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ABSTRACT

Dual digraphs of finite join-semidistributive lattices,

meet-semidistributive lattices and semidistributive lat-

tices are characterised. The vertices of the dual digraphs

are maximal disjoint filter-ideal pairs of the lattice. The

approach used here combines representations of arbitrary

lattices due to Urquhart (1978) and Ploščica (1995). The

duals of finite lattices are mainly viewed as TiRS digraphs

as they were presented and studied in Craig–Gouveia–

Haviar (2015 and 2022). When appropriate, Urquhart’s

two quasi-orders on the vertices of the dual digraph are

also employed. Transitive vertices are introduced and

their role in the domination theory of the digraphs is

studied. In particular, finite lattices with the property

that in their dual TiRS digraphs the transitive vertices

form a dominating set (respectively, an in-dominating

set) are characterised. A characterisation of both finite

meet- and join-semidistributive lattices is provided via

minimal closure systems on the set of vertices of their

dual digraphs.
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RESUMEN

Se caracterizan los digrafos duales de reticulados fini-

tos unión-semidistributivos, encuentro-semidistributivos

y semidistributivos. Los vértices de los digrafos duales

son pares filtro-ideales disjuntos maximales del reticu-

lado. El enfoque usado combina las representaciones de

reticulados arbitrarios de Urquhart (1978) and Ploščica

(1995). Los duales de reticulados finitos son vistos prin-

cipalmente como digrafos TiRS como fueron presentados

y estudiados en Craig–Gouveia–Haviar (2015 y 2022).

Cuando sea apropiado, también se emplean los dos cuasi-

órdenes de Urquhart en los vértices del digrafo dual. Se

introducen los vértices transitivos y se estudia su rol en la

teoŕıa de dominación de digrafos. En particular, se carac-

terizan los reticulados finitos con la propiedad que en

sus digrafos TiRS duales los vértices transitivos forman

un conjunto dominante (respectivamente un conjunto do-

minante interior). Se entrega una caracterización de re-

ticulados encuentro- y unión-semidistributivos a través

de sistemas de clausura mı́nima en el conjunto de vértices

de sus digrafos duales.

Keywords and Phrases: semidistributive lattice, TiRS digraph, join-semidistributive lattice, meet-semidistributive

lattice, dual digraph, domination.

2020 AMS Mathematics Subject Classification: 06B15, 06A75, 06D75, 05C20, 05C69.

Accepted: 22 August, 2022

Received: 01 June, 2022

c©2022 A. Craig et al. This open access article is licensed under a

Creative Commons Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2403.0369


CUBO
24, 3 (2022)

Dual digraphs of finite semidistributive lattices 371

1 Introduction

Semidistributivity was first described by Jónsson [16] while he was studying sublattices of a free

lattice. He proved [16, Lemma 2.6] that every free lattice is semidistributive.

A lattice is join-semidistributive if it satisfies the following quasi-equation for all x, y, z ∈ L:

(SD∨) x ∨ y = x ∨ z =⇒ x ∨ y = x ∨ (y ∧ z).

Dually, L is meet-semidistributive if it satisfies:

(SD∧) x ∧ y = x ∧ z =⇒ x ∧ y = x ∧ (y ∨ z).

A lattice is semidistributive if it satisfies both (SD∨) and (SD∧).

For background on semidistributive lattices we refer to the papers by Adaricheva et al. [1] and [2],

the chapter by Adaricheva and Nation [3], and the paper by Davey et al. [10].

The aim of our paper is to investigate dual digraphs of finite semidistributive lattices. Theo-

rem 3.6 provides a representation of finite semidistributive lattices via a certain class of TiRS

digraphs (see Definition 2.4). This theorem is a generalisation of Birkhoff’s representation of finite

distributive lattices via finite ordered sets [6] (see comments in the next paragraph regarding the

distributive case). In addition, we study transitive vertices in the dual digraphs and their role in

the domination theory of the digraphs, and also explore closure systems on the set of vertices of

the dual digraphs.

We employ representations for finite lattices due to Urquhart [20] and Ploščica [17]. In Urquhart’s

representation the elements of the dual space are maximal disjoint filter-ideal pairs of the lattice.

Urquhart considered two quasi-orders 61 and 62 on them and studied the dual of the lattice as a

certain doubly (quasi-) ordered space. In Ploščica’s representation, the dual space of a lattice L is

formed by maximal partial homomorphisms from L into the two-element lattice, which correspond

to Urquhart’s maximal disjoint filter-ideal pairs of L. When L is a distributive lattice, these max-

imal partial homomorphisms become total homomorphisms from L into the two-element lattice,

which form the Priestley dual of L [18]. The close relationship between Ploščica’s representation

of general lattices and Priestley’s representation of distributive lattices lies in the single binary re-

lation E, which Ploščica considered on his dual space. When L is distributive, E becomes exactly

Priestley’s order on the dual space. Ploščica’s dual space of a finite lattice L is therefore a finite

digraph where the vertices are the maximal partial homomorphisms from L into the two-element

lattice and the binary relation E, which mimics Priestley’s order, forms the edge set of the di-

graph. These dual digraphs of lattices were presented and studied as TiRS digraphs in two papers

by Craig, Gouveia and Haviar [7, 8].

In our approach we combine Urquhart’s and Ploščica’s representations of finite lattices: the vertices
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of our dual digraphs are maximal disjoint filter-ideal pairs of the lattice in the Urquhart style, but

we mainly study them as TiRS digraphs using the Ploščica binary relation E on the vertices. Only

in a small part of our investigation do we swap Ploščica’s relation E for Urquhart’s two quasi-

orders on the vertices to present our results in a different yet rather satisfactory way (the end of

Section 3).

In Section 2 we give preliminary results that will prove useful in the subsequent three sections of

the paper. In Section 3 we provide several characterisations of the dual digraphs of finite meet-

semidistributive, finite join-semidistributive, and finite semidistributive lattices. In Section 4 we

introduce transitive vertices in the dual digraphs and we study their role in the domination theory

of the digraphs. In particular, we are able to characterise finite lattices having the properties

that in their dual TiRS digraphs the transitive vertices form a dominating set, respectively an

in-dominating set. In Section 5 we characterise both finite meet-semidistributive and finite join-

semidistributive lattices via minimal closure systems on the set of vertices of their dual digraphs.

In Section 6 we make some concluding remarks and observations. In particular, we note connections

to other representations of finite semidistributive lattices, and we propose several directions for

future research in this area.

2 Preliminaries

Ploščica’s representation of arbitrary bounded lattices [17] uses the set of maximal partial homo-

morphisms (MPHs) from a bounded lattice L to the two-element bounded lattice ({0, 1},∧,∨, 0, 1)

as the underlying set of the dual space of L. We recall that a partial homomorphism from a

bounded lattice (L,∧,∨, 0, 1) into the two-element bounded lattice ({0, 1},∧,∨, 0, 1) is a partial

map f : L → {0, 1} such that dom f is a bounded sublattice of L and the restriction f ↾dom f is

a bounded lattice homomorphism. A maximal partial homomorphism is a partial homomorphism

with no proper extension. The set of MPHs is then equipped with a binary relation and a topology.

