Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold

Shamsur Rahman (id

Department of Mathematics, Maulana
Azad National Urdu University
Polytechnic Satellite Campus Darbhanga
Bihar- 846002, India.
shamsur@rediffmail.com

Abstract

The present paper deals with a study of warped product submanifolds of quasi-Sasakian manifolds and warped product CR-submanifolds of quasi-Sasakian manifolds. We have shown that the warped product of the type $M=D_{\perp} \times{ }_{y} D_{T}$ does not exist, where D_{\perp} and D_{T} are invariant and antiinvariant submanifolds of a quasi-Sasakian manifold \bar{M}, respectively. Moreover we have obtained characterization results for CR-submanifolds to be locally CR-warped products.

RESUMEN

El presente artículo trata de un estudio de subvariedades producto alabeadas de variedades cuasi-Sasakianas y CRsubvariedades producto alabeadas de variedades cuasiSasakianas. Hemos mostrado que el producto alabeado de tipo $M=D_{\perp} \times{ }_{y} D_{T}$ no existe, donde D_{\perp} y D_{T} son subvariedades invariantes y anti-invariantes de una variedad cuasiSasakiana \bar{M}, respectivamente. Más aún, hemos obtenido resultados de caracterización para que CR-subvariedades sean localmente CR-productos alabeados.

Keywords and Phrases: Warped product, CR-submanifolds, quasi Sasakian manifold, canonical structure.
2020 AMS Mathematics Subject Classification: 53C25, 53C40.

1 Introduction

If $\left(D, g_{D}\right)$ and $\left(E, g_{E}\right)$ are two semi-Riemannian manifolds with metrics g_{D} and g_{E} respectively and y a positive differentiable function on D, then the warped product of D and E is the manifold $D \times{ }_{y} E=(D \times E, g)$, where $g=g_{D}+y^{2} g_{E}$. Further, let T be tangent to $M=D \times E$ at (p, q). Then we have

$$
\|T\|^{2}=\left\|d \pi_{1} T\right\|^{2}+y^{2}\left\|d \pi_{2} T\right\|^{2}
$$

where $\pi_{i}(i=1,2)$ are the canonical projections of $D \times E$ onto D and E.
A warped product manifold $D \times_{y} E$ is said to be trivial if the warping function y is constant. In a warped product manifold, we have

$$
\begin{equation*}
\nabla_{U} V=\nabla_{V} U=(U \ln y) V \tag{1.1}
\end{equation*}
$$

for any vector fields U tangent to D and V tangent to E [5].
The idea of a warped product manifold was introduced by Bishop and O'Neill [5] in 1969. Chen [2] has studied the geometry of warped product submanifolds in Kaehler manifolds and showed that the warped product submanifold of the type $D_{\perp} \times{ }_{y} D_{T}$ is trivial where D_{T} and D_{\perp} are ϕ-invariant and anti-invariant submanifolds of a Sasakian manifold, respectively. Many research articles appeared exploring the existence or nonexistence of warped product submanifolds in different spaces $[1,10,6]$. The idea of CR-submanifolds of a Kaehlerian manifold was introduced by A. Bejancu [9]. Later, A. Bejancu and N. Papaghiue [11], introduced and studied the notion of semi-invariant submanifolds of a Sasakian manifold. These submanifolds are closely related to CR-submanifolds in a Kaehlerian manifold. However the existence of the structure vector field implies some important changes. Later on, Binh and De [4] studied CR-warped product submanifolds of a quasi-Saskian manifold. The purpose of this paper is to study the notion of a warped product submanifold of quasi-Sasakian manifolds. In the second section we recall some results and formulae for later use. In the third section, we prove that the warped product in the form $M=D_{\perp} \times{ }_{y} D_{T}$ does not exist except for the trivial case, where D_{T} and D_{\perp} are invariant and anti-invariant submanifolds of a quasiSasakian manifold \bar{M}, respectively. Also, we obtain a characterization result of the warped product CR-submanifolds of the type $M=D_{\perp} \times{ }_{y} D_{T}$.

