested 
promoting the use of renewable energies and materials to avoid damage to natural resources. 

In the same subject Asif et al. (2007), evaluating the embodied energy of materials, found that 
concrete consumes more energy than Wood. Zabalza et al. (2009) proposed and implemented a 
simplified LCA methodology and concluded that energy certifications must consider the use of re-
newable and recyclable materials, among other technologies. Aye et al. (2012) found that the use 
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of prefabricated materials (such as modular steel and wood) is an option with environmental ad-
vantages because it incorporates broader life cycles. Dodoo et al. (2014) showed that wood-build-
ing systems could contribute to improve the resource efficiency in the buildings construction.

The main objective of the research is to verify the feasibility of the use of LCA as an evaluative tool 
in the construction of typical structural elements of a building, in this case, columns. The structur-
al elements are analyzed considering two alternative materials: RC and G, both with capacity to 
resist structural loads and durability. 

Characteristics of the study sample
For this research, a typical attached housing is used, evaluated according to the protocols of the 
standards ISO 14040 for LCA (2006). The property is located in 41º40’ 5.24” N, 02º1.5’20.03’’ E, 
Municipality of L’Ametlla, Barcelona, Spain. It is a three-storey building, with 60 columns (base-
ment B, ground floor GF, and plant type PT), its general details are presented in Table 1; likewise, 
the quantities of material used to manufacture the columns (considering a density to the RC of  
2400 kg/m3, and a density to the G of 410 kg/m3) are indicated. The general details of the sections 
evaluated equivalent for both cases are presented in Fig. 1.

Methodology

Table 1
General details of the 
columns

Fig. 1
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Fig. 1. a) Column section of RC (cm) b) Column section of G (cm). 

The study sample consists of two attached homes designed as a single volume, both have identical 
dimensions and characteristics (together 446 m2 of floor area), share an intermediate wall (including 
columns and beams) and the parcel where are located is 27 m x 39 m, 1053 m2. Each dwelling has an 
average occupation capacity for six people and the set is located 33 km from the Catalan Capital. The 
project satisfies the basic requirements of Spanish and Catalan legal framework, listed in Table 2. 

Table 2. Legal framework of the project 

Normative Section Description 

Technical Building Code (CTE) 
Article 3 of Law 38/1999 

DB-HR Noise protection. 

DB-HS Health. 

DB-SI Safety in case of fire. 

DB-SE Structural safety. 

DB-SUA Safety in use and accessibility. 

The study sample consists of two at-
tached homes designed as a single 
volume, both have identical dimensions 
and characteristics (together 446 m2 of 
floor area), share an intermediate wall 
(including columns and beams) and the 
parcel where are located is 27 m x 39 m, 
1053 m2. Each dwelling has an average 
occupation capacity for six people and 
the set is located 33 km from the Cata-
lan Capital. The project satisfies the basic requirements of Spanish and Catalan legal framework, 
listed in Table 2.

The building structure contains a self-supporting unidirectional slab with semi-joists of RC, beams 
and columns of RC. It has spread and isolated footings in foundation. Table 3 shows the descrip-
tion of the structural elements.

G was used as an alternative material, GL28c resistant class, of fir tree with melanin glue for in-
terior columns and resorcinol glue for exterior columns, with a compressive strength parallel to 
the fibers of 24 MPa and flexural strength of 28 MPa.
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Table 2
Legal framework  

of the project

Table 3
Details of  

structural elements  
of housing

Element Constructive description

Columns
RC**, steel* with free height up to 3 m, amount of steel 120 kg/m3, longitudinal 

reinforcement 4 Ø16 and stirrups #10@20.

Foundation slab
In B and part of the GF, thick 25 cm, RC**, reinforcement electrowelded mesh (ME) lower 

and upper Ø5 15x15 mm, steel* and compression layer 4 cm.

Spread footing RC**, steel* amount of 70 kg/m3.

Isolated footing RC**, steel* amount of 57.853 kg/m3.

Basement wall. Formwork two sides, H ≤ 3 m., RC**, steel*, thick 30 cm and industrial finish.