Definition 2.1 ([20, Section 3]). Let L be a lattice. Then 〈F, I〉 is a disjoint filter-ideal pair of L

if F is a filter of L and I is an ideal of L such that F ∩ I = ∅. We say that a disjoint filter-ideal

pair 〈F, I〉 is maximal if there is no disjoint filter-ideal pair 〈G, J〉 6= 〈F, I〉 such that F ⊆ G and

I ⊆ J . A maximal disjoint filter-ideal pair 〈F, I〉 of L is total in L if F ∪ I = L.

There is a one-to-one correspondence between the set of MPHs from L to 2 = ({0, 1},∧,∨, 0, 1)

and the maximal disjoint filter-ideal pairs (MDFIPs) of L. The latter were used in the dual

representation of Urquhart [20]. We will use a combination of the two approaches: for a lattice L,

the elements of our dual set XL will be MDFIPs, but we will equip the set with the binary relation

due to Ploščica, and hence will obtain a digraph. (Later, when desirable, we will also equip the



CUBO
24, 3 (2022)

Dual digraphs of finite semidistributive lattices 373

set XL of all MDFIPs of L with Urquhart’s two quasi-orders 61 and 62.) We do not require the

topologies used by Ploščica and Urquhart because we are only working with finite lattices.

Ploščica’s binary relation on the set of MPHs is defined as follows for MPHs f and g from L to 2:

(E1) fEg ⇐⇒ (∀x ∈ dom f ∩ dom g)(f(x) 6 g(x)).

The digraph dual to a finite bounded lattice L in Ploščica’s representation is GL = (VL, E) where

the set of vertices VL is formed by all MPHs from L to 2 and the relation E is defined by (E1)

above. We will now present this dual digraph as GL = (XL, E) where the set of vertices will be

XL, i.e. is formed by all MDFIPs of L, and the corresponding Ploščica relation E will be defined

below by (E2).

For two MDFIPs 〈F, I〉 and 〈G, J〉, Ploščica’s relation E is determined as follows:

(E2) 〈F, I〉E〈G, J〉 ⇐⇒ F ∩ J = ∅.

For finite lattices every filter is the up-set of a unique element and every ideal is the down-set

of a unique element, so we can represent every disjoint filter-ideal pair 〈F, I〉 by an ordered pair

〈↑x, ↓y〉 where x =
∧
F and y =

∨
I. Hence for finite lattices we have 〈↑x, ↓y〉E〈↑a, ↓b〉 if and only

if x 
 b.

In Figure 1 we present a number of examples of finite (non-distributive) lattices and their dual

digraphs. To make the labelling more compact, we denote by xy the MDFIP 〈↑x, ↓y〉. Also, to

keep the display simpler, we have not included the loop on each vertex. Notice that the directed

edge set is not a transitive relation.

SD∨, not SD∧

0

a b

c d e

1

a
b

c

d e

SD∧, not SD∨

0

1

0

a
b

c

1

SD∨ & SD∧

1

a b c

0

1

Not SD∨, not SD∧

ea

dc

de

cb

dc

ab

cb

ea

ab

bc

ca ab ac

ba

bc

ca

cb

Figure 1: Some finite lattices and their dual digraphs.

The fact below was noted by Urquhart and will be useful later.
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Proposition 2.2 ([20, p. 52]). Let L be a finite lattice. If 〈F, I〉 is a maximal disjoint ideal-filter

pair of L then
∧
F is join-irreducible and

∨
I is meet-irreducible.

Some of what appears in the proposition below can be found in the paper by Gaskill and Nation [13,

p. 353]. We will make frequent use of this result and its proof reveals some important features of

MDFIPs.

Proposition 2.3. Let L be a finite lattice and 〈F, I〉 be a maximal disjoint filter-ideal pair of L.

Then the following are equivalent:

(i)
∧
F is join-prime;

(ii)
∨
I is meet-prime;

(iii) F ∪ I = L;

(iv) F is a prime filter;

(v) I is a prime ideal.

The equivalences (iii) ⇔ (iv) ⇔ (v) hold even when L is not finite.

Proof. Let L be a finite lattice and let 〈F, I〉 be a maximal disjoint filter-ideal pair of L. Let
∧
F = x and

∨
I = y.

First we show that (iii) ⇒ (i). Assume that F ∪ I = L. Let a, b ∈ L such that x 6 a∨ b. We claim

that a ∈ F or b ∈ F . Suppose for a contradiction that a /∈ F and b /∈ F . Then a, b ∈ L \ F = I.

That implies a ∨ b ∈ I, whence x ∈ I, a contradiction.

Now we show that (i) ⇒ (iii). Assume that x is join-prime. Let a ∈ L such that a /∈ F ∪ I. We

will consider three cases for the element a ∨ y and derive a contradiction for each case.

Case 1: If a ∨ y ∈ I then a 6 a ∨ y = y, thus a ∈ I, a contradiction.

Case 2: If a ∨ y ∈ F then x 6 a ∨ y. Since x is join-prime, x 6 a or x 6 y. If x 6 a then a ∈ F ,

contradicting a /∈ F ∪ I. If x 6 y then x ∈ I, contradicting F ∩ I = ∅.

Case 3: Suppose a∨y /∈ F ∪I. Since a∨y /∈ ↑x, ↓(a∨y)∩↑x = ∅. From a∨y /∈ ↓y it follows that

↓y ⊂ ↓(a ∨ y). Hence 〈↑x, ↓(a ∨ y)〉 is a disjoint filter-ideal pair properly containing 〈F, I〉,

which contradicts the maximality of 〈F, I〉.

The equivalence of (ii) and (iii) can be shown analogously.

Now we drop the assumption that L is finite and show that (iii) ⇒ (iv). Let a ∨ b ∈ F . If a /∈ F

and b /∈ F then we have a, b ∈ L\F = I. Since I is an ideal we would get a∨ b ∈ I, a contradiction.

Therefore a ∈ F or b ∈ F .
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To show (iv) ⇒ (iii), and the equivalence of (iv) and (v), one uses the fact that a filter F ⊆ L is

prime if and only if L\F is a prime ideal.

The properties of the digraphs dual to bounded lattices were described by Craig, Gouveia and

Haviar [7]. There they were called TiRS graphs ; in this paper we will use the terminology TiRS

digraphs. We recall the necessary facts. (We note that in the definition below xE = { y ∈ V |

(x, y) ∈ E } and Ex = { y ∈ V | (y, x) ∈ E }.)

Definition 2.4 ([7, Definition 2.2]). A TiRS digraph G = (V,E) is a set V and a reflexive relation

E ⊆ V × V such that:

(S) If x, y ∈ V and x 6= y then xE 6= yE or Ex 6= Ey.

(R) For all x, y ∈ V , if xE ⊂ yE then (x, y) /∈ E, and if Ey ⊂ Ex then (x, y) /∈ E.

(Ti) For all x, y ∈ V , if xEy then there exists z ∈ V such that zE ⊆ xE and Ez ⊆ Ey.

We recall that the vertices of the dual digraph GL of a bounded lattice L are formed by the set XL

of MDFIPs of L and Ploščica’s relation E is determined by (E2). Using these facts, the following

result can be stated.

Proposition 2.5 ([7, Proposition 2.3]). For any bounded lattice L, its dual digraph GL = (XL, E)

is a TiRS digraph.

