Two nonnegative solutions for two-dimensional nonlinear wave equations

Svetlin Georgiev ${ }^{1, 凶 \text { (id }}$ Mohamed Majdoub ${ }^{2,3}$ (id
1 Department of Differential Equations, Faculty of Mathematics and Informatics, University of Sofia, Sofia, Bulgaria. svetlingeorgiev1@gmail.com ${ }^{\boxtimes}$
${ }^{2}$ Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, Saudi Arabia.
${ }^{3}$ Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441,
Dammam, Saudi Arabia.
mmajdoub@iau.edu.sa

Keywords and Phrases: Hyperbolic Equations, positive solution, fixed point, cone, sum of operators.

2020 AMS Mathematics Subject Classification: 47H10, 58J20, 35L15.

1 Introduction

Global existence for nonlinear wave equations is an important mathematical topic. Mathematicians, including F. John, S. Kleinerman, L. Hörmander, etc., have made investigations to this subject. The first non-trivial long-time existence result was established by F. John and S. Kleinerman in [19], where it is proved the almost global existence for a class $3 D$ quasilinear scalar wave equations. Global existence for $3 D$ quasilinear wave equations was established firstly by S. Kleinerman in [20] and by D. Christodoulou, independently by S. Kleinerman, in [5]. The problem in $2 D$ case is quite delicate. Introducing the ghost weight, in [1] was proved the global well-posedness for a class $2 D$ nonlinear wave equations. Using a class Hardy-type inequality depending on the compact support of the initial data, in [21] was proved almost global existence for $2 D$ case. Here we propose a new approach for investigations for classical solutions of a class $2 D$ nonlinear wave equations. We investigate for existence of at least two positive solutions for the following IVP

$$
\begin{align*}
u_{t t}-\Delta u & =f\left(t, x, u, u_{t}, u_{x}\right), \quad t>0, & x & =\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
u(0, x) & =u_{0}(x), & x & =\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \tag{1.1}\\
u_{t}(0, x) & =u_{1}(x), & x & =\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
\end{align*}
$$

where $\Delta u=u_{x_{1} x_{1}}+u_{x_{2} x_{2}}, u_{x}=\left(u_{x_{1}}, u_{x_{2}}\right)$.
The initial value problem (1.1) has attracted considerable attention in the mathematical community and the well-posedness theory in the Sobolev spaces for polynomial type nonlinearities has been extensively studied. The case of exponential nonlinearity was recently investigated (see [18] and references therein). In particular, if the nonlinearity f and the initial data u_{0}, u_{1} are smooth then the Cauchy problem (1.1) has a classical local (in time) solution. This follows from Duhamel's formula via the usual fixed point argument in the space $H_{l o c}^{s} \times H_{l o c}^{s-1}, s>2$. Such an s guarantee that $u, u_{t}, \nabla u$ are in L^{∞}. Note that $u \in H_{l o c}^{s}$ means that the H^{s} norm over a ball centered at x_{0} and with radius 1 is uniformly bounded by a constant independent of x_{0}. We refer the reader to [23] and references therein for more properties and information on nonlinear wave equations. In [17] is proved existence and uniqueness of generalized solutions of the first initial boundary value problem for strongly hyperbolic systems in bounded domains. In the case when

$$
f\left(t, x, u, u_{t}, u_{x}\right)=f(u(x)), \quad t>0, \quad x \in \mathbb{R}^{2}
$$

and

$$
u_{0}(x)=u_{1}(x)=0, \quad x \in \mathbb{R}^{2}
$$

the problem (1.1) is investigated in [14] where the authors prove existence of at least one nontrivial classical solution of the problem (1.1).

We make the following assumptions on the non-linearity and initial data trough the paper.
(H1) $u_{0}, u_{1} \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$,

$$
\begin{aligned}
0 & \leq u_{0},\left|u_{0 x_{1}}\right|,\left|u_{0 x_{1} x_{1}}\right|,\left|u_{0 x_{2}}\right|,\left|u_{0 x_{2} x_{2}}\right| \leq r \\
0 & \leq u_{1},\left|u_{1 x_{1}}\right|,\left|u_{1 x_{1} x_{1}}\right|,\left|u_{1 x_{2}}\right|,\left|u_{1 x_{2} x_{2}}\right| \leq r \quad \text { on } \quad \mathbb{R}^{2}
\end{aligned}
$$

where $r>0$ is a given constant.
(H2) $f \in \mathcal{C}\left([0, \infty) \times \mathbb{R}^{6}\right)$,

$$
\begin{aligned}
& 0 \leq f\left(t, x, w_{1}, w_{2}, w_{3}, w_{4}\right) \\
& \leq \sum_{j=1}^{l}\left(a_{j}(t, x)\left|w_{1}\right|^{p_{j}}+b_{j}(t, x)\left|w_{2}\right|^{p_{j}}+c_{j}(t, x)\left|w_{3}\right|^{p_{j}}+d_{j}(t, x)\left|w_{4}\right|^{p_{j}}\right), \\
& (t, x) \in[0, \infty) \times \mathbb{R}^{2}, \text { where } a_{j}, b_{j}, c_{j}, d_{j} \in \mathcal{C}\left([0, \infty) \times \mathbb{R}^{2}\right), \\
& \quad 0 \leq a_{j}, b_{j}, c_{j}, d_{j} \leq a, \quad p_{j}>0, \quad j \in\{1, \ldots, l\},
\end{aligned}
$$

where $a>0$ and $l \in \mathbb{N}$ are given constants.

Our main result reads as follows.
Theorem 1.1. Suppose (H1) and (H2). Then the IVP (1.1) has at least two nonnegative classical solutions.

To prove our main result we use a new topological approach. This approach can be used for investigations for existence of at least one and at least two classical solutions for initial value problems, boundary value problems and initial boundary value problems for some classes ordinary differential equations, partial differential equations and fractional differential equations (see [2, $3,4,7,10,12,13,15,16]$ and references therein). So far, for the authors they are not known investigations for existence of multiple solutions for the IVP (1.1).

