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ABSTRACT

The present paper deals with a study of warped product

submanifolds of quasi-Sasakian manifolds and warped prod-

uct CR-submanifolds of quasi-Sasakian manifolds. We have

shown that the warped product of the type M = D⊥×yDT

does not exist, where D⊥ and DT are invariant and anti-

invariant submanifolds of a quasi-Sasakian manifold M̄ , re-

spectively. Moreover we have obtained characterization re-

sults for CR-submanifolds to be locally CR-warped products.

RESUMEN

El presente art́ıculo trata de un estudio de subvariedades

producto alabeadas de variedades cuasi-Sasakianas y CR-

subvariedades producto alabeadas de variedades cuasi-

Sasakianas. Hemos mostrado que el producto alabeado de

tipo M = D⊥×yDT no existe, donde D⊥ y DT son subva-

riedades invariantes y anti-invariantes de una variedad cuasi-

Sasakiana M̄ , respectivamente. Más aún, hemos obtenido re-

sultados de caracterización para que CR-subvariedades sean

localmente CR-productos alabeados.
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1 Introduction

If (D, gD) and (E, gE) are two semi-Riemannian manifolds with metrics gD and gE respectively

and y a positive differentiable function on D, then the warped product of D and E is the manifold

D×yE = (D×E, g), where g = gD+y2gE . Further, let T be tangent to M = D×E at (p, q). Then

we have

‖T ‖2 = ‖dπ1T ‖
2 + y2‖dπ2T ‖

2

where πi(i = 1, 2) are the canonical projections of D×E onto D and E.

A warped product manifold D×yE is said to be trivial if the warping function y is constant. In a

warped product manifold, we have

∇UV = ∇V U = (U ln y)V (1.1)

for any vector fields U tangent to D and V tangent to E [5].

The idea of a warped product manifold was introduced by Bishop and O’Neill [5] in 1969. Chen [2]

has studied the geometry of warped product submanifolds in Kaehler manifolds and showed that the

warped product submanifold of the type D⊥×yDT is trivial where DT and D⊥ are φ-invariant and

anti-invariant submanifolds of a Sasakian manifold, respectively. Many research articles appeared

exploring the existence or nonexistence of warped product submanifolds in different spaces [1, 10, 6].

The idea of CR-submanifolds of a Kaehlerian manifold was introduced by A. Bejancu [9]. Later, A.

Bejancu and N. Papaghiue [11], introduced and studied the notion of semi-invariant submanifolds of

a Sasakian manifold. These submanifolds are closely related to CR-submanifolds in a Kaehlerian

manifold. However the existence of the structure vector field implies some important changes.

Later on, Binh and De [4] studied CR-warped product submanifolds of a quasi-Saskian manifold.

The purpose of this paper is to study the notion of a warped product submanifold of quasi-Sasakian

manifolds. In the second section we recall some results and formulae for later use. In the third

section, we prove that the warped product in the form M = D⊥×yDT does not exist except

for the trivial case, where DT and D⊥ are invariant and anti-invariant submanifolds of a quasi-

Sasakian manifold M̄ , respectively. Also, we obtain a characterization result of the warped product

CR-submanifolds of the type M = D⊥×yDT .

2 Preliminaries

If M̄ is a real (2n+1) dimensional differentiable manifold, endowed with an almost contact metric

structure (f, ξ, η, g), then

f2U = −U + η(U)ξ, η(ξ) = 1, f(ξ) = 0, η(fU) = 0, (2.1)
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η(U) = g(U, ξ), g(fU, fV ) = g(U, V )− η(U)η(V ), (2.2)

for any vector fields U, V tangent to M̄ , where I is the identity on the tangent bundle ΓM̄ of M̄ .

Throughout the paper, all manifolds and maps are differentiable of class C∞. We denote by ̥M̄

the algebra of the differentiable functions on M̄ and by Γ(E) the ̥M̄ module of the sections of a

vector bundle E over M̄ .