2 Preliminaries

If \bar{M} is a real $(2 n+1)$ dimensional differentiable manifold, endowed with an almost contact metric structure (f, ξ, η, g), then

$$
\begin{equation*}
f^{2} U=-U+\eta(U) \xi, \quad \eta(\xi)=1, \quad f(\xi)=0, \quad \eta(f U)=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\eta(U)=g(U, \xi), \quad g(f U, f V)=g(U, V)-\eta(U) \eta(V) \tag{2.2}
\end{equation*}
$$

for any vector fields U, V tangent to \bar{M}, where I is the identity on the tangent bundle $\Gamma \bar{M}$ of \bar{M}. Throughout the paper, all manifolds and maps are differentiable of class C^{∞}. We denote by $\digamma \bar{M}$ the algebra of the differentiable functions on \bar{M} and by $\Gamma(E)$ the $\digamma \bar{M}$ module of the sections of a vector bundle E over \bar{M}.

The Nijenhuis tensor field, denoted by N_{f}, with respect to the tensor field f, is given by

$$
N_{f}(U, V)=[f U, f V]+f^{2}[U, V]-f[f U, V]+f[U, f V],
$$

and the fundamental 2 -form Λ is given by

$$
\Lambda(U, V)=g(U, f V), \quad \forall U, V \in \Gamma(T \bar{M})
$$

The curvature tensor field of \bar{M}, denoted by \bar{R} with respect to the Levi-Civita connection $\bar{\nabla}$, is defined by

$$
\bar{R}(U, V) W=\bar{\nabla}_{U} \bar{\nabla}_{V} W-\bar{\nabla}_{V} \bar{\nabla}_{U} W-\bar{\nabla}_{[U, V]} W, \quad \forall U, V \in \Gamma(T \bar{M})
$$

Definition 2.1.

(a) An almost contact metric manifold $\bar{M}(f, \xi, \eta, g)$ is called normal if

$$
N_{f}(U, V)+2 d \eta(U, V) \xi=0, \quad \forall U, V \in \Gamma(T \bar{M}),
$$

or equivalently

$$
\left(\bar{\nabla}_{f U} f\right) V=f\left(\bar{\nabla}_{U} f\right) V-g\left(\bar{\nabla}_{U} \xi, V\right) \xi, \quad \forall U, V \in \Gamma(T \bar{M})
$$

(b) The normal almost contact metric manifold \bar{M} is called cosympletic if $d \Lambda=d \eta=0$.

If \bar{M} is an almost contact metric manifold, then \bar{M} is a quasi-Sasakian manifold if and only if ξ is a Killing vector field [7] and

$$
\begin{equation*}
\left(\bar{\nabla}_{U} f\right) V=g\left(\bar{\nabla}_{f U} \xi, V\right) \xi-\eta(V) \bar{\nabla}_{f U} \xi, \quad \forall U, V \in \Gamma(T \bar{M}) \tag{2.3}
\end{equation*}
$$

Next we define a tensor field F of type $(1,1)$ by

$$
\begin{equation*}
F U=-\bar{\nabla}_{U} \xi, \quad \forall U \in \Gamma(T \bar{M}) \tag{2.4}
\end{equation*}
$$

Lemma 2.1. For a quasi-Sasakian manifold \bar{M}, we have
(i) $\left(\bar{\nabla}_{\xi} f\right) U=0, \quad \forall U \in \Gamma(T \bar{M})$,
(iv) $g(F U, V)+g(U, F V)=0$,
(ii) $f \circ F=F \circ f$,
(v) $\eta \circ F=0$,
(iii) $F \xi=0$,
(vi) $\left(\bar{\nabla}_{U} F\right) V=\bar{R}(\xi, U) V$,
for all $U, V \in \Gamma(T \bar{M})$.

The tensor field f defines on \bar{M} an f-structure in sense of K . Yano [12], that is

$$
f^{3}+f=0
$$

If M is a submanifold of a quasi-Sasakian manifold \bar{M} and denote by N the unit vector field normal to M. Denote by the same symbol g the induced tensor metric on M, by ∇ the induced LeviCivita connection on M and by $T M^{\perp}$ the normal vector bundle to M. The Gauss and Weingarten methods are

$$
\begin{gather*}
\bar{\nabla}_{U} V=\nabla_{U} V+\sigma(U, V) \tag{2.5}\\
\bar{\nabla}_{U} \lambda=-A_{\lambda} U+\nabla_{U}^{\perp} \lambda, \quad \forall U, V \in \Gamma(T M) \tag{2.6}
\end{gather*}
$$