The paper is organized as follows. In the next section, we give some auxiliary results. In Section 3, we prove our main result. In Section 4, we give an example.

2 Auxiliary Results

Let X be a real Banach space.

Definition 2.1. A mapping $K: X \rightarrow X$ is said to be completely continuous if it is continuous and maps bounded sets into relatively compact sets.

The concept for k-set contraction is related to that of the Kuratowski measure of noncompactness which we recall for completeness.

Definition 2.2. Let Ω_{X} be the class of all bounded sets of X. The Kuratowski measure of noncompactness $\alpha: \Omega_{X} \rightarrow[0, \infty)$ is defined by

$$
\alpha(Y)=\inf \left\{\delta>0: Y=\bigcup_{j=1}^{m} Y_{j} \quad \text { and } \quad \operatorname{diam}\left(Y_{j}\right) \leq \delta, \quad j \in\{1, \ldots, m\}\right\}
$$

where $\operatorname{diam}\left(Y_{j}\right)=\sup \left\{\|x-y\|_{X}: x, y \in Y_{j}\right\}$ is the diameter of $Y_{j}, j \in\{1, \ldots, m\}$.

For the main properties of measure of noncompactness we refer the reader to [6].

Definition 2.3. For a given number $k \geq 0$, a map $K: X \rightarrow X$ is said to be k-set contraction if it is continuous, bounded and

$$
\alpha(K(Y)) \leq k \alpha(Y)
$$

for any bounded set $Y \subset X$.

Obviously, if $K: X \rightarrow X$ is a completely continuous mapping, then K is 0 -set contraction.

Definition 2.4. Let X and Y be real Banach spaces. A mapping $K: X \rightarrow Y$ is said to be expansive if there exists a constant $h>1$ such that

$$
\|K x-K y\|_{Y} \geq h\|x-y\|_{X}
$$

for any $x, y \in X$.

Definition 2.5. A closed, convex set \mathcal{P} in X is said to be a cone if
(1) $\alpha x \in \mathcal{P}$ for any $\alpha \geq 0$ and for any $x \in \mathcal{P}$,
(2) $x,-x \in \mathcal{P}$ implies $x=0$.

Let $\mathcal{P} \subset X$ be a cone and define

$$
\begin{aligned}
\mathcal{P}^{*} & =\mathcal{P} \backslash\{0\}, \\
\mathcal{P}_{r_{1}} & =\left\{u \in \mathcal{P}:\|u\| \leq r_{1}\right\}, \\
\mathcal{P}_{r_{1}, r_{2}} & =\left\{u \in \mathcal{P}: r_{1} \leq\|u\| \leq r_{2}\right\}
\end{aligned}
$$

for positive constants r_{1}, r_{2} such that $0<r_{1} \leq r_{2}$. The following result will be used to prove Theorem 1.1. We refer the reader to [8] and [11] for more details.

Theorem 2.6. Let \mathcal{P} be a cone of a Banach space $E ; \Omega$ a subset of \mathcal{P} and U_{1}, U_{2} and U_{3} three open bounded subsets of \mathcal{P} such that $\bar{U}_{1} \subset \bar{U}_{2} \subset U_{3}$ and $0 \in U_{1}$. Assume that $T: \Omega \rightarrow \mathcal{P}$ is an expansive mapping with constant $h>1, S: \bar{U}_{3} \rightarrow E$ is a k-set contraction with $0 \leqslant k<h-1$ and $S\left(\bar{U}_{3}\right) \subset(I-T)(\Omega)$. Suppose that $\left(U_{2} \backslash \bar{U}_{1}\right) \cap \Omega \neq \emptyset,\left(U_{3} \backslash \bar{U}_{2}\right) \cap \Omega \neq \emptyset$, and there exists $u_{0} \in \mathcal{P}^{*}$ such that the following conditions hold:
(i) $S x \neq(I-T)\left(x-\lambda u_{0}\right)$, for all $\lambda>0$ and $x \in \partial U_{1} \cap\left(\Omega+\lambda u_{0}\right)$,
(ii) there exists $\epsilon>0$ such that $S x \neq(I-T)(\lambda x), \quad$ for all $\lambda \geq 1+\epsilon, x \in \partial U_{2}$ and $\lambda x \in \Omega$,
(iii) $S x \neq(I-T)\left(x-\lambda u_{0}\right)$, for all $\lambda>0$ and $x \in \partial U_{3} \cap\left(\Omega+\lambda u_{0}\right)$.

Then $T+S$ has at least two non-zero fixed points $x_{1}, x_{2} \in \mathcal{P}$ such that

$$
x_{1} \in \partial U_{2} \cap \Omega \text { and } x_{2} \in\left(\bar{U}_{3} \backslash \bar{U}_{2}\right) \cap \Omega
$$

or

$$
x_{1} \in\left(U_{2} \backslash U_{1}\right) \cap \Omega \text { and } x_{2} \in\left(\bar{U}_{3} \backslash \bar{U}_{2}\right) \cap \Omega
$$

Note that (see [9]) the function

$$
G(t, x, \tau, \xi)=-\frac{1}{2 \pi} \frac{H(t-\tau-|x-\xi|)}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}}, \quad t, \tau>0, \quad x, \xi \in \mathbb{R}^{2}
$$

where $|x-\xi|=\sqrt{\left(x_{1}-\xi_{1}\right)^{2}+\left(x_{2}-\xi_{2}\right)^{2}}$, is the Green function for the two-dimensional wave equation

$$
\begin{array}{ll}
u_{t t}-\Delta u=h(t, x), & t>0, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
u(0, x)=u_{t}(0, x)=0, & x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
\end{array}
$$

where $H(\cdot)$ denotes the Heaviside function. Observe that

$$
G(t, x, \tau, \xi) \leq 0, \quad t, \tau>0, \quad x, \xi \in \mathbb{R}^{2}
$$

A key lemma in our proof is the following.