We recall from [17] a fact concerning general digraphs G = (X,E). Let 2∼ = ({0, 1},6) denote the

two-element digraph. A partial map ϕ : X → 2∼ is said to preserve the relation E if ϕ(x) 6 ϕ(y)

whenever x, y ∈ domϕ and (x, y) ∈ E. The lattice of maximal partial E-preserving maps from G

to 2∼ is denoted by G
mp(G, 2∼).

Lemma 2.6 ([17, Lemma 1.3]). Let G = (X,E) be a digraph and let us consider ϕ ∈ G
mp(G, 2∼).

Then

(i) ϕ−1(0) = { x ∈ X | there is no y ∈ ϕ−1(1) with (y, x) ∈ E };

(ii) ϕ−1(1) = { x ∈ X | there is no y ∈ ϕ−1(0) with (x, y) ∈ E }.

The above lemma allows us to observe that for a digraph G = (X,E) and ϕ, ψ ∈ G
mp(G, 2∼) we

have

ϕ−1(1) ⊆ ψ−1(1) ⇐⇒ ψ−1(0) ⊆ ϕ−1(0).

This implies that the reflexive and transitive binary relation 6 defined on G
mp(G, 2∼) by

ϕ 6 ψ ⇐⇒ ϕ−1(1) ⊆ ψ−1(1)

is a partial order. For a digraph G = (X,E) we let C(G) = (Gmp(G, 2∼),6).
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Theorem 2.7 ([7, Theorem 1.7 and p. 87]). For any finite bounded lattice L we have that L is

isomorphic to C(GL) and for any finite TiRS digraph G = (V,E) we have that G is isomorphic to

GC(G).

In later sections, we will frequently make use of Theorem 2.7 in the following way: given any finite

TiRS digraph G = (V,E), we can consider G to be the dual digraph GL = (XL, E) for some finite

lattice L.

There are a number of different constructions that yield complete lattices isomorphic to the com-

plete lattice C(G) described above, which is assigned to a digraph G = (X,E) (see [9]). In

particular, later we will use the lattice obtained via the polarity K(G) = (X,X,E∁), which will be

described in Section 5.

At the end of this preliminary section we recall from [20] how the set XL of all MDFIPs of a finite

bounded lattice L can be equipped with two quasi-orders 61 and 62. Urquhart in [20, p. 47]

defined two binary relations 61 and 62 on the set set XL of all MDFIPs of an arbitrary lattice L

as follows: for two MDFIPs 〈F, I〉 and 〈G, J〉,

(61) 〈F, I〉 61 〈G, J〉 ⇐⇒ F ⊆ G;

(62) 〈F, I〉 62 〈G, J〉 ⇐⇒ I ⊆ J .

It is clear that the binary relations 61 and 62 are reflexive and transitive on the set XL, and hence

are quasi-orders.

3 Characterisation of dual digraphs

The theorem below will play a crucial role in the proof of our first result. Our presentation is slightly

different to [3]; we have re-stated their items to suit our purposes. We use J(L), respectively M(L),

to denote the join-irreducible, respectively meet-irreducible, elements of L.

Theorem 3.1 ([3, Theorem 3-1.4]). Let L be a finite lattice. Then the following are equivalent:

(i) L satisfies SD∨;

(ii) For each x ∈ M(L), there exists a unique minimal element of the set

S(x) = {k ∈ L | k 
 x & k 6 x∗},

where x∗ is the unique upper cover of x, and moreover, this minimal element of S(x) is in

J(L).
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(iii) There exists a map κ : M(L) → J(L) such that for each x ∈ M(L), κ(x) is the minimal

element of the set S(x).

Using the previous result, in the next theorem we characterise finite join-semidistributive and

meet-semidistributive lattices via their MDFIPs.

Theorem 3.2. Let L be a finite lattice.

(i) L is not join-semidistributive if and only if there exist distinct maximal disjoint filter-ideal

pairs of the form 〈↑y, ↓x〉 and 〈↑z, ↓x〉 for some x, y, z ∈ L.

(ii) L is not meet-semidistributive if and only if there exist distinct maximal disjoint filter-ideal

pairs of the form 〈↑x, ↓y〉 and 〈↑x, ↓z〉 for some x, y, z ∈ L.

Proof. For the necessity, assume L is not join-semidistributive, whence by Theorem 3.1, for some

x ∈ M(L) there exist two minimal elements y and z of the set S(x). Then ↑y ∩ ↓x = ∅ and

↑z ∩ ↓x = ∅ so 〈↑y, ↓x〉 and 〈↑z, ↓x〉 are disjoint filter-ideal pairs. We claim that 〈↑y, ↓x〉 and

〈↑z, ↓x〉 are maximal. Suppose on the contrary that there is a disjoint filter-ideal pair 〈↑a, ↓b〉 of

L such that ↑y ⊆ ↑a and ↓x ⊆ ↓b but 〈↑a, ↓b〉 6= 〈↑y, ↓x〉. This gives us two possible cases:

Case 1: If a 6= y then since y is minimal in the set S(x) and a 6 y 6 x∗ we have that a 6 x. But

x 6 b, which implies that a 6 b, contradicting ↑a ∩ ↓b = ∅.

Case 2: If b 6= x then x∗ 6 b since x∗ is the unique upper cover of x. But a 6 y 6 x∗, which

implies that a 6 b, contradicting again ↑a ∩ ↓b = ∅.

Thus 〈↑y, ↓x〉 is maximal and we can use a similar argument to prove that 〈↑z, ↓x〉 is maximal.

For the sufficiency, assume that there exist distinct maximal disjoint filter-ideal pairs of the form

〈↑y, ↓x〉 and 〈↑z, ↓x〉 for some x, y, z ∈ L. We will prove that y and z are both minimal elements

of the set S(x). If follows from ↑y ∩ ↓x = ∅ and ↑z ∩ ↓x = ∅ that y 
 x and z 
 x. We will argue

y 6 x∗ by contradiction. Suppose y 
 x∗, then ↑y ∩ ↓x∗ = ∅. Since x < x∗ implies that ↓x ⊂ ↓x∗,

we get that 〈↑y, ↓x〉 is properly contained in 〈↑y, ↓x∗〉, which is a contradiction. Therefore y 6 x∗

and y ∈ S(x). Using a similar argument, z ∈ S(x). Now if a ∈ S(x) and a < y, then ↑y ⊂ ↑a.

Since a 
 x, we have ↑a ∩ ↓x = ∅. Therefore 〈↑a, ↓x〉 is a disjoint filter-ideal pair with ↑y ⊂ ↑a,

contradicting the maximality of 〈↑y, ↓x〉. Similarly, if b ∈ S(x) such that b < z, then 〈↑b, ↓x〉 is a

disjoint filter-ideal pair properly containing 〈↑z, ↓x〉, which is a contradiction. Therefore y and z

are both minimal elements of S(x).

The proof of (ii) follows by an order-dual argument.
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Corollary 3.3. Let G = (V,E) be a finite TiRS digraph which is the dual digraph of a finite lattice

L. If the relation E is antisymmetric, then L is semidistributive.

Proof. In accordance with our remarks after Theorem 2.7, we can consider G to be GL and so its

vertex set V will be XL.