where ∇^{\perp} is the induced connection in the normal bundle, σ is the second fundamental form of M and A_{λ} is the Weingarten endomorphism associated with λ. The second fundamental form σ and the shape operator A are related by

$$
\begin{equation*}
g\left(A_{\lambda} U, V\right)=g(h(U, V), \lambda) \tag{2.7}
\end{equation*}
$$

where g denotes the metric on \bar{M} as well as the induced metric on $M[7]$.
For any $U \in T M$, we write

$$
\begin{equation*}
f U=r U+s U \tag{2.8}
\end{equation*}
$$

where $r U$ is the tangential component of $f U$ and $s U$ is the normal component of $f U$, respectively. Similarly, for any vector field λ normal to M, we put

$$
\begin{equation*}
f \lambda=J \lambda+K \lambda \tag{2.9}
\end{equation*}
$$

where $J \lambda$ and $K \lambda$ are the tangential and normal components of $f \lambda$, respectively.
For all $U, V \in \Gamma(T M)$ the covariant derivatives of the tensor fields r and s are defined as

$$
\begin{align*}
& \left(\bar{\nabla}_{U} r\right) V=\nabla_{U} r V-r \nabla_{U} V \tag{2.10}\\
& \left(\bar{\nabla}_{U} s\right) V=\nabla_{U}^{\perp} s V-s \nabla_{U} V \tag{2.11}
\end{align*}
$$

3 Warped Product Submanifolds

If D_{T} and D_{\perp} are invariant and anti-invariant submanifolds of a quasi-Sasakian manifold \bar{M}, then their warped product CR-submanifolds are one of the following forms:
(i) $M=D_{\perp} \times{ }_{y} D_{T}$,
(ii) $M=D_{T} \times{ }_{y} D_{\perp}$.

For case (i), when $\xi \in T D_{T}$, we have the following theorem.

Theorem 3.1. There do not exist warped product $C R$-submanifolds $M=D_{\perp} \times_{y} D_{T}$ in a quasiSasakian manifold \bar{M} such that D_{T} is an invariant submanifold, D_{\perp} is an anti-invariant submanifold of \bar{M} and ξ is tangent to M.

Proof. If $M=D_{\perp} \times{ }_{y} D_{T}$ is a warped product CR-submanifold of a quasi-Sasakian manifold \bar{M} such that D_{T} is an invariant submanifold tangent to ξ and D_{\perp} is an anti-invariant submanifold of \bar{M}, then from (1.1), we have

$$
\nabla_{U} W=\nabla_{W} U=(W \ln y) U
$$

for any vector fields W and U tangent to D_{\perp} and D_{T}, respectively.
In particular,

$$
\begin{equation*}
\nabla_{W} \xi=(W \ln y) \xi \tag{3.1}
\end{equation*}
$$

using (2.4), (2.5) and ξ is tangent to D_{\perp}, we have

$$
\begin{equation*}
\nabla_{W} \xi=-F W, \quad h(W, \xi)=0 \tag{3.2}
\end{equation*}
$$

It follows from (3.1) and (3.2) that $W \ln y=0$, for all $W \in T D_{\perp}, i . e ., y$ is constant for all $W \in T D_{\perp}$.

Now, the other case, when ξ tangent to D_{\perp} is dealt in the following two results.
Lemma 3.1. Let $M=D_{\perp} \times{ }_{y} D_{T}$ be a warped product $C R$-submanifold of a quasi-Sasakian manifold such that ξ is tangent to D_{\perp}, where D_{\perp} and D_{T} are any Riemannian submanifolds of \bar{M}. Then
(i) $\xi \ln y=-F$,
(ii) $g(\sigma(U, f U), s W)=-\{\eta(W) F+(W \ln y)\}\|U\|^{2}$,
for any $U \in T D_{T}$ and $W \in T D_{\perp}$.