Lemma 2.7. For $h_{1}, h_{2}, p>0$, we have

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{2}} \int_{0}^{\infty}\left(h_{1}+h_{2} \tau\right)^{p} G(t, x, \tau, \xi) d \tau d \xi\right| \leq\left(h_{1}+h_{2} t\right)^{p} I(t), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{2} \tag{2.1}
\end{equation*}
$$

where $I(t)=t^{3}+t^{2}(1+|\log t|)$.

Proof. Let $h_{1}, h_{2}, p>0$ and $t>0$. One has

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{2}} \int_{0}^{\infty}\left(h_{1}+h_{2} \tau\right)^{p} G(t, x, \tau, \xi) d \tau d \xi\right| \leq \frac{1}{2 \pi} \int_{|x-\xi| \leq t} \int_{0}^{t-|x-\xi|} \frac{\left(h_{1}+h_{2} \tau\right)^{p}}{\sqrt{(t-\tau)^{2}-|x-\xi|^{2}}} d \tau d \xi \\
& \leq \frac{\left(h_{1}+h_{2} t\right)^{p}}{2 \pi} \int_{|x-\xi| \leq t}\left(\log \left(t+\sqrt{t^{2}-|x-\xi|^{2}}\right)-\log |x-\xi|\right) d \xi \\
& =\frac{\left(h_{1}+h_{2} t\right)^{p}}{2 \pi}\left(\int_{|x-\xi| \leq t} \log \left(t+\sqrt{t^{2}-|x-\xi|^{2}}\right) d \xi-\int_{|x-\xi| \leq t} \log |x-\xi| d \xi\right) \\
& \leq \frac{\left(h_{1}+h_{2} t\right)^{p}}{2 \pi}\left(\log (2 t) \int_{|x-\xi| \leq t} d \xi-2 \pi \int_{0}^{t} r_{1} \log r_{1} d r_{1}\right) \\
& =\frac{\left(h_{1}+h_{2} t\right)^{p}}{2 \pi}\left(\pi t^{2} \log (2 t)-\pi\left(t^{2} \log t-\frac{t^{2}}{2}\right)\right) \\
& \leq \frac{\left(h_{1}+h_{2} t\right)^{p}}{2}\left(t^{2} \log (1+2 t)+t^{2}|\log t|+\frac{t^{2}}{2}\right) \\
& \leq \frac{\left(h_{1}+h_{2} t\right)^{p}}{2}\left(2 t^{3}+t^{2}|\log t|+\frac{t^{2}}{2}\right) \\
& \leq\left(h_{1}+h_{2} t\right)^{p}\left(t^{3}+t^{2}(1+|\log t|)\right)
\end{aligned}
$$

This gives (2.1) as desired.

We make the change $u=v+u_{0}+t u_{1}$. Then, we get the IVP

$$
\begin{align*}
v_{t t}-\Delta v & =f\left(t, x, v+u_{0}+t u_{1}, v_{t}+u_{1}, v_{x}+u_{0 x}+t u_{1 x}\right)+\Delta u_{0}+t \Delta u_{1} \\
& =f_{1}\left(t, x, v, v_{t}, v_{x}\right), \quad t>0, \quad x \in \mathbb{R}^{2} \tag{2.2}\\
v(0, x) & =v_{t}(0, x)=0, \quad x \in \mathbb{R}^{2}
\end{align*}
$$

Lemma 2.8. Suppose (H2). If $w_{k} \in \mathbb{R},\left|w_{k}\right| \leq b, k \in\{1, \ldots, 4\}$, for some positive b, then

$$
f\left(t, x, w_{1}, w_{2}, w_{3}, w_{4}\right) \leq 4 a \sum_{j=1}^{l} b^{p_{j}}
$$

Proof. We have

$$
\begin{aligned}
0 & \leq f\left(t, x, w_{1}, w_{2}, w_{3}, w_{4}\right) \\
& \leq \sum_{j=1}^{l}\left(a_{j}(t, x)\left|w_{1}\right|^{p_{j}}+b_{j}(t, x)\left|w_{2}\right|^{p_{j}}+c_{j}(t, x)\left|w_{3}\right|^{p_{j}}+d_{j}(t, x)\left|w_{4}\right|^{p_{j}}\right) \\
& \leq \sum_{j=1}^{l}\left(a b^{p_{j}}+a b^{p_{j}}+a b^{p_{j}}+a b^{p_{j}}\right) \\
& =4 a \sum_{j=1}^{l} b^{p_{j}}, \quad\left(t, x, w_{1}, w_{2}, w_{3}, w_{4}\right) \in[0, \infty) \times \mathbb{R}^{6} .
\end{aligned}
$$

This completes the proof.

Let $E=\mathcal{C}^{2}\left([0, \infty) \times \mathbb{R}^{2}\right)$ and for any $u \in E$, denote

$$
\|u\|=\max \left\{\|u\|_{\infty}, \quad\left\|u_{t}\right\|_{\infty}, \quad\left\|u_{t t}\right\|_{\infty}\left\|u_{x_{j}}\right\|_{\infty}, \quad\left\|u_{x_{j} x_{j}}\right\|_{\infty}, \quad j \in\{1,2\}\right\}
$$

provided that it is finite, where

$$
\|v\|_{\infty}=\sup _{(t, x) \in[0, \infty) \times \mathbb{R}^{2}}|v(t, x)|
$$

Lemma 2.9. Suppose (H1) and (H2). Let $v \in E,\|v\| \leq b$, for some positive b. Then

$$
f\left(t, x, v+u_{0}+t u_{1}, v_{t}+u_{1}, v_{x}+u_{0 x}+t u_{1 x}\right) \leq 4 a \sum_{j=1}^{l}(b+r(1+t))^{p_{j}}, \quad(t, x) \in[0, \infty) \times \mathbb{R}^{2}
$$

Proof. Let

$$
\begin{aligned}
& w_{1}=v+u_{0}+t u_{1} \\
& w_{2}=v_{t}+u_{0}+t u_{1} \\
& w_{3}=u_{x_{1}}+u_{0 x_{1}}+t u_{1 x_{1}}, \\
& w_{4}=v_{x_{2}}+u_{0 x_{2}}+t u_{1 x_{2}} .
\end{aligned}
$$

Then

$$
\left|w_{j}\right| \leq b+r(1+t), \quad j \in\{1, \ldots, 4\}, \quad t \geq 0
$$

Hence and Lemma 2.8, we get the desired result. This completes the proof.