Suppose for a contradiction that L is not semidistributive. Then L is not join-semidistributive

or L is not meet-semidistributive. If L is not join-semidistributive then by Theorem 3.2 (i)

there are maximal disjoint filter-ideal pairs of the form 〈↑y, ↓x〉 and 〈↑z, ↓x〉 for some x, y, z ∈ L.

Since G is the dual digraph of L, we have 〈↑y, ↓x〉, 〈↑z, ↓x〉 ∈ V . Clearly 〈↑y, ↓x〉E〈↑z, ↓x〉 and

〈↑z, ↓x〉E〈↑y, ↓x〉. This contradicts the antisymmetry of the relation E.

If L is not meet-semidistributive, then the argument is analogous.

Remark 3.4. The converse to Corollary 3.3 does not hold. We can see it on the lattice in Figure 2.

0

a

c

b

d

1

ac bd

cb da

Figure 2: A finite semidistributive lattice and its dual digraph.

The lattice is semidistributive but we see on its dual digraph, which contains a “double arrow”

between the elements ac and bd, that the relation E of the digraph is not antisymmetric.

Hence the condition in Corollary 3.3 is sufficient but not necessary for a finite lattice to be semidis-

tributive. An interesting task that is left open is to possibly weaken the given sufficient condition

to some form of “weak antisymmetry” of the relation E so that the resulting condition on E is

necessary and sufficient for a finite lattice to be semidistributive.

In the statement and the proof of the following result we again use the fact that, by Theorem 2.7,

G = (V,E) is isomorphic to the dual digraph GL = (XL, EL) of the lattice L, whose vertex set XL

is the set of all MDFIPs of L.

Lemma 3.5. Let G = (V,E) be a finite TiRS digraph with dual lattice L. Let u, v ∈ V be distinct.

Then:

(i) Eu = Ev if and only if u and v are the isomorphic images of 〈↑x, ↓y〉 and 〈↑z, ↓y〉 in XL for

some x, y, z ∈ L;
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(ii) uE = vE if and only if u and v are the isomorphic images of 〈↑x, ↓y〉 and 〈↑x, ↓z〉 in XL for

some x, y, z ∈ L.

Proof. Let u, v ∈ V . To show the sufficiency of the condition in (i), let u and v be the isomorphic

images of the vertices 〈↑x, ↓y〉 and 〈↑z, ↓y〉 in GL for some x, y, z ∈ L. Since G is isomorphic to

GL, we only need to show that EL〈↑x, ↓y〉 = EL〈↑z, ↓y〉. To this end, let 〈F, I〉 ∈ EL〈↑x, ↓y〉, then

F ∩ ↓y = ∅. Thus 〈F, I〉 ∈ EL〈↑z, ↓y〉. Similarly, if 〈F, I〉 ∈ EL〈↑z, ↓y〉, then F ∩ ↓y = ∅ and

〈F, I〉 ∈ EL〈↑x, ↓y〉. Therefore EL〈↑x, ↓y〉 = EL〈↑z, ↓y〉 and Eu = Ev.

For the necessity of the condition in (i), let 〈↑x, ↓y〉 and 〈↑z, ↓w〉 be isomorphic images of u and

v in XL and let Eu = Ev. We will show ↓y = ↓w. Let a ∈ ↓y. For all 〈F, I〉 ∈ EL〈↑z, ↓w〉

we have F ∩ ↓y = ∅ since EL〈↑x, ↓y〉 = EL〈↑z, ↓w〉. For S =
⋃
{F | 〈F, I〉 ∈ EL〈↑z, ↓w〉} now

a /∈ S as a ∈ ↓y. We claim that a ∈ ↓w. Suppose on the contrary that a /∈ ↓w. Then a 
 w and

↑a ∩ ↓w = ∅. This shows 〈↑a, ↓w〉 is a disjoint filter-ideal pair. Hence there is an MDFIP 〈H, J〉

such that ↑a ⊆ H and ↓w ⊆ J . But ↓w ⊆ J and H ∩ J = ∅ implies that H ∩ ↓w = ∅. Then

〈H, J〉 ∈ EL〈↑z, ↓w〉, so H ⊆ S, which means a ∈ S, a contradiction. Thus a ∈ ↓w. The reverse

inclusion can be shown analogously. Therefore ↓y = ↓w and the proof of (i) is complete. Part (ii)

can be proven analogously.

Theorem 3.6. Let G = (V,E) be a finite TiRS digraph with u, v ∈ V . Then

(i) G is the dual digraph of a join-semidistributive lattice if and only if whenever u 6= v then

Eu 6= Ev.

(ii) G is the dual digraph of a meet-semidistributive lattice if and only if whenever u 6= v then

uE 6= vE.

(iii) G is the dual digraph of a semidistributive lattice if and only if whenever u 6= v then Eu 6= Ev

and uE 6= vE.

Proof. Let G be a finite TiRS digraph with dual lattice L. To show the necessity in (i), assume

there exist distinct u, v ∈ V such that Eu = Ev. Then by Lemma 3.5 there exist distinct MDFIPs

〈↑x, ↓y〉 and 〈↑z, ↓y〉 in L. It then follows from Theorem 3.2(i) that L is not join-semidistributive.

To show the sufficiency in (i), assume that L is not join-semidistributive. Then by Theorem 3.2(i)

there exist distinct MDFIPs 〈↑x, ↓y〉 and 〈↑z, ↓y〉. By Lemma 3.5 there exist distinct vertices

u, v ∈ V such that Eu = Ev.

Part (ii) can be shown analogously, and part (iii) follows directly from (i) and (ii).

We recall that the “separation property” (S) in the definition of TiRS digraphs is defined as follows:

(S) If x, y ∈ V and x 6= y then xE 6= yE or Ex 6= Ey.
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Hence it should be emphasized that the condition (iii) in the theorem above characterising the

semidistributivity is clearly strengthening the separation condition (S) by replacing in it the logical

connective “or” with “and”. Thus it can be considered as a certain “strong separation property”:

(sS) If x, y ∈ V and x 6= y then xE 6= yE and Ex 6= Ey.

It is interesting to realise that finite semidistributive lattices are exactly those finite lattices whose

dual digraphs have the “separation property” (S) strengthened to the “strong separation property”

(sS).

A remark of Urquhart [20, Section 7] says that a finite lattice L is meet-semidistributive if and

only if the quasi-order 61 is an order. We state that result (and its dual) below and prove it using

the results from earlier in the section.

Theorem 3.7. Let L be a finite lattice.

(i) L is join-semidistributive if and only if the quasi-order 62 on the vertices of the dual digraph

is an order.

(ii) L is meet-semidistributive if and only if the quasi-order 61 on the vertices of the dual digraph

is an order.

Proof. Assume firstly that the quasi-order 62 on the vertices of the dual digraph is not an order,

that is, the relation 62 is not antisymmetric. Then there exist distinct vertices x and y such that

x 62 y and y 62 x. If we consider the vertices x and y as the MDFIPs x = 〈F, I〉 and y = 〈G, J〉,

then by definition of 62 we have I ⊆ J and J ⊆ I, hence the MDFIPs x and y have the same ideal

part. By Theorem 3.2 it follows that L is not join-semidistributive.