Tie beams RC**, steel* amount of 77.137 kg/m3.

Slabs of scale RC**, steel* amount of 30 kg/m2, and thick 20 cm, wood framing and concrete staggered.

Slabs
Structure of RC**; volume of concrete 0,173 m3/m2; steel*total amount of 16 kg/m2; 

unidirectional slab 30 = 25 + 5 cm; semi-joists prestressed; concrete slab, 60x20x25 cm; 
ME 20x20, Ø 5 mm, steel* 6x2,20 in compression layer; flat beams.

Note:  * UNE-EN 10080 B500S, **HA-25/B/20/IIa

Normative Section Description

Technical Building 
Code (CTE) Article 3 
of Law 38/1999

DB-HR Noise protection.

DB-HS Health.

DB-SI Safety in case of fire.

DB-SE Structural safety.

DB-SUA Safety in use and accessibility.

DB-HE Energy savings.

EHE-08 Fulfilment of requirements de RC

REBT Low Voltage Electrical Regulations, Royal Decree 842/2002 of the 2 August 2002.

RITE Rules of installation: Thermal Installations in Buildings, Royal Decree 1027/2007.

Decree 68/2010: Processing and approval of documents recognized of the technical building code.

Decree 135/1995 Accessibility Code of Catalonia.

Decree 21/2006 Adoption of environmental criteria and eco-efficiency in buildings.

Municipal level General Urban Plan (01/14/1987)

Goal and scope of the LCA
The objective of the analysis is to compare the environmental impact between RC columns and G 
columns, for a dwelling. The study was conceived from a design point of view, in order to help the 
constructor and the designer to take assertive decisions about the most favorable choice of two 
types of columns, before construction.

The software used was LCA Manager 1.3, which allows evaluating, quantifying and qualifying 
all employed resources, managing waste, discharges and emissions throughout the system, 
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Fig. 2
System of LCA of 
the construction of 
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2008, Zhang et al. 2006, Carvalho-Filho 2001, Simpple 2010). The description of the methodology 
is based on international standards ISO 14040 series (13), which consists of four different ana-
lytical steps: defining the goal and scope, inventory creation, impact assessment and finally the 
interpretation of results; being the final report, the last element that completes the phases of LCA 
(Ortiz et al. 2009, Carvalho-Filho 2001, Simpple 2010).

As functional unit was selected the m3 of material employed in the fabrication of the columns, the 
foregoing by the fact that these have different sectional dimensions (the difference in the physical, 
mechanical and elastic characteristics of the RC and G). The first of these (RC) is considered con-
ventional in the construction of housing, while the second (G) is an alternative; for this research, 
both materials are comparable as vertical structural elements. Use m3 as comparable unit, per-
mits to unify and to simplify the comparison between them, in addition to being feasible for using 
in others investigations of structural elements, despising the dimensions of the columns (height 
and section). Moreover, common used functional units, such as m2, are not feasible to use in 
columns because its distribution in the construction is not uniform (unless to carried out the LCA 
for all building elements and systems). For the case of linear meter, this is not representative (for 
differences in the dimensions of the columns and their physical characteristics).

With regard to materials of study, RC was selected for its high environmental affectation since it 
requires significant amounts of non-renewable materials and produces high power consumption 
for its constitution and manufacturing (Ortiz 2009, Gaimster and Munn 2007, Deshpande 2011, 
Xiao et al. 2012); so it is necessary to study alternatives to it. Among the possible options, replace 
it with an alternative material (G) seems more appropriate than the partial substitution of the con-
stituent materials (fly ash, blast furnace slag and silica fume by cement; and recycled aggregates 
by natural aggregates).