Lemma 2.10. Suppose (H1) and (H2). Let $v \in E,\|v\| \leq b$, for some positive b. Then

$$
\left|f_{1}\left(t, x, v, v_{t}, v_{x}\right)\right| \leq 4 a \sum_{j=1}^{l}(b+r(1+t))^{p_{j}}+2 r(1+t), \quad(t, x) \in[0, \infty) \times \mathbb{R}^{2}
$$

Proof. By (H1), we get

$$
\left|\Delta u_{0}\right| \leq 2 r, \quad\left|\Delta u_{1}\right| \leq 2 r \quad \text { on } \quad \mathbb{R}^{2}
$$

Using Lemma 2.9, we obtain

$$
\begin{aligned}
\left|f_{1}\left(t, x, v, v_{t}, v_{x}\right)\right| & \leq f\left(t, x, v+u_{0}+t u_{1}, v_{t}+u_{1}, v_{x}+u_{0 x}+t u_{1 x}\right)+\left|\Delta u_{0}\right|+t\left|\Delta u_{1}\right| \\
& \leq 4 a \sum_{j=1}^{l}(b+r(1+t))^{p_{j}}+2 r(1+t), \quad(t, x) \in[0, \infty) \times \mathbb{R}^{2}
\end{aligned}
$$

This completes the proof.

Now, applying Lemma 2.10 and (2.1), we obtain the following result.

Lemma 2.11. Suppose (H1) and (H2). Then

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{2}} \int_{0}^{\infty} G(t, x, \tau, \xi) f_{1}\left(\tau, \xi, v(\tau, \xi), v_{t}(\tau, \xi), v_{x}(\tau, \xi)\right) d \tau d \xi\right| \\
& \leq\left(4 a \sum_{j=1}^{l}(b+r(1+t))^{p_{j}}+2 r(1+t)\right) I(t) \\
& \leq\left(4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}} t^{p_{j}}+2 r(1+t)\right) I(t), \quad(t, x) \in[0, \infty) \times \mathbb{R}^{2}
\end{aligned}
$$

Take a nonnegative function $g \in \mathcal{C}\left([0, \infty) \times \mathbb{R}^{2}\right)$. Suppose that $v \in E$ is a solution to the integral equation.

$$
\begin{align*}
0 & =\frac{1}{8} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}}\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) v\left(t_{1}, s_{1}, s_{2}\right) d s_{2} d s_{1} d t_{1} \\
& -\frac{1}{16 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}}\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} d s_{2} d s_{1} d t_{1} \tag{2.3}
\end{align*}
$$

$t \geq 0,\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. We differentiate three times in t, three times in x_{1} and three times in x_{2} the equation (2.3) and we obtain

$$
0=g(t, x) v(t, x)-\frac{1}{2 \pi} g(t, x) \int_{\mathbb{R}^{2}} \int_{0}^{\infty} G(t, x, \tau, \xi) f_{1}\left(\tau, \xi, v(\tau, \xi), v_{t}(\tau, \xi), v_{x}(\tau, \xi)\right) d \tau d \xi
$$

$t \geq 0, x \in \mathbb{R}^{2}$, whereupon

$$
0=v(t, x)-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \int_{0}^{\infty} G(t, x, \tau, \xi) f_{1}\left(\tau, \xi, v(\tau, \xi), v_{t}(\tau, \xi), v_{x}(\tau, \xi)\right) d \tau d \xi
$$

$t \geq 0, x \in \mathbb{R}^{2}$. Hence, using the Green function, we conclude that v is a solution of the IVP (2.2). Thus, any solution $v \in E$ of the integral equation (2.3) is a solution to the IVP (2.2).
(H3) Let $m>0$ be large enough and A, r_{1}, L_{1}, R_{1} be positive constants that satisfy the following conditions

$$
\begin{gathered}
r_{1}<L_{1}<R_{1}, \quad r_{1}<r, \quad R_{1}>\left(\frac{2}{5 m}+1\right) L_{1} \\
A\left(R_{1}+4 a \sum_{j=1}^{l}\left(2\left(R_{1}+r\right)\right)^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)<\frac{L_{1}}{20} .
\end{gathered}
$$

(H4) There exists a nonnegative function $g \in \mathcal{C}\left([0, \infty) \times \mathbb{R}^{2}\right)$ such that

$$
\begin{aligned}
q\left(t, x_{1}, x_{2}\right) & =\int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right) g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left(1+\left|x_{1}-s_{1}\right|+\left(x_{1}-s_{1}\right)^{2}\right)\left(1+\left|x_{2}-s_{2}\right|+\left(x_{2}-s_{2}\right)^{2}\right) \\
& \times\left(1+\left(t-t_{1}\right)+\left(t-t_{1}\right)^{2}\right)\left(1+\left(1+t_{1}+\sum_{j=1}^{l} t_{1}^{p_{j}}\right) I\left(t_{1}\right)\right) d s_{2} d s_{1} d t_{1} \\
& \leq A, \quad\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2} .
\end{aligned}
$$