Proof. Let $\xi \in T D_{\perp}$ then for any $U \in T D_{T}$, we have

$$
\begin{equation*}
\nabla_{U} \xi=(\xi \ln y) U \tag{3.3}
\end{equation*}
$$

From (2.4) and the fact that ξ is tangent to D_{\perp}, we have $\bar{\nabla}_{U} \xi=-F U$. With the help of (2.5), we have

$$
\begin{equation*}
\nabla_{W} \xi=-F W, \quad h(W, \xi)=0 \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4), we have $\xi \ln y=-F$. Now, for any $U \in T D_{T}$ and $W \in T D_{\perp}$, we have $\bar{\nabla}_{U} f W=\left(\bar{\nabla}_{U} f\right) W+f\left(\bar{\nabla}_{U} W\right)$. Using (2.3), (2.6), (2.8), (2.9) and by the orthogonality of the two distributions, we derive

$$
-\eta(W) \bar{\nabla}_{f U} \xi=-A_{s W} U+\nabla_{U}^{\perp} s W-r \nabla_{U} W-s \nabla_{U} W-J h(U, W)-K h(U, W)
$$

Equating the tangential components, we get

$$
-\eta(W) F f U=A_{s W} U+r \nabla_{U} W+J h(U, W)
$$

Taking the product with $f U$ and using (2.2) and (2.3), we derive

$$
\begin{aligned}
-\eta(W) F g(f U, f U) & =g\left(A_{s W} U, f U\right)+(W \ln y) g(r U, f U)+g(J h(U, W), f U) \\
& =g(h(f U, f U), s W)+(W \ln y) g(f U, f U)+g(f h(U, W), f U)
\end{aligned}
$$

Using (2.2), we obtain

$$
\begin{equation*}
g(\sigma(U, f U), s W)=-\{\eta(W) F+(W \ln y)\}\|U\|^{2} \tag{3.5}
\end{equation*}
$$

Theorem 3.2. If $M=D_{\perp} \times{ }_{y} D_{T}$ is a warped product CR-submanifold of a quasi-Sasakian manifold \bar{M} such that ξ is tangent to D_{\perp} and if $\sigma(U, f U) \in \mu$ the invariant normal subbundle of M, then $W \ln y=-\eta(W) F$, for all $U \in T D_{T}$ and $Z \in T N_{\perp}$.

Proof. The affirmation follows from formula (3.5) by means of the known truth.

The warped product $M=D_{T} \times{ }_{y} D_{\perp}$, we have the following theorem.
Theorem 3.3. There do not exist warped product $C R$-submanifolds $M=D_{T} \times_{y} D_{\perp}$ in a quasiSasakian manifold \bar{M} such that ξ is tangent to D_{\perp}.

Proof. If $\xi \in T N_{\perp}$, then from (1.1), we have

$$
\begin{equation*}
\nabla_{U} \xi=(U \ln y) \xi \tag{3.6}
\end{equation*}
$$

for any $U \in T D_{T}$. While using (2.4), (2.5) and $\xi \in T D_{\perp}$, we have

$$
\begin{equation*}
\nabla_{U} \xi=-F U, \quad h(U, \xi)=0 \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), it follows that $U \ln y=0$, for all $U \in T D_{T}$, and this means that y is constant on N_{T}.

The remaining case, when $\xi \in T D_{T}$ is dealt with the following two theorems.
Theorem 3.4. Let $M=D_{T} \times{ }_{y} D_{\perp}$ be a warped product CR-submanifold of a quasi-Sasakian manifold \bar{M} such that ξ is tangent to D_{T}. Then $\left(\bar{\nabla}_{U} F\right) W \in \mu$, for each $U \in T D_{T}$ and $W \in T D_{\perp}$, where μ is an invariant normal subbundle of TM.

Proof. For any $U \in T D_{T}$ and $W \in T D_{\perp}$, we have

$$
g\left(f \bar{\nabla}_{U} W, f W\right)=g\left(\bar{\nabla}_{U} W, W\right)=g\left(\nabla_{U} W, W\right)
$$

Using (1.1), we get

$$
\begin{equation*}
g\left(f \bar{\nabla}_{U} W, f W\right)=(U \ln y)\|W\|^{2} \tag{3.8}
\end{equation*}
$$

On the other hand, we have

$$
\bar{\nabla}_{U} f W=\left(\bar{\nabla}_{U} f\right) W+f\left(\bar{\nabla}_{U} W\right)
$$

for any $U \in T D_{T}$ and $W \in T D_{\perp}$. Using (2.3) and the fact that ξ is tangent to D_{T}, the left-hand side of the above equation is identically zero, that is

$$
\begin{equation*}
\bar{\nabla}_{U} f W=f\left(\bar{\nabla}_{U} W\right) \tag{3.9}
\end{equation*}
$$