Conversely, if L is not join-semidistributive, then by Theorem 3.2 there exist distinct MDFIPs x

and y with the same ideal part, whence x 62 y and y 62 x. It follows that the relation 62 is not

antisymmetric, hence the quasi-order 62 is not an order.

Now we can rephrase Lemma 3.5 in terms of quasi-orders 61 and 62:

Corollary 3.8. Let G = (V,E) be a finite TiRS digraph with dual lattice L. Let u, v ∈ V be

distinct. Then:

(i) Eu = Ev if and only if u 62 v and v 62 u;

(ii) uE = vE if and only if u 61 v and v 61 u.

We can finally summarise the previous results in the following characterisations of join-semidistribu-

tivity, meet-semidistributivity and semidistributivity of finite lattices via the properties of their

dual digraphs:
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Corollary 3.9. Let G = (V,E) be a finite TiRS digraph.

(1) The following are equivalent:

(i) G is the dual digraph of a join-semidistributive lattice;

(ii) for all u, v ∈ V , if u 6= v then Eu 6= Ev;

(iii) the quasi-order 62 on V is an order.

(2) The following are equivalent:

(i) G is the dual digraph of a meet-semidistributive lattice;

(ii) for all u, v ∈ V , if u 6= v then uE 6= vE;

(iii) the quasi-order 61 on V is an order.

(3) The following are equivalent:

(i) G is the dual digraph of a semidistributive lattice;

(ii) for all u, v ∈ V , if u 6= v then Eu 6= Ev and uE 6= vE;

(iii) both the quasi-orders 61 and 62 on V are orders.

4 Domination in dual digraphs

In the dual digraph of a lattice L, there are certain vertices that play an important role. It turns

out that these vertices correspond to MDFIPs where F ∪ I = L.

Definition 4.1. A vertex v of a digraph G = (V,E) is said to be transitive in G if uEv and vEw

imply uEw for all u,w ∈ V .

With respect to the illustration of the following result, the reader is reminded to return to Figure 1

for examples.

Theorem 4.2. Let L be a lattice with dual digraph GL = (XL, E). A maximal disjoint filter-ideal

pair 〈F, I〉 is total in L if and only if it is transitive in GL.

Proof. Let 〈F, I〉 be total in L. Assume that 〈G, J〉 and 〈H,K〉 are maximal disjoint filter-ideal

pairs such that 〈G, J〉E〈F, I〉 and 〈F, I〉E〈H,K〉. By the definition of E we have that G ∩ I = ∅

and F ∩K = ∅. We claim that G ∩K = ∅. Notice that since F ∩K = ∅ and 〈F, I〉 is total, it

follows that K ⊆ L\F = I. But G ∩ I = ∅ and hence G ∩K = ∅. By the definition of E we get

〈G, J〉E〈H,K〉 and therefore 〈F, I〉 is transitive.
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For the converse, assume that 〈F, I〉 is not total in L. Take x ∈ L\(F ∪I) and consider the disjoint

filter-ideal pairs 〈↑x, I〉 and 〈F, ↓x〉. These can be extended to maximal disjoint filter-ideal pairs

〈G, J〉 (where ↑x ⊆ G and I ⊆ J) and 〈H,K〉 (with F ⊆ H and ↓x ⊆ K). Since I ⊆ J , we have

G ∩ I = ∅ and hence 〈G, J〉E〈F, I〉. Since F ⊆ H we get F ∩K = ∅ and hence 〈F, I〉E〈H,K〉.

But, since x ∈ G ∩K we do not have 〈G, J〉E〈H,K〉 and so 〈F, I〉 is not transitive.

The following result was first shown in a more restricted context by Gaskill and Nation [13]. This

more general statement is folklore.

Proposition 4.3 ([13, Lemma 1]). Let L be a join-semidistributive lattice with greatest element 1.

Then L has a prime ideal. Dually, if L is a meet-semidistributive lattice with least element 0, then

L has a prime filter.

Proof. Let I be an ideal that is maximal with respect to not containing 1. Suppose that y, z /∈ I.

Then there is an element x ∈ I such that x ∨ y = x ∨ z = 1. Since L satisfies SD∨ we get

x ∨ (y ∧ z) = 1 and hence y ∧ z /∈ I.

Corollary 4.4. Let L be a bounded lattice. If the dual digraph GL = (XL, E) does not have a

transitive vertex then L satisfies neither SD∨ nor SD∧.

Proof. Assume that GL does not have a transitive element. Then every MDFIP of L is such that

F ∪ I 6= L. By Proposition 2.3 we have that no filter F ⊆ L can be prime. Since L has both a

greatest and least element, by Proposition 4.3, L cannot be join-semidistributive and it cannot be

meet-semidistributive.

Notice that the converse of Corollary 4.4 does not hold. The lattice L3 from [10] satisfies neither

SD∨ nor SD∧ but there exists a maximal disjoint filter-ideal pair 〈F, I〉 with F ∪ I = L (or, a

total homomorphism from L3 to 2).

As stated earlier, the transitive elements in a finite TiRS digraph can play a special role. Notice

that when a TiRS digraph G is a poset (i.e. it is the dual digraph of a finite distributive lattice)

then every element of G is transitive.

The next lemma captures two familiar facts about finite join-semidistributive and meet-semidistribu-

tive lattices.

Lemma 4.5 ([13, Lemma 1]). (i) The co-atoms of a finite join-semidistributive lattice are meet-

prime.

(ii) The atoms of a finite meet-semidistributive lattice are join-prime.

Proof. We prove only (i) as the proof of (ii) will follow using a dual argument.
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Let L be a finite join-semidistributive lattice and let x ∈ L be a co-atom such that x > a ∧ b

for some a, b ∈ L. Suppose that x � a and x � b. We then have x ∨ a > x and x ∨ b > x.

Since x is a co-atom, we get x ∨ a = 1 = x ∨ b. However, since L is join-semidistributive, we get

x = x ∨ (a ∧ b) = x ∨ a = 1, a contradiction. Thus x > a or x > b.

In the definition below we note that the original source uses ‘arc’ instead of ‘edge’.

Definition 4.6 ([15, Definition 2]). Given a digraph D = (V,E), with vertex set V and edge set

E, a set S ⊆ V is a dominating set if for every vertex v ∈ V \S, there is a vertex u ∈ S such that

uEv.

Proposition 4.7. Let G = (V,E) be a finite TiRS digraph. If G is dual to a finite join-semidis-

tributive lattice L, then the transitive vertices of G form a dominating set.

Proof. Assume that G = GL = (XL, E) for some finite join-semidistributive lattice L. If x is a

vertex of G then x = 〈↑a, ↓b〉 for some a, b ∈ L. Since b 6= 1 we have that b 6 c for some co-atom c.

By Lemma 4.5 we have that c is meet-prime and so by Proposition 2.3 we know that ↓c is a prime

ideal and that there exists d ∈ L such that ↑d is a prime filter with ↑d ∩ ↓c = ∅ and ↑d ∪ ↓c = L.

By Theorem 4.2, y = 〈↑d, ↓c〉 is a transitive vertex of GL. Since ↓b ⊆ ↓c we have ↑d ∩ ↓b = ∅ and

hence yEx.