In the last section we will give an example for the constants m, A, r, L_{1}, R_{1} and R and for a function g that satisfy (H3) and (H4). For $v \in E$, define the operator

$$
\begin{aligned}
F v\left(t, x_{1}, x_{2}\right) & =\frac{1}{8} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times v\left(t_{1}, s_{1}, s_{2}\right) d s_{2} d s_{1} d t_{1} \\
& -\frac{1}{16 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} d s_{2} d s_{1} d t_{1}
\end{aligned}
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$.
Lemma 2.12. Suppose (H1)-(H3). Then, for $v \in E,\|v\| \leq b$, for some positive b, we have

$$
\|F v\| \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
$$

Proof. Using Lemma 2.11 and (H3), we get

$$
\begin{aligned}
\left|F v\left(t, x_{1}, x_{2}\right)\right| & \leq \frac{1}{8} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left|v\left(t_{1}, s_{1}, s_{2}\right)\right| d s_{2} d s_{1} d t_{1} \\
& +\frac{1}{16 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times \mid \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} \mid d s_{2} d s_{1} d t_{1} \\
& \leq b A+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +4 a \sum_{j=1}^{l}(2 r)^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) t_{1}^{p_{j}} I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +2 r \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right)\left(1+t_{1}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
\end{aligned}
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
\begin{aligned}
\left|\frac{\partial}{\partial t} F v\left(t, x_{1}, x_{2}\right)\right| & \leq \frac{1}{4} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right) g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left|v\left(t_{1}, s_{1}, s_{2}\right)\right| d s_{2} d s_{1} d t_{1} \\
& +\frac{1}{8 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right) g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times \mid \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} \mid d s_{2} d s_{1} d t_{1} \\
& \leq b A \\
& +4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right) \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +4 a \sum_{j=1}^{l}(2 r)^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right) \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) t_{1}^{p_{j}} I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +2 r \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right) \\
& \times g\left(t_{1}, s_{1}, s_{2}\right)\left(1+t_{1}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
\end{aligned}
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial t^{2}} F v\left(t, x_{1}, x_{2}\right) \right\rvert\, & \leq \frac{1}{4} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left|v\left(t_{1}, s_{1}, s_{2}\right)\right| d s_{2} d s_{1} d t_{1} \\
& +\frac{1}{8 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times \mid \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} \mid d s_{2} d s_{1} d t_{1} \\
& \leq b A+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +4 a \sum_{j=1}^{l}(2 r)^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) t_{1}^{p_{j}} I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +2 r \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{1}-s_{1}\right)^{2}\left(x_{2}-s_{2}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right)\left(1+t_{1}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
\end{aligned}
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
\begin{aligned}
\left|\frac{\partial}{\partial x_{1}} F v\left(t, x_{1}, x_{2}\right)\right| & \leq \frac{1}{4} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left|x_{1}-s_{1}\right|\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left|v\left(t_{1}, s_{1}, s_{2}\right)\right| d s_{2} d s_{1} d t_{1} \\
& +\frac{1}{8 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left|x_{1}-s_{1}\right|\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \mid \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} \mid d s_{2} d s_{1} d t_{1} \\
& \leq b A \\
& +4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left|x_{1}-s_{1}\right|\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +4 a \sum_{j=1}^{l}(2 r)^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left|x_{1}-s_{1}\right|\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) t_{1}^{p_{j}} I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +2 r \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left|x_{1}-s_{1}\right|\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right)\left(1+t_{1}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
\end{aligned}
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
\begin{aligned}
\left|\frac{\partial^{2}}{\partial x_{1}^{2}} F v\left(t, x_{1}, x_{2}\right)\right| & \leq \frac{1}{4} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left|v\left(t_{1}, s_{1}, s_{2}\right)\right| d s_{2} d s_{1} d t_{1} \\
& +\frac{1}{8 \pi} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times \mid \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} G\left(t_{1}, s_{1}, s_{2}, t_{2}, \xi_{1}, \xi_{2}\right) \\
& \times f_{1}\left(t_{2}, \xi_{1}, \xi_{2}, v\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{t}\left(t_{2}, \xi_{1}, \xi_{2}\right), v_{x}\left(t_{2}, \xi_{1}, \xi_{2}\right)\right) d t_{2} d \xi_{2} d \xi_{1} \mid d s_{2} d s_{1} d t_{1} \\
& \leq b A \\
& +4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +4 a \sum_{j=1}^{l}(2 r)^{p_{j}} \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right) t_{1}^{p_{j}} I\left(t_{1}\right) d s_{2} d s_{1} d t_{1} \\
& +2 r \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right)\left(x_{2}-s_{2}\right)^{2}\left(t-t_{1}\right)^{2} \\
& \times g\left(t_{1}, s_{1}, s_{2}\right)\left(1+t_{1}\right) I\left(t_{1}\right) d s_{2} d s_{1} d t_{1}
\end{aligned}
$$

$$
\leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$. As above, one can obtain

$$
\left|\frac{\partial}{\partial x_{2}} F v\left(t, x_{1}, x_{2}\right)\right| \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
\left|\frac{\partial^{2}}{\partial x_{2}^{2}} F v\left(t, x_{1}, x_{2}\right)\right| \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$. Consequently

$$
\|F v\| \leq A\left(b+4 a \sum_{j=1}^{l}(2(b+r))^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)
$$

This completes the proof.

3 Proof of the Main Result

Let

$$
\widetilde{\mathcal{P}}=\left\{u \in E: u \geq 0 \quad \text { on } \quad[0, \infty) \times \mathbb{R}^{2}\right\}
$$

With \mathcal{P} we will denote the set of all equi-continuous families in $\widetilde{\mathcal{P}}$. Note that $F v \geq 0$ for any $v \in \mathcal{P}$. Let $\epsilon>0$. For $v \in E$, define the operators

$$
\begin{aligned}
& T v(t, x)=(1+m \epsilon) v(t, x)-\epsilon \frac{L_{1}}{10} \\
& S v(t, x)=-\epsilon F v(t, x)-m \epsilon v(t, x)-\epsilon \frac{L_{1}}{10}
\end{aligned}
$$