Taking the product with $f W$ in (3.9) and making use of formula (2.6), we obtain

$$
g\left(f \bar{\nabla}_{U} W, f W\right)=g\left(\nabla_{U}^{\perp} s W, s W\right)
$$

Then from (2.10), we derive $g\left(f \bar{\nabla}_{U} W, f W\right)=g\left(\left(\bar{\nabla}_{U} s\right) W, s W\right)+g\left(s \nabla_{U} W, s W\right)$.
From (1.1) we have

$$
\begin{aligned}
g\left(f \bar{\nabla}_{U} W, f W\right) & =(U \ln y) g(s W, s W)+g\left(\left(\bar{\nabla}_{U} s\right) W, s W\right) \\
& =(U \ln y) g(f W, f W)+g\left(\left(\bar{\nabla}_{U} s\right) W, s W\right)
\end{aligned}
$$

Therefore by (2.2), we obtain

$$
\begin{equation*}
g\left(f \bar{\nabla}_{U} W, f W\right)=(U \ln y)\|W\|^{2}+g\left(\left(\bar{\nabla}_{U} s\right) W, s W\right) \tag{3.10}
\end{equation*}
$$

Thus (3.8) and (3.9) imply

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{U} s\right) W, s W\right)=0 \tag{3.11}
\end{equation*}
$$

Also, as D_{T} is an invariant submanifold then $f Q \in T D_{T}$, for any $Q \in T D_{T}$, thus on using (2.11) and the fact that the product of tangential components with normal is zero, we obtain

$$
\begin{equation*}
g\left(\left(\bar{\nabla}_{U} s\right) W, f Q\right)=0 \tag{3.12}
\end{equation*}
$$

Hence from (3.11) and (3.12), it follows that $\left(\bar{\nabla}_{U} s\right) W \in \mu$, for all $U \in T D_{T}$ and $W \in T D_{\perp}$.

Theorem 3.5. A CR-submanifold M of a quasi-Sasakian manifold (\bar{M}, f, ξ, g) is a CR-warped product if and only if the shape operator of M satisfies

$$
\begin{equation*}
A_{f W} U=(f U \mu) W, \quad U \in B \oplus\langle\xi\rangle, \quad W \in B^{\perp} \tag{3.13}
\end{equation*}
$$

for some function μ on M, fulfilling $C(\mu)=0$, for each $C \in B^{\perp}$.

Proof. If $M=D_{T} \times{ }_{y} D_{\perp}$ is a CR-warped product submanifold of a quasi-Sasakian manifold \bar{M}, with $\xi \in T D_{T}$, then for any $U \in T D_{T}$ and $W, Q \in T D_{\perp}$, we have

$$
\begin{aligned}
g\left(A_{f W} U, Q\right) & =g(\sigma(U, Q), f W)=g\left(\bar{\nabla}_{Q} U, f W\right)=g\left(f \bar{\nabla}_{Q} U, W\right) \\
& =g\left(\bar{\nabla}_{Q} f U, W\right)-g\left(\left(\bar{\nabla}_{Q} f\right) U, W\right)
\end{aligned}
$$

By equations (1.1), (2.3) and the fact that ξ is tangent to D_{T}, we derive

$$
\begin{equation*}
g\left(A_{f W} U, Q\right)=(f U \ln y) g(W, Q) \tag{3.14}
\end{equation*}
$$

On the other hand, we have $g(\sigma(U, V), s W)=g\left(f \bar{\nabla}_{U} V, W\right)=-g\left(f V, \bar{\nabla}_{U} W\right)$, for each $U, V \in T D_{T}$ and $W \in T N_{\perp}$. Using (1.1), we obtain $g(\sigma(U, V), s W)=0$. Taking into account this fact in (3.14), we obtain (3.13).