The converse of the above proposition does not hold. Let L′ be the diamond M3 with a new top

element t. Then its dual digraph G is the same as the dual digraph of M3 (see Figure 1) except

it has an extra vertex v = 〈↑t, ↓1〉, which is transitive since it is total. In G the edges obviously

go from the vertex v to every other vertex. Hence the set {v} of transitive vertices of G is the

dominating set, yet the lattice L′ is not join-semidistributive as it contains a sublattice isomorphic

to M3 (cf. [10]).

Since transitive elements are connected to join- and meet-prime elements, the previous result

is partly related to how the join-primes or meet-primes sit inside the lattice. The next result

characterises finite TiRS digraphs G dual to finite lattices, in which the transitive vertices of G

form a dominating set.

Theorem 4.8. Let G = (V,E) be a finite TiRS digraph. Then G is dual to a finite lattice L in

which every co-atom is meet-prime if and only if the transitive vertices of G form a dominating

set.

Proof. Let G = (V,E) be the dual digraph GL for some finite lattice L in which every co-atom

is meet-prime. If x ∈ V then x = 〈↑a, ↓b〉 for some a, b ∈ L. Since b 6= 1 we have that b 6 c for

some co-atom c. By Proposition 2.3 we know that ↓c is a prime ideal and that there exists d ∈ L
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such that ↑d is a prime filter with ↑d ∩ ↓c = ∅ and ↑d ∪ ↓c = L. By Theorem 4.2, y = 〈↑d, ↓c〉 is a

transitive vertex of GL = G. Since ↓b ⊆ ↓c we have ↑d ∩ ↓b = ∅ and hence yEx.

Next, assume that the transitive vertices of G form a dominating set and let c be a co-atom of L.

The pair 〈↑1, ↓c〉 is a disjoint filter-ideal pair that can be extended to a maximal disjoint filter-ideal

pair 〈↑b, ↓c〉. Since the transitive vertices form a dominating set, there exists a transitive vertex

〈↑x, ↓y〉 such that 〈↑x, ↓y〉E〈↑b, ↓c〉, i.e. ↑x ∩ ↓c = ∅. Since 〈↑x, ↓y〉 is transitive, we have by

Proposition 2.3 and Theorem 4.2 that x is join-prime. Now, we have that 〈↑x, ↓c〉 is a disjoint

filter-ideal pair which can be extended to a maximal disjoint filter-ideal pair 〈↑a, ↓c〉 where a 6 x.

Since a 
 c we have c < a ∨ c = 1. Clearly now x 6 a ∨ c and hence x 6 a or x 6 c. The latter

cannot happen as ↑x ∩ ↓c = ∅ so x 6 a and hence x = a. Now 〈↑x, ↓c〉 is a maximal disjoint

filter-ideal pair with x join-prime, and hence c is meet-prime.

Remark 4.9. It is well-known (cf. [11, Theorem 2.24]; see also [3, Theorem 3-1.4]) that a finite

lattice L satisfies SD∨ if and only if each element in L has a so-called canonical join representation.

Using [13, Lemma 1(ii)] we are able to show that the equivalent conditions of Theorem 4.8 hold for

the TiRS digraph G dual to a finite lattice L if and only if the top element 1 of L has a canonical

join representation. Since canonical join representations are not the focus of this paper, we have

decided to present the proof in a separate paper where this will be explored with the proper context

and in more depth.

Definition 4.10 ([15, Definition 3]). Given a digraph D = (V,E), with vertex set V and edge set

E, a set S ⊆ V is an in-dominating set if for every vertex v ∈ V \S, there is a vertex u ∈ S such

that vEu.

Theorem 4.11. Let G = (V,E) be a finite TiRS digraph. Then G is dual to a finite lattice L in

which every atom is join-prime if and only if the transitive vertices of G form an in-dominating

set.

Proof. Let GL = (XL, E) be the dual digraph of some finite lattice L in which every atom is

join-prime. If x ∈ V then x = 〈↑a, ↓b〉 for some a, b ∈ L. Assume that x is not transitive. Since

a 6= 0 we have that c 6 a for some atom c ∈ L. By Proposition 2.3 we know that ↑c is a prime

filter and that there exists d ∈ L such that ↓d is a prime ideal with ↑c ∩ ↓d = ∅ and ↑c ∪ ↓d = L.

By Theorem 4.2, y = 〈↑c, ↓d〉 is a transitive vertex of GL. Since ↑a ⊆ ↑c we have ↑c ∩ ↓b = ∅ and

hence xEy.

Next, assume that the transitive vertices of G = (V,E) form an in-dominating set and let c be

an atom of L. The pair 〈↑c, ↓0〉 is a disjoint filter-ideal pair that can be extended to an MDFIP

〈↑c, ↓b〉. Since the transitive vertices form an in-dominating set, there exists a transitive vertex

〈↑x, ↓y〉 such that 〈↑c, ↓b〉E〈↑x, ↓y〉, i.e. ↑c ∩ ↓y = ∅. Since 〈↑x, ↓y〉 is transitive, we have by

Proposition 2.3 and Theorem 4.2 that y is meet-prime.
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Now, we have that 〈↑c, ↓y〉 is a disjoint filter-ideal pair which can be extended to a maximal disjoint

filter-ideal pair 〈↑c, ↓a〉 where y 6 a. Since c 
 a we have 0 = a ∧ c < c. Clearly now a ∧ c < y

and hence a 6 y or c 6 y. The latter cannot happen as ↑c ∩ ↓y = ∅ so a 6 y and hence y = a.

Now 〈↑c, ↓y〉 is an MDFIP with y is meet-prime, and hence c is join-prime.

Corollary 4.12. Let G = (V,E) be a finite TiRS digraph. If G is dual to a finite meet-

semidistributive lattice L, then the transitive vertices of G form an in-dominating set.

Proof. Let G = (V,E) be a finite TiRS digraph. Assume G is dual to a finite meet-semidistributive

lattice L. Then by Lemma 4.5 the atoms of L are join-prime. It then follows from Theorem 4.11

that the transitive elements of L form an in-dominating set.

We think it is an interesting problem to try and characterise the dual digraphs of finite join-

semidistributive lattices within the class of finite TiRS digraphs whose transitive vertices form a

dominating set (and dually). We attempted to do so but were unable to identify the required

condition.

5 Minimal closure systems from dual digraphs

Closure systems appear in many different areas of mathematics. They were investigated in relation

to join-semidistributive lattices by Adaricheva et al. [1]. A comprehensive account of the theory

can be found in the book chapters by Adaricheva and Nation [4, 5]. The definitions below all follow

the notational conventions used in Adaricheva and Nation [4, Section 4-2] although in some cases

the reference is to another source.

Definition 5.1 ([14, Definition 30]). Let X be a set and φ : ℘(X) → ℘(X). Then φ is a closure

operator on X if for all Y, Z ∈ ℘(X),

(i) Y ⊆ φ(Y ),

(ii) Y ⊆ Z implies φ(Y ) ⊆ φ(Z),

(iii) φ(φ(Y )) = φ(Y ).

If X is a set and φ a closure operator on X then the pair 〈X,φ〉 is called a closure system.

For Y ⊆ X we say that Y is closed if φ(Y ) = Y . The closed sets of a closure operator φ on X

form a complete lattice, denoted by Cld(X,φ).