$(t, x) \in[0, \infty) \times \mathbb{R}^{2}$. Note that any fixed point $v \in E$ of the operator $T+S$ is a solution to the IVP (2.2). Define

$$
\begin{aligned}
& U_{1}=\mathcal{P}_{r_{1}}=\left\{v \in \mathcal{P}:\|v\|<r_{1}\right\} \\
& U_{2}=\mathcal{P}_{L_{1}}=\left\{v \in \mathcal{P}:\|v\|<L_{1}\right\} \\
& U_{3}=\mathcal{P}_{R_{1}}=\left\{v \in \mathcal{P}:\|v\|<R_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
R_{2} & =R_{1}+\frac{A}{m}\left(R_{1}+4 a \sum_{j=1}^{l}\left(2\left(R_{1}+r\right)\right)^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)+\frac{L_{1}}{5} \\
\Omega & =\overline{\mathcal{P}_{R_{2}}}=\left\{v \in \mathcal{P}:\|v\| \leq R_{2}\right\}
\end{aligned}
$$

1. For $v_{1}, v_{2} \in \Omega$, we have

$$
\left\|T v_{1}-T v_{2}\right\|=(1+m \epsilon)\left\|v_{1}-v_{2}\right\|
$$

whereupon $T: \Omega \rightarrow E$ is an expansive operator with a constant $1+m \epsilon>1$.
2. For $v \in \overline{\mathcal{P}_{R_{1}}}$, we get

$$
\begin{aligned}
\|S v\| & \leq \epsilon\|F v\|+m \epsilon\|v\|+\frac{L_{1}}{10} \\
& \leq \epsilon\left(A\left(R_{1}+4 a \sum_{j=1}^{l}\left(2\left(R_{1}+r\right)\right)^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)+m R_{1}+\frac{L_{1}}{10}\right)
\end{aligned}
$$

Therefore $S\left(\overline{\mathcal{P}_{R_{1}}}\right)$ is uniformly bounded. Since $S: \overline{\mathcal{P}_{R_{1}}} \rightarrow E$ is continuous, we have that $S\left(\overline{\mathcal{P}_{R_{1}}}\right)$ is equi-continuous. Consequently $S: \overline{\mathcal{P}_{R_{1}}} \rightarrow E$ is a 0 -set contraction.
3. Let $v_{1} \in \overline{\mathcal{P}_{R_{1}}}$. Set

$$
v_{2}=v_{1}+\frac{1}{m} F v_{1}+\frac{L_{1}}{5 m}
$$

Note that by the second inequality of (H3) and by Lemma 2.12, it follows that $\epsilon F v+\epsilon \frac{L_{1}}{5} \geq 0$ on $[0, \infty) \times \mathbb{R}^{2}$. We have $v_{2} \geq 0$ on $[0, \infty) \times \mathbb{R}^{2}$ and

$$
\begin{aligned}
\left\|v_{2}\right\| & \leq\left\|v_{1}\right\|+\frac{1}{m}\left\|F v_{1}\right\|+\frac{L_{1}}{5 m} \\
& \leq R_{1}+\frac{A}{m}\left(R_{1}+4 a \sum_{j=1}^{l}\left(2\left(R_{1}+r\right)\right)^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right)+\frac{L_{1}}{5} \\
& =R_{2}
\end{aligned}
$$

Therefore $v_{2} \in \Omega$ and

$$
-\epsilon m v_{2}=-\epsilon m v_{1}-\epsilon F v_{1}-\epsilon \frac{L_{1}}{10}-\epsilon \frac{L_{1}}{10}
$$

or

$$
(I-T) v_{2}=-\epsilon m v_{2}+\epsilon \frac{L_{1}}{10}=S v_{1} .
$$

Consequently $S\left(\overline{\mathcal{P}_{R_{1}}}\right) \subset(I-T)(\Omega)$.
4. Suppose that there exists an $v_{0} \in \mathcal{P}^{*}$ such that $T\left(v-\lambda v_{0}\right) \in \mathcal{P}, v \in \partial \mathcal{P}_{r_{1}}, v \in \partial \mathcal{P}_{r_{1}} \bigcap\left(\Omega+\lambda u_{0}\right)$
and $S v=v-\lambda v_{0}$ for some $\lambda \geq 0$. Then

$$
\begin{aligned}
r_{1} & =\left\|v-\lambda v_{0}\right\| \\
& =\|S v\| \\
& \geq-S v(t, x) \\
& =\epsilon F v(t, x)+\epsilon m v(t, x)+\epsilon \frac{L_{1}}{10} \\
& \geq \epsilon \frac{L_{1}}{20}, \quad(t, x) \in[0, \infty) \times \mathbb{R}^{2}
\end{aligned}
$$

because by the second inequality of (H3) and by Lemma 2.12, it follows that $\epsilon F v+\epsilon \frac{L_{1}}{20} \geq 0$ on $[0, \infty) \times \mathbb{R}^{2}$.
5. Suppose that for any $\epsilon_{1}>0$ small enough there exist a $u \in \partial \mathcal{P}_{L}$ and $\lambda_{1} \geq 1+\epsilon_{1}$ such that $\lambda_{1} u \in \overline{\mathcal{P}_{R_{1}}}$ and

$$
\begin{equation*}
S u=(I-T)\left(\lambda_{1} u\right) . \tag{3.1}
\end{equation*}
$$

In particular, for $\epsilon_{1}>\frac{2}{5 m}$, we have $u \in \partial \mathcal{P}_{L}, \lambda_{1} u \in \overline{\mathcal{P}_{R_{1}}}, \lambda_{1} \geq 1+\epsilon_{1}$ and (3.1) holds. Since $u \in \partial \mathcal{P}_{L}$ and $\lambda_{1} u \in \overline{\mathcal{P}_{R_{1}}}$, it follows that

$$
\left(\frac{2}{5 m}+1\right) L<\lambda_{1} L=\lambda_{1}\|u\| \leq R_{1}
$$

Moreover,

$$
-\epsilon F u-m \epsilon u-\epsilon \frac{L}{10}=-\lambda_{1} m \epsilon u+\epsilon \frac{L}{10},
$$

or

$$
F u+\frac{L}{5}=\left(\lambda_{1}-1\right) m u .
$$

From here,

$$
2 \frac{L}{5} \geq\left\|F u+\frac{L}{5}\right\|=\left(\lambda_{1}-1\right) m\|u\|=\left(\lambda_{1}-1\right) m L
$$

and

$$
\frac{2}{5 m}+1 \geq \lambda_{1}
$$

which is a contradiction.