In accordance with the foregoing, some action plans for climate have been established, proposing 
the use of wood in construction as a mitigation measure of emissions and combat for climate 
change (Gobierno-Vasco 2009). These ones indicate that the use of G panels can save energy by 
35% during the life cycle, and reduce 97% in CO2 emissions compared to traditional RC and steel 
frames structures (Fernández et al. 2014); thus allowing obtains a primary energy balance with an 
more basic life cycle (Dodoo et al. 2014).
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Inventory Analysis
Ecoinvent V2.01 (2007) database was used for the inventory in this study. This database has been 
developed by Swiss technology (Ortiz, Castells and Sonneman 2010), and consist on Swiss data 
and in some cases on average European data (Ecoinvent 2015). Despite this, Ecoinvent has been 
selected due to limited inventory information found in the Spanish sector and, specifically in the 
construction area. Given this limitation, only data from the European average were selected (ge-
neric data, no Swiss data).

The project data were quantified from the amounts of reinforced concrete (compressive strength 
25 N/mm2) required for preparation of the columns (Table 1), and considering an amount of steel 
120 kg/m3. Similarly, the amounts for the G of the proposed alternative design were determined, 
considering glued laminated timber of indoor use (for indoor columns) and outdoor use (for ex-
ternal columns) of six layers (45 cm each). In the LCA Manager 1.3 were entered these data, for 
the calculation and analysis of results. 

Ecoinvent (2015) is the database world leader and the most used as a LCI, being recognized for 
having consistent, transparent and timely data; contains international information of LCI for the 
supply of energy, resource extraction, and supply of materials, use of chemicals, metals, agricul-
ture, services, waste management and transport. This database is used by 4,500 persons in over 
40 countries and is included in many of the leader tools of LCA software (such as LCA Manager), 
as well as several tools of eco-design for construction, waste management or product design 
(Ecoinvent Centre 2015).

Environmental impact analysis
The environmental impact assessment was performed using the LCA Manager 1.3, a tool for 
environmental assessment based on the methodology of LCA (ISO 14040/44: 2006) for industrial 
products and processes, created by SIMPPLE (2010). This tool supports the eco-innovation and al-
lows to quantify and communicate the environmental profile of products and/or processes taking 
into account their entire life cycle (it can be compared by its function with tools like Simapro, Bees, 
Gabi). The calculation through LCA Manager, is carried out by six stages of calculation: character-
ization, inventory, indicators, impacts, results and graphs (SIMPPLE 2010). 

The impact categories studied in this research refers to the energy consumption, natural resourc-
es and emissions resulting from the processes of each material used and its impact on the envi-
ronment. These categories are the most representative in the stages studied (extraction, produc-
tion and construction), also are included in the Eco-indicator99, method that was selected due to 
its wide use and recognition in Europe, and included in LCA Manager 1.3.

The Eco-indicators 99 selected for the LCA, permits to study and report the effects of the investi-
gated processes (RC and G) in the following sections:

1 Ecosystem Quality (acidification-eutrophication, eco-toxicity and land occupation).

2 Natural resources consumption (mineral extraction, and fossil fuels consumption).

3 Health (climate change, ozone layer depletion, ionizing radiation, respiratory effects or car-
cinogenic).

Eco-indicator 99 is a method of Environmental Impact Assessment, which weights the study to 
highlight the environmental damage, modeling the resource use and emissions effects on human 
health, considering the quality of the ecosystems and consumption of natural resources. Finally, 
the impact on these three security parameters are weighted to provide an indicator with a single 
component (Kellenberger and Althaus 2009), which allows grouping and comparing.
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The LCA, through the method Ecoindicator99, has helped to obtain data about the environmental 
impact of the structural elements studied (RC and G columns) determining that, of the studied 
stages, the most critical in both cases was the production stage of the materials, causing more 
environmental damage. Fig. 3 summarizes the results studied for both materials (RC and G). In 
general, RC columns cause more damage in the three studied indicators. The results are analysed 
in detail: RC columns produce damage 3.5 times more than G columns to the ecosystem quality 
(excluding land occupation and exposed independently, because the general trend of the whole 
was ruled only by it). The RC columns require 32% more resources and affect 53% more the hu-

Results

Fig. 3
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Fig. 4
Detail of  
ecosystem quality
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(Carvalho-Filho 2001).