Example 5.2. Let L be a finite lattice. If a ∈ L let Ja = {x ∈ J(L) | x 6 a} and define

τ : ℘(J(L)) → ℘(J(L)) by τ(A) =
⋂
{Ja | a ∈ L and A ⊆ Ja}. Then 〈J(L), τ〉 is a closure system.

Notice that every finite lattice L is isomorphic to Cld(J(L), τ) via the isomorphism a 7→ Ja.
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From any digraph G = (X,E) we get the closure system 〈X,E∁
⊳ ◦E

∁
⊲〉 (see [9, Theorem 3.3]). Here

we recall necessary facts from [9, Section 3].

For a digraph G = (X,E) one can consider the triple (called a context) K(G) := (X,X,E∁), where

the relation E∁ ⊆ X ×X is the complement of the digraph relation E: E∁ = (X × X)\E. One

can then define a Galois connection via so-called polars as follows. The maps

E∁
⊲ : (℘(X),⊆) → (℘(X),⊇) and E∁

⊳ : (℘(X),⊇) → (℘(X),⊆)

are given by

E∁
⊲(Y ) = { x ∈ X | (∀ y ∈ Y )(y, x) /∈ E },

E∁
⊳(Y ) = { z ∈ X | (∀ y ∈ Y )(z, y) /∈ E }.

The so-called concept lattice CL(K(G)) of the context K(G) = (X,X,E∁), given by

CL(K(G)) = { Y ⊆ X | (E∁
⊳ ◦ E∁

⊲)(Y ) = Y },

is a complete lattice when ordered by inclusion.

The isomorphism in Proposition 5.3 below is different to the original source but is equivalent

because of the one-to-one correspondence between the sets VL andXL. We recall that the definition

of the lattice C(GL) is given directly before Theorem 2.7.

Proposition 5.3 ([9, Proposition 3.1 and Corollary 3.2]). If L is a finite lattice and GL = (XL, E)

is its dual digraph, we have

L ∼= C(GL) ∼= CL(K(GL)).

The map a 7→ { 〈F, I〉 ∈ XL | a ∈ F } is the isomorphism from L to CL(K(GL)).

The definition below is important in understanding the notion of a minimal closure system later

on.

Definition 5.4 ([4, Definition 4-2.1]). Closure systems 〈X,φ〉 and 〈Y, ψ〉 are called equivalent if

Cld(X,φ) ∼= Cld(Y, ψ). Two equivalent systems are called isomorphic if there exists a bijection

ρ : X → Y such that ρ(φ(Z)) = ψ(ρ(Z)) for all Z ⊆ X .

The left-most lattice in Figure 1 is referred to as L∂
4 in [10]. We use this lattice to provide an

illustration of Definition 5.4.

Example 5.5. Let L = L∂
4 and consider its dual digraph GL = (XL, E) = ({cb, de, dc, ea}, E).

From this digraph we get the closure system 〈XL, E
∁
⊳ ◦ E∁

⊲〉 with

Cld(XL, E
∁
⊳ ◦ E∁

⊲) = {∅, {cb}, {ea}, {de, dc}, {cb, de, dc}, {ea, de, dc},XL}.
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If we let Y = {cb, de, ea} and φY (S) = Y ∩ (E∁
⊳ ◦ E∁

⊲)(S) then

Cld(Y, φY ) = {∅, {cb}, {ea}, {de}, {cb, de}, {ea, de}, Y }.

It is easy to see that 〈XL, E
∁
⊳ ◦E∁

⊲ 〉 and 〈Y, φY 〉 are equivalent but not isomorphic.

Proposition 5.6. Let 〈X,φ〉 and 〈Y, ψ〉 be closure systems and let f : X → Y be a mapping. If

f(A) is closed in Y for all closed sets A ⊆ X and f−1(B) is closed in X for all closed sets B ⊆ Y

then f(φ(A)) = ψ(f(A)) for all A ⊆ X.

Proof. Let f be such that f(A) is closed in Y for all closed sets A ⊆ X and f−1(B) is closed

in X for all closed sets B ⊆ Y . Notice that for all S ⊆ X we have that φ(S) =
⋂
{A ⊆ X |

S ⊆ A and A is closed in X}, and similarly for ψ. Let S ⊆ X . To show the inclusion f(φ(A)) ⊆

ψ(f(A)), let B ∈ Cld(Y, ψ) such that f(S) ⊆ B. Then S ⊆ f−1(B). But f−1(B) is closed in X by

our assumption. Hence φ(S) ⊆ f−1(B) = φ(f−1(B)). This implies that f(φ(S)) ⊆ B. Since B was

arbitrary, this is true for all closed sets containing f(S). Therefore f(φ(S)) ⊆ ψ(f(S)) =
⋂
{A ⊆

X | f(S) ⊆ A and A is closed in X}. For the reverse inclusion notice that since A ⊆ φ(A) we get

that f(A) ⊆ f(φ(A)). But f(φ(A)) is closed by our assumption. Thus ψ(f(A)) ⊆ f(φ(A)).

Further, Adaricheva and Nation [4] posed the following problem: given a closure system 〈X,φ〉,

can we find a ⊆-minimal subset Y of X and a closure operator ψ on Y such that 〈Y, ψ〉 is equivalent

to 〈X,φ〉? Such a closure system is then said to be minimal for 〈X,φ〉.

Theorem 5.7 ([5, Lemma 4-2.13]). A closure system 〈X,φ〉 with lattice of closed sets L is minimal

if and only if it is isomorphic to 〈J(L), τ〉.

Proposition 5.8. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then the mapping

f : X → J(L) defined by f(〈F, I〉) =
∧
F is surjective and satisfies f(E∁

⊳ ◦ E∁
⊲(S)) = τ(f(S)) for

all S ⊆ X.

Proof. We start by proving the surjectivity of f . Let x ∈ J(L) and let T (x) denote the set

{a ∈ L | x∗ 6 a and x 
 a} where x∗ is the unique lower cover of x. We notice that the set T (x)

is non-empty since x∗ ∈ T (x). Let y ∈ T (x) be a maximal element (which exists since T (x) is a

finite ordered set). Then we claim that 〈↑x, ↓y〉 is an MDFIP. We have that ↑x ∩ ↓y = ∅ since

x 
 y. Now let 〈↑a, ↓b〉 be an MDFIP such that ↑x ⊆ ↑a and ↓y ⊆ ↓b and 〈↑a, ↓b〉 6= 〈↑x, ↓y〉. We

get two cases from this.

Case 1: If ↑x 6= ↑a then a < x so a 6 x∗. Thus we get that a 6 x∗ 6 y 6 b, which is a

contradiction.

Case 2: If ↓y 6= ↓b then y < b and so x∗ 6 y < b. But y is maximal in T (x) so we have that

a 6 x 6 b. Again, this is a contradiction.
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Thus 〈↑x, ↓y〉 is an MDFIP and f(〈↑x, ↓y〉) = x. Hence f is surjective.

To help us prove that f preserves closure, we define Ba = {〈F, I〉 ∈ XL | a ∈ F} and Ja = {x ∈

J(L) | x 6 a} for a ∈ L. Notice that the closed sets from 〈XL, E
∁
⊳ ◦E

∁
⊲〉 are exactly the sets Ba for

all a ∈ L and the closed sets from 〈J(L), τ〉 are exactly the sets Ja for all a ∈ L (see Proposition 5.3

and Example 5.2). We claim that f(Ba) = Ja and f−1(Ja) = Ba for all a ∈ L.