Conversely, suppose that M is a proper CR-submanifold of a quasi-Sasakian manifold M satisfying (3.13), then for any $U, V \in B \oplus\langle\xi\rangle$,

$$
g(\sigma(U, V), f W)=g\left(A_{f W} U, V\right)=0
$$

This implies that $g\left(\bar{\nabla}_{U} f V, W\right)=0$, that is, $g\left(\nabla_{U} V, W\right)=0$. This means $B \oplus\langle\xi\rangle$ is integrable and its leaves are totally geodesic in M. Now, for any $W, Q \in B^{\perp}$ and $U \in B \oplus\langle\xi\rangle$, we have

$$
g\left(\nabla_{W} Q, f U\right)=g\left(\bar{\nabla}_{W} Q, f U\right)=g\left(f \bar{\nabla}_{W} Q, U\right)=g\left(\bar{\nabla}_{W} f Q, U\right)-g\left(\left(f \bar{\nabla}_{W} f\right) Q, U\right)
$$

By equations (2.3) and (2.6), it follows that $g\left(\nabla_{W} Q, f U\right)=-g\left(A_{f Q} W, U\right)$. Thus from (2.6), we arrive at $g\left(\nabla_{W} Q, f U\right)=-g(\sigma(W, U), f Q)$. Again using (2.7) and (3.13), we obtain

$$
\begin{equation*}
g\left(\nabla_{W} Q, f U\right)=-g\left(A_{f Q} U, W\right)=-(f U \mu) g(W, Q) \tag{3.15}
\end{equation*}
$$

If N_{\perp} is a leaf of B^{\perp} and σ^{\perp} is the second fundamental form of the immersion of D_{\perp} into M, then for any $W, Q \in B^{\perp}$, we have

$$
\begin{equation*}
g\left(\sigma^{\perp}(W, Q), f U\right)=g\left(\nabla_{W} Q, f U\right) \tag{3.16}
\end{equation*}
$$

Hence, from (3.15) and (3.16), we find that

$$
g\left(\sigma^{\perp}(W, Q), f U\right)=-(f U \mu) g(W, Q)
$$

This means that the integral manifold D_{\perp} of B^{\perp} is totally umbilical in M. Since $C(\mu)=0$ for each $C \in B^{\perp}$, which implies that the integral manifold of B^{\perp} is an extrinsic sphere in M, this means that the curvature vector field is nonzero and parallel along N_{\perp}. Hence by virtue of a result in [7], M is locally a warped product $D_{T} \times{ }_{y} D_{\perp}$, where D_{T} and N_{\perp} denote the integral manifolds of the distributions $B \oplus\langle\xi\rangle$ and B^{\perp}, respectively and y is the warping function.

Acknowledgements

The authors grateful the referee(s) for the corrections and comments in the revision of this paper.

References

[1] K. Arslan, R. Ezentas, I. Mihai and C. Murathan, "Contact CR-warped product submanifolds in Kenmotsu space forms", J. Korean Math. Soc., vol. 42, no. 5, pp. 1101-1110, 2005.
[2] A. Bejancu, "CR-submanifold of a Kaehler manifold. I", Proc. Amer. Math. Soc., vol. 69, no. 1, 135-142, 1978.
[3] A. Bejancu and N. Papaghiuc, "Semi-invariant submanifolds of a Sasakian manifold.", An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.), vol 27, no. 1, pp. 163-170, 1981.
[4] T.-Q. Binh and A. De, "On contact CR-warped product submanifolds of a quasi-Sasakian manifold", Publ. Math. Debrecen, vol. 84, no. 1-2, pp. 123-137, 2014.
[5] R. L. Bishop and B. O'Neill, "Manifolds of negative curvature", Trans. Amer. Math. Soc., vol. 145, pp. 1-49, 1969.
[6] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Berlin-New York: Springer-Verlag, 1976.
[7] C. Calin, "Contributions to geometry of CR-submanifold", PhD Thesis, University of Iași, Iași, Romania, 1998.
[8] B.-Y. Chen, "Geometry of warped product CR-submanifolds in Kaehler manifolds", Monatsh. Math., vol. 133, no. 3, pp. 177-195, 2001.
[9] I. Hasegawa and I. Mihai, "Contact CR-warped product submanifolds in Sasakian manifolds", Geom. Dedicata, vol. 102, pp. 143-150, 2003.
[10] S. Hiepko, "Eine innere Kennzeichnung der verzerrten Produkte", Math. Ann., vol. 241, no. 3, pp. 209-215, 1979.
[11] M.-I. Munteanu, "A note on doubly warped product contact CR-submanifolds in transSasakian manifolds", Acta Math. Hungar., vol 116, no. 1-2, pp. 121-126, 2007.
[12] K. Yano, "On structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$ ", Tensor (N.S.), vol. 14, pp. 99-109, 1963.
[13] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, vol. 3, Singapore: World Scientific Publishing Co., 1984.