The Nijenhuis tensor field, denoted by Nf , with respect to the tensor field f , is given by

Nf(U, V ) = [fU, fV ] + f2[U, V ]− f [fU, V ] + f [U, fV ],

and the fundamental 2-form Λ is given by

Λ(U, V ) = g(U, fV ), ∀U, V ∈ Γ(TM̄).

The curvature tensor field of M̄ , denoted by R̄ with respect to the Levi-Civita connection ∇̄, is

defined by

R̄(U, V )W = ∇̄U ∇̄V W − ∇̄V ∇̄UW − ∇̄[U,V ]W, ∀U, V ∈ Γ(TM̄),

Definition 2.1.

(a) An almost contact metric manifold M̄(f, ξ, η, g) is called normal if

Nf (U, V ) + 2dη(U, V )ξ = 0, ∀U, V ∈ Γ(TM̄),

or equivalently

(∇̄fUf)V = f(∇̄Uf)V − g(∇̄Uξ, V )ξ, ∀U, V ∈ Γ(TM̄).

(b) The normal almost contact metric manifold M̄ is called cosympletic if dΛ = dη = 0.

If M̄ is an almost contact metric manifold, then M̄ is a quasi-Sasakian manifold if and only if ξ is

a Killing vector field [7] and

(∇̄Uf)V = g(∇̄fUξ, V )ξ − η(V )∇̄fUξ, ∀U, V ∈ Γ(TM̄). (2.3)

Next we define a tensor field F of type (1, 1) by

FU = −∇̄Uξ, ∀U ∈ Γ(TM̄). (2.4)
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Lemma 2.1. For a quasi-Sasakian manifold M̄ , we have

(i) (∇̄ξf)U = 0, ∀U ∈ Γ(TM̄),

(ii) f ◦ F = F ◦ f ,

(iii) Fξ = 0,

(iv) g(FU, V ) + g(U, FV ) = 0,

(v) η ◦ F = 0,

(vi) (∇̄UF )V = R̄(ξ, U)V ,

for all U, V ∈ Γ(TM̄).

The tensor field f defines on M̄ an f -structure in sense of K. Yano [12], that is

f3 + f = 0.

IfM is a submanifold of a quasi-Sasakian manifold M̄ and denote by N the unit vector field normal

to M . Denote by the same symbol g the induced tensor metric on M , by ∇ the induced Levi-

Civita connection on M and by TM⊥ the normal vector bundle to M . The Gauss and Weingarten

methods are

∇̄UV = ∇UV + σ(U, V ), (2.5)

∇̄Uλ = −AλU +∇⊥
Uλ, ∀U, V ∈ Γ(TM), (2.6)

where ∇⊥ is the induced connection in the normal bundle, σ is the second fundamental form of

M and Aλ is the Weingarten endomorphism associated with λ. The second fundamental form σ

and the shape operator A are related by

g(AλU, V ) = g(h(U, V ), λ), (2.7)

where g denotes the metric on M̄ as well as the induced metric on M [7].

For any U ∈ TM , we write

fU = rU + sU, (2.8)

where rU is the tangential component of fU and sU is the normal component of fU , respectively.

Similarly, for any vector field λ normal to M , we put

fλ = Jλ+Kλ (2.9)

where Jλ and Kλ are the tangential and normal components of fλ, respectively.

For all U, V ∈ Γ(TM) the covariant derivatives of the tensor fields r and s are defined as

(∇̄Ur)V = ∇UrV − r∇UV, (2.10)

(∇̄Us)V = ∇⊥
UsV − s∇UV. (2.11)
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3 Warped Product Submanifolds

If DT and D⊥ are invariant and anti-invariant submanifolds of a quasi-Sasakian manifold M̄ , then

their warped product CR-submanifolds are one of the following forms:

(i) M = D⊥×yDT ,

(ii) M = DT×yD⊥.

For case (i), when ξ ∈ TDT , we have the following theorem.

Theorem 3.1. There do not exist warped product CR-submanifolds M = D⊥×yDT in a quasi-

Sasakian manifold M̄ such that DT is an invariant submanifold, D⊥ is an anti-invariant subman-

ifold of M̄ and ξ is tangent to M .