Let a ∈ L. We prove firstly that f(Ba) = Ja. To show the inclusion f(Ba) ⊆ Ja, let x ∈ f(Ba).

Then x =
∧
F for some 〈F, I〉 ∈ Ba. Since 〈F, I〉 ∈ Ba we have that a ∈ F . This implies that

x 6 a. But x ∈ J(L) and thus x ∈ Ja. To show the reverse inclusion f(Ba) ⊇ Ja, let x ∈ Ja. Then

by the surjectivity there is y ∈ L such that 〈↑x, ↓y〉 ∈ XL. Then since x ∈ Ja, we have that x 6 a.

This implies that a ∈ ↑x and that 〈↑x, ↓y〉 ∈ Ba. Since 〈↑x, ↓y〉 ∈ Ba, we get that x ∈ f(Ba).

Thus f(Ba) = Ja.

Now we prove that f−1(Ja) = Ba for all a ∈ L. To show f−1(Ja) ⊆ Ba, let 〈F, I〉 ∈ f−1(Ja).

Then f(〈F, I〉) = x ∈ Ja. Since x ∈ Ja, we have that x 6 a and that a ∈ ↑x = F . Therefore

〈F, I〉 ∈ Ba. To show f−1(Ja) ⊇ Ba, let 〈F, I〉 ∈ Ba. Then a ∈ F and f(〈F, I〉) =
∧
F 6 a.

Therefore f(〈F, I〉) ∈ Ja and 〈F, I〉 ∈ f−1(Ja). Thus f
−1(Ja) = Ba.

By Proposition 5.6 we get f(E∁
⊳ ◦ E∁

⊲(S)) = τ(f(S)) for all S ⊆ X .

The main result of this section is the theorem below. We again refer the reader to Figure 1 for

basic illustrative examples, while Example 5.5 provides a demonstration of what can happen when

L is not meet-semidistributive.

Theorem 5.9. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then 〈XL, E
∁
⊳ ◦ E∁

⊲〉

is a minimal closure system for itself if and only if L is meet-semidistributive.

Proof. The necessity will be proved by contraposition. Assume L is not meet-semidistributive. By

Proposition 5.8 we have that |J(L)| ≤ |XL| since f is surjective. But by Theorem 3.2 there exist

distinct MDFIPs 〈↑x, ↓y〉 and 〈↑x, ↓z〉 where x ∈ J(L). This implies that f is not injective and

hence |J(L)| < |XL|. Therefore by [5, Lemma 4-2.13], 〈X,E∁
⊳ ◦ E∁

⊲〉 is not minimal.

For the sufficiency, assume that L is meet-semidistributive. We will show that f defined in Propo-

sition 5.8 is a bijection. We only need to show that f is injective. Let 〈F, I〉, 〈G, J〉 ∈ X be

such that f(〈F, I〉) = f(〈G, J〉) = x. Then F = G = ↑x. By Theorem 3.2 we have that I = J .

Therefore 〈F, I〉 = 〈G, J〉 and hence f is injective. Thus it follows from Propositions 5.6 and 5.8

that f is an isomorphism of closure systems. By [5, Lemma 4-2.13] this implies that 〈X,E∁
⊳ ◦E∁

⊲〉

is minimal.

Before stating the dual of Theorem 5.9, we need to make some observations. As observed earlier in

the section, if L is a finite lattice, with GL = (XL, E) its dual digraph, then L ∼= Cld(XL, E
∁
⊳◦E

∁
⊲)

∼=
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Cld(J(L), τ). If we reverse the order of the polar maps E∁
⊳ and E∁

⊲ , we again get a closure operator,

but with L∂ ∼= Cld(XL, E
∁
⊲◦E

∁
⊳). For a finite lattice L, it is easy to show that g : XL → XL∂ , defined

for 〈↑a, ↓b〉 ∈ XL by g(〈↑a, ↓b〉) = 〈↑b, ↓a〉, is a bijection. From this we get that 〈XL, E
∁
⊲ ◦ E∁

⊳〉 is

isomorphic to 〈XL∂ , E∁
⊳ ◦ E∁

⊲〉.

Theorem 5.10. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then 〈XL, E
∁
⊲ ◦E∁

⊳〉

is a minimal closure system for itself if and only if L is join-semidistributive.

Proof. We know that L is join-semidistributive if and only if L∂ is meet-semidistributive. We can

then apply Theorem 5.9 to the closure system 〈XL∂ , E∁
⊳ ◦ E∁

⊲〉.

Corollary 5.11. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then 〈XL, E
∁
⊳ ◦E

∁
⊲〉

and 〈XL, E
∁
⊲ ◦E

∁
⊳〉 are minimal closure systems for themselves if and only if L is semidistributive.

6 Conclusion and future research

In this paper we characterised dual digraphs of finite meet-semidistributive, join-semidistributive

and semidistributive lattices. We combined Urquhart’s and Ploščica’s representations of finite

lattices in the following sense: the vertices of our dual digraphs were maximal disjoint filter-ideal

pairs of the lattice in the Urquhart style, but we mainly viewed the duals as TiRS digraphs using

the Ploščica binary relation E on the vertices. We introduced transitive vertices in our digraphs

and explored their role in the domination theory. In particular, we characterised the finite lattices

with the property that in their dual digraphs the transitive vertices form a dominating set resp. an

in-dominating set. Finally, we characterised finite meet-semidistributive and join-semidistributive

lattices via minimal closure systems on the set of vertices of their dual digraphs.

We wish to take note of two other settings in which dual representations of finite semidistributive

lattices have been developed. The older of these is that of Formal Concept Analysis, where a char-

acterisation of both finite join-semidistributive and meet-semidistributive lattices is available [12,

Section 6.3]. There is also a recent paper by Reading, Speyer and Thomas [19] where they give a

representation of finite semidistributive lattices via two-acyclic factorization systems. They define

a two-acyclic factorization system to be a 4-tuple 〈W,→,։, →֒〉 with a set W and three binary

relations →, →֒,։ on W . The relations ։ and →֒ are required to be partial orders. The repre-

sentation then comes from defining a factorization system on the set of join-irreducible elements

of a semidistributive lattice. The triple (X, →֒,։) is isomorphic to Urquhart’s dual of the lattice

L. We note that, in our representation, join- and meet-semidistributive lattices can be considered

separately, but in the setting of factorization systems this separation is not yet possible (see [19,

Remark 5.14]).
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Lastly, we wish to point to some promising directions for future research. These would build on the

representation of finite join- and meet-semidistributive lattices obtained in Section 3. The first of

these would be to attempt to study finite sublattices of free lattices via their dual digraphs. This

would require first finding a dual description of the well-known Whitman’s Condition. The second

direction would be the study of finite convex geometries (see [1, 5]) via their dual digraphs. Finite

convex geometries are closure systems that are often studied via their lattice of closed sets. These

lattices of closed sets are join-semidistributive and lower semimodular. Work is already under way

to find a dual characterisation of upper and lower semimodularity.
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