With regard to natural resources, it is nec-
essary to indicate that both manufacturing 
industries (RC and G) are consumers of 
fossil fuels, for example in the high tem-
peratures for the calcination of clinker or 

Fig. 5 
Consumption of  
natural resources



Journal of Sustainable Architecture and Civil Engineering 2015/2/11
28

in the glues manufacturing, however this 
study shows that G generates 15% more 
damage to consumption of fossil fuels that 
the RC. Concerning the extraction of min-
erals, RC is the largest consumer, being 22 
times more burdensome than G (Fig. 5).

In addition to its relevant damage in the ex-
traction of mineral resources above men-
tioned, it is necessary to underline that the 
RC is the second material most used on the 
planet (only surpassed by water). The cur-
rent civilization is based on constructions 
that utilize it (Gaimster and Munn 2012), 
consuming in its production 12.6 billion 
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generate 64% more agents carcinogenic (attributed to small quantities of heavy metals such as Cd, Cr, 
Hg, Pb, which are found by the use of fossil fuels or other types of alternative fuels (Carvalho-Filho 
2001)). 

Conclusions 
Fig. 7 summarizes the effects of the eco-indicators. In this, it can observe that the columns of RC made 
with a conventional method produce more significant damage than the G columns. Due to the nature of 
each material, the indicator of damage for land occupation is more obvious for G columns; it is also 
evident, in the extraction of minerals for the production of RC; both with a damage rate close to 100%. 
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However, and although both are important consumers of these different raw materials it is noteworthy 
that G is a 100% renewable (and reusable) material. If an environmental management plan that allows 
its regeneration is implemented, and if tree felling rules are observed, G is an alternative option to RC, 
considering an environmentally friendly construction. 

Moreover, although the component materials of the RC are not renewable, they have a high potential 
for recycling (recycled aggregate to recycled concrete). Pretending to build with conventional RC, is 
unsustainable, as in previous studies have been shown. By contrasts, the use of recycled components 
(the same concrete incorporated in new cycles as fine or coarse aggregates, wastes from other 
industries either as aggregates or as supplementary cementitious materials or as additives or additions; 
among others) in RC is a viable option to consider a sustainable construction. 

It is important to mention that Ecoinvent is not a Spanish database. Although this study considered 
European average data and the results are consistent with the literature reviewed, it is evident the need 
to create local inventories to accurately assess environmental impacts. 

Finally, the LCA was verified as feasible to use like Environmental Assessment Tool in the search for 
construction materials alternatives, in this case used like structural elements, comparing the 
environmental impacts generated by concrete columns and glulam columns. The LCA identified to the 
laminated wood as an alternative solution in the construction of vertical structural elements such as 
columns, finding that this could be an option for total replacement of conventional RC. 
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resulting from the production of cement clinker and in the production of steel (Carvalho-Filho 
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G columns; it is also evident, in the extraction of minerals for the production of RC; both with a 
damage rate close to 100%.

However, and although both are important consumers of these different raw materials it is note-
worthy that G is a 100% renewable (and reusable) material. If an environmental management 
plan that allows its regeneration is implemented, and if tree felling rules are observed, G is an 
alternative option to RC, considering an environmentally friendly construction.

Moreover, although the component materials of the RC are not renewable, they have a high poten-
tial for recycling (recycled aggregate to recycled concrete). Pretending to build with conventional 
RC, is unsustainable, as in previous studies have been shown. By contrasts, the use of recycled 
components (the same concrete incorporated in new cycles as fine or coarse aggregates, wastes 
from other industries either as aggregates or as supplementary cementitious materials or as ad-
ditives or additions; among others) in RC is a viable option to consider a sustainable construction.

It is important to mention that Ecoinvent is not a Spanish database. Although this study considered 
European average data and the results are consistent with the literature reviewed, it is evident the 
need to create local inventories to accurately assess environmental impacts.

Finally, the LCA was verified as feasible to use like Environmental Assessment Tool in the search 
for construction materials alternatives, in this case used like structural elements, comparing the 
environmental impacts generated by concrete columns and glulam columns. The LCA identified to 
the laminated wood as an alternative solution in the construction of vertical structural elements 
such as columns, finding that this could be an option for total replacement of conventional RC.
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