Proof. If M = D⊥×yDT is a warped product CR-submanifold of a quasi-Sasakian manifold M̄

such that DT is an invariant submanifold tangent to ξ and D⊥ is an anti-invariant submanifold of

M̄ , then from (1.1), we have

∇UW = ∇WU = (W ln y)U,

for any vector fields W and U tangent to D⊥ and DT , respectively.

In particular,

∇W ξ = (W ln y)ξ, (3.1)

using (2.4), (2.5) and ξ is tangent to D⊥, we have

∇W ξ = −FW, h(W, ξ) = 0. (3.2)

It follows from (3.1) and (3.2) that W ln y = 0, for all W ∈ TD⊥, i. e., y is constant for all

W ∈ TD⊥.

Now, the other case, when ξ tangent to D⊥ is dealt in the following two results.

Lemma 3.1. Let M = D⊥×yDT be a warped product CR-submanifold of a quasi-Sasakian man-

ifold such that ξ is tangent to D⊥, where D⊥ and DT are any Riemannian submanifolds of M̄ .

Then

(i) ξ ln y = −F ,

(ii) g(σ(U, fU), sW ) = −{η(W )F + (W ln y)}‖U‖2,

for any U ∈ TDT and W ∈ TD⊥.
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Proof. Let ξ ∈ TD⊥ then for any U ∈ TDT , we have

∇Uξ = (ξ ln y)U, (3.3)

From (2.4) and the fact that ξ is tangent to D⊥, we have ∇̄Uξ = −FU . With the help of (2.5),

we have

∇W ξ = −FW, h(W, ξ) = 0. (3.4)

From (3.3) and (3.4), we have ξ ln y = −F . Now, for any U ∈ TDT and W ∈ TD⊥, we have

∇̄UfW = (∇̄Uf)W + f(∇̄UW ). Using (2.3), (2.6), (2.8), (2.9) and by the orthogonality of the two

distributions, we derive

−η(W )∇̄fUξ = −AsWU +∇⊥
UsW − r∇UW − s∇UW − Jh(U,W )−Kh(U,W ).

Equating the tangential components, we get

−η(W )FfU = AsWU + r∇UW + Jh(U,W ).

Taking the product with fU and using (2.2) and (2.3), we derive

−η(W )Fg(fU, fU) = g(AsWU, fU) + (W ln y)g(rU, fU) + g(Jh(U,W ), fU)

= g(h(fU, fU), sW ) + (W ln y)g(fU, fU) + g(fh(U,W ), fU).

Using (2.2), we obtain

g(σ(U, fU), sW ) = −{η(W )F + (W ln y)}‖U‖2. (3.5)

Theorem 3.2. If M = D⊥×yDT is a warped product CR-submanifold of a quasi-Sasakian man-

ifold M̄ such that ξ is tangent to D⊥ and if σ(U, fU) ∈ µ the invariant normal subbundle of M ,

then W ln y = −η(W )F , for all U ∈ TDT and Z ∈ TN⊥.

Proof. The affirmation follows from formula (3.5) by means of the known truth.

The warped product M = DT×yD⊥, we have the following theorem.

Theorem 3.3. There do not exist warped product CR-submanifolds M = DT×yD⊥ in a quasi-

Sasakian manifold M̄ such that ξ is tangent to D⊥.

Proof. If ξ ∈ TN⊥, then from (1.1), we have

∇Uξ = (U ln y)ξ, (3.6)

for any U ∈ TDT . While using (2.4), (2.5) and ξ ∈ TD⊥, we have

∇Uξ = −FU, h(U, ξ) = 0. (3.7)

From (3.6) and (3.7), it follows that U ln y = 0, for all U ∈ TDT , and this means that y is constant

on NT .
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The remaining case, when ξ ∈ TDT is dealt with the following two theorems.

Theorem 3.4. Let M = DT×yD⊥ be a warped product CR-submanifold of a quasi-Sasakian

manifold M̄ such that ξ is tangent to DT . Then (∇̄UF )W ∈ µ, for each U ∈ TDT and W ∈ TD⊥,

where µ is an invariant normal subbundle of TM .