Therefore all conditions of Theorem 2.6 hold. Hence, the IVP (2.2) has at least two solutions v_{1} and v_{2} so that

$$
r_{1}<\left\|v_{1}\right\|<L_{1}<\left\|v_{2}\right\|<R_{1}
$$

and

$$
u=v_{1}+u_{0}+t u_{1}, \quad w=v_{2}+u_{0}+t u_{1}
$$

are two different positive solutions of the IVP (1.1). This completes the proof.

4 An Example

Let

$$
\begin{aligned}
& l=1, \quad p_{1}=\frac{3}{5}, \quad R_{1}=r=1, \quad a=200, \quad L_{1}=\frac{1}{2}, \quad r_{1}=\frac{1}{100} \\
& m=10^{50}, \quad \epsilon=50, \quad A=\frac{1}{10^{10}}, \quad R=100
\end{aligned}
$$

Then

$$
R_{1}>\left(\frac{2}{5 m}+1 q\right) L_{1}, \quad r_{1}<L_{1}<R_{1}, \quad r_{1}<\frac{L_{1}}{20}
$$

Also,

$$
\begin{aligned}
A\left(R_{1}+4 a \sum_{j=1}^{l}\left(2\left(R_{1}+r\right)\right)^{p_{j}}+4 a \sum_{j=1}^{l}(2 r)^{p_{j}}+2 r\right) & =\frac{1}{10^{10}}\left(1+800 \cdot(4)^{2}+800 \cdot 4+2\right) \\
& <\frac{1}{40}=\frac{L_{1}}{20}
\end{aligned}
$$

Consequently (H3) holds. Now, we will construction the function g in (H4). Let

$$
h(x)=\log \frac{1+s^{11} \sqrt{2}+s^{22}}{1-s^{11} \sqrt{2}+s^{22}}, \quad l(s)=\arctan \frac{s^{11} \sqrt{2}}{1-s^{22}}, \quad s \in \mathbb{R}
$$

Then

$$
\begin{aligned}
h^{\prime}(s) & =\frac{22 \sqrt{2} s^{10}\left(1-s^{22}\right)}{\left(1-s^{11} \sqrt{2}+s^{22}\right)\left(1+s^{11} \sqrt{2}+s^{22}\right)} \\
l^{\prime}(s) & =\frac{11 \sqrt{2} s^{10}\left(1+s^{20}\right)}{1+s^{40}}, \quad s \in \mathbb{R}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& -\infty<\lim _{s \rightarrow \pm \infty}\left(1+s+s^{2}\right) h(s)<\infty \\
& -\infty<\lim _{s \rightarrow \pm \infty}\left(1+s+s^{2}\right) l(s)<\infty
\end{aligned}
$$

Hence, there exists a positive constant C_{1} so that

$$
\left(1+s+s^{2}\right)\left(\frac{1}{44 \sqrt{2}} \log \frac{1+s^{11} \sqrt{2}+s^{22}}{1-s^{11} \sqrt{2}+s^{22}}+\frac{1}{22 \sqrt{2}} \arctan \frac{s^{11} \sqrt{2}}{1-s^{22}}\right) \leq C_{1}, \quad s \in \mathbb{R}
$$

Note that by [22, p. 707, Integral 79], we have

$$
\int \frac{d z}{1+z^{4}}=\frac{1}{4 \sqrt{2}} \log \frac{1+z \sqrt{2}+z^{2}}{1-z \sqrt{2}+z^{2}}+\frac{1}{2 \sqrt{2}} \arctan \frac{z \sqrt{2}}{1-z^{2}}
$$

Let

$$
Q(s)=\frac{s^{10}}{\left(1+s^{44}\right)\left(1+s+s^{2}\right)^{2}\left(1+\left(\left(1+s+s^{2}\right) I(s)\right)^{2}\right)}, \quad s \in \mathbb{R}
$$

and

$$
g_{1}\left(t, x_{1}, x_{2}\right)=Q(t) Q\left(x_{1}\right) Q\left(x_{2}\right), \quad t \in[0, \infty), \quad x_{1}, x_{2} \in \mathbb{R}
$$

Then there exists a constant $C_{2}>0$ so that

$$
\begin{aligned}
C_{2} & \geq \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right) g_{1}\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left(1+\left|x_{1}-s_{1}\right|+\left(x_{1}-s_{1}\right)^{2}\right)\left(1+\left|x_{2}-s_{2}\right|+\left(x_{2}-s_{2}\right)^{2}\right) \\
& \times\left(1+\left(t-t_{1}\right)+\left(t-t_{1}\right)^{2}\right)\left(1+\left(1+t_{1}+t_{1}^{2}\right) I\left(t_{1}\right)\right) d s_{2} d s_{1} d t_{1}, \quad\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}
\end{aligned}
$$

Now, we take

$$
g\left(t, x_{1}, x_{2}\right)=\frac{1}{10^{20} C_{2}} g_{1}\left(t, x_{1}, x_{2}\right), \quad\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}
$$

Then

$$
\begin{aligned}
A & =\frac{1}{10^{10}} \\
& \geq \int_{0}^{t} \int_{0}^{x_{1}} \int_{0}^{x_{2}} \operatorname{sign}\left(x_{1}\right) \operatorname{sign}\left(x_{2}\right) g\left(t_{1}, s_{1}, s_{2}\right) \\
& \times\left(1+\left|x_{1}-s_{1}\right|+\left(x_{1}-s_{1}\right)^{2}\right)\left(1+\left|x_{2}-s_{2}\right|+\left(x_{2}-s_{2}\right)^{2}\right) \\
& \times\left(1+\left(t-t_{1}\right)+\left(t-t_{1}\right)^{2}\right)\left(1+\left(1+t_{1}+t_{1}^{2}\right) I\left(t_{1}\right)\right) d s_{2} d s_{1} d t_{1}, \quad\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}
\end{aligned}
$$

Now, consider the IVP

$$
\begin{align*}
u_{t t}-u_{x_{1} x_{1}}-u_{x_{2} x_{2}} & =w(t) u^{\frac{3}{5}}, \quad\left(t, x_{1}, x_{2}\right) \in(0, \infty) \times \mathbb{R}^{2}, \\
u(0, x) & =u_{t}(0, x)=0, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \tag{4.1}
\end{align*}
$$

where

$$
w(t)=\left\{\begin{array}{l}
10\left(9 t^{2}-9 t+2\right) \quad t \in[0,1] \\
20 \quad t>1
\end{array}\right.
$$

Here $l=1$,

$$
\begin{aligned}
& a_{1}\left(t, x_{1}, x_{2}\right)=|w(t)| \leq a=200 \\
& b_{1}\left(t, x_{1}, x_{2}\right)=c_{1}\left(t, x_{1}, x_{2}\right)=d_{1}\left(t, x_{1}, x_{2}\right)=0
\end{aligned}
$$

$\left(t, x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
u_{0}(x)=u_{1}(x)=0 \leq 1=r, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

We have that (H1) and (H2) hold. The IVP (4.1) has two nonnegative solutions $u_{1}(t, x)=0$, $(t, x) \in[0, \infty) \times \mathbb{R}^{2}$, and

$$
u_{2}(t, x)=\left\{\begin{array}{l}
(t(1-t))^{5} \quad(t, x) \in[0,1] \times \mathbb{R}^{2} \\
0 \quad(t, x) \in(1, \infty) \times \mathbb{R}^{2}
\end{array}\right.
$$

Acknowledgements

The authors thank the reviewers for the careful reading of the manuscript and helpful comments.

References

[1] S. Alinhac, "The null condition for quasilinear wave equations in two space dimensions I", Invent. Math., vol. 145, no. 3, pp. 597-618, 2001.
[2] L. Benzenati, S. G. Georgiev and K. Mebarki, "Existence of positive solutions for some kinds of BVPs in Banach spaces", submitted for publication.
[3] L. Benzenati and K. Mebarki, "Multiple positive fixed points for the sum of expansive mappings and k-set contractions", Math. Methods Appl. Sci., vol. 42, no. 13, pp. 4412-4426, 2019.
[4] L. Benzenati, K. Mebarki and R. Precup, "A vector version of the fixed point theorem of cone compression and expansion for a sum of two operators", Nonlinear Stud., vol. 27, no. 3, pp. 563-575, 2020.
[5] D. Christodoulou, "Global solutions of nonlinear hyperbolic equations for small data", Comm. Pure Appl. Math., vol. 39, no. 2, pp. 267-282, 1986.
[6] K. Deimling, Nonlinear functional Analysis, Heidelberg: Springer Berlin, 1985.
[7] S. Djebali and K. Mebarki, "Fixed Point Theory for Sums of Operators", J. Nonlinear Convex Anal., vol. 19, no. 6, pp. 1029-1040, 2018.
[8] S. Djebali and K. Mebarki, "Fixed point index for expansive perturbation of k-set contraction mappings", Topol. Methods Nonlinear Anal., vol. 54, no. 2, pp. 613-640, 2019.
[9] D. Duffy, Green's function with Applications, 1st edition, Boca Raton: Chapman \& Hall/CRC Press, 2001.
[10] S. G. Georgiev and Z. Khaled, Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs, Monographs and research notes in mathematics, Boca Raton: CRC Press, 2020.
[11] S. Georgiev, A. Kheloufi and K. Mebarki, "Classical solutions for the Korteweg-De Vries equation", New Trends in Nonlinear Analysis and Applications, to be published.
[12] S. G. Georgiev and K. Mebarki, "Existence of positive solutions for a class ODEs, FDEs and PDEs via fixed point index theory for the sum of operators", Comm. Appl. Nonlinear Anal., vol. 26, no. 4, pp. 16-40, 2019.
[13] S. G. Georgiev and K. Mebarki, "On fixed point index theory for the sum of operators and applications in a class ODEs and PDEs", submitted for publication.
[14] S. Georgiev and K. Mebarki, "Leggett-Williams fixed point theorem type for sums of two operators and application in PDEs", Differ. Equ. Appl., vol. 13, no. 3, pp. 321-344, 2021.
[15] S. G. Georgiev, K. Mebarki and Kh. Zennir, "Existence of solutions for a class of nonlinear hyperbolic equations", submitted for publication.
[16] S. G. Georgiev, K. Mebarki and Kh. Zennir, "Existence of solutions for a class IVP for nonlinear wave equations", submitted for publication.
[17] N. M. Hung, "Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain", Sb. Math., vol. 190, no. 7, pp. 1035-1058, 1999.
[18] S. Ibrahim, M. Majdoub and N. Masmoudi, "Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity", Comm. Pure Appl. Math., vol. 59, no. 11, pp. 1639-1658, 2006.
[19] F. John and S. Klainerman, "Almost global existence to nonlinear wave equations in three space dimensions", Comm. Pure Appl. Math., vol. 37, no. 4, pp. 443-455, 1984.
[20] S. Klainerman, "The null condition and global existence to nonlinear wave equations", Lectures in Appl. Math., vol. 23, pp. 293-326, 1986.
[21] Z. Lei, T. C. Sideris and Y. Zhou, "Almost Global existence for two dimensional incompressible isotropic elastodynamics", Trans. Amer. Math. Soc., vol. 367, no. 11, pp. 8175-8197, 2015.
[22] A. Polyanin and A. Manzhirov, Handbook of integral equations, Boca Raton: CRC Press, 1998.
[23] C. D. Sogge, Lectures on nonlinear wave equations, 2nd Edition, Boston: International press, Inc., 2013.