Proof. For any U ∈ TDT and W ∈ TD⊥, we have

g(f∇̄UW, fW ) = g(∇̄UW,W ) = g(∇UW,W ).

Using (1.1), we get

g(f∇̄UW, fW ) = (U ln y)‖W‖2. (3.8)

On the other hand, we have

∇̄UfW = (∇̄Uf)W + f(∇̄UW ),

for any U ∈ TDT and W ∈ TD⊥. Using (2.3) and the fact that ξ is tangent to DT , the left-hand

side of the above equation is identically zero, that is

∇̄UfW = f(∇̄UW ). (3.9)

Taking the product with fW in (3.9) and making use of formula (2.6), we obtain

g(f∇̄UW, fW ) = g(∇⊥
UsW, sW ).

Then from (2.10), we derive g(f∇̄UW, fW ) = g((∇̄Us)W, sW ) + g(s∇UW, sW ).

From (1.1) we have

g(f∇̄UW, fW ) = (U ln y)g(sW, sW ) + g((∇̄Us)W, sW )

= (U ln y)g(fW, fW ) + g((∇̄Us)W, sW ).

Therefore by (2.2), we obtain

g(f∇̄UW, fW ) = (U ln y)‖W‖2 + g((∇̄Us)W, sW ). (3.10)

Thus (3.8) and (3.9) imply

g((∇̄Us)W, sW ) = 0. (3.11)

Also, as DT is an invariant submanifold then fQ ∈ TDT , for any Q ∈ TDT , thus on using (2.11)

and the fact that the product of tangential components with normal is zero, we obtain

g((∇̄Us)W, fQ) = 0. (3.12)

Hence from (3.11) and (3.12), it follows that (∇̄Us)W ∈ µ, for all U ∈ TDT and W ∈ TD⊥.
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Theorem 3.5. A CR-submanifold M of a quasi-Sasakian manifold (M̄, f, ξ, g) is a CR-warped

product if and only if the shape operator of M satisfies

AfWU = (fUµ)W, U ∈ B ⊕ 〈ξ〉, W ∈ B⊥, (3.13)

for some function µ on M , fulfilling C(µ) = 0, for each C ∈ B⊥.

Proof. If M = DT×yD⊥ is a CR-warped product submanifold of a quasi-Sasakian manifold M̄ ,

with ξ ∈ TDT , then for any U ∈ TDT and W,Q ∈ TD⊥, we have

g(AfWU,Q) = g(σ(U,Q), fW ) = g(∇̄QU, fW ) = g(f∇̄QU,W )

= g(∇̄QfU,W )− g((∇̄Qf)U,W ).

By equations (1.1), (2.3) and the fact that ξ is tangent to DT , we derive

g(AfWU,Q) = (fU ln y)g(W,Q). (3.14)

On the other hand, we have g(σ(U, V ), sW ) = g(f∇̄UV,W ) = −g(fV, ∇̄UW ), for each U, V ∈ TDT

and W ∈ TN⊥. Using (1.1), we obtain g(σ(U, V ), sW ) = 0. Taking into account this fact in (3.14),

we obtain (3.13).

Conversely, suppose that M is a proper CR-submanifold of a quasi-Sasakian manifold M satisfying

(3.13), then for any U, V ∈ B ⊕ 〈ξ〉,

g(σ(U, V ), fW ) = g(AfWU, V ) = 0.

This implies that g(∇̄UfV,W ) = 0, that is, g(∇UV,W ) = 0. This means B⊕〈ξ〉 is integrable and

its leaves are totally geodesic in M . Now, for any W,Q ∈ B⊥ and U ∈ B ⊕ 〈ξ〉, we have

g(∇WQ, fU) = g(∇̄WQ, fU) = g(f∇̄WQ,U) = g(∇̄W fQ,U)− g((f∇̄W f)Q,U).

By equations (2.3) and (2.6), it follows that g(∇WQ, fU) = −g(AfQW,U). Thus from (2.6), we

arrive at g(∇WQ, fU) = −g(σ(W,U), fQ). Again using (2.7) and (3.13), we obtain

g(∇WQ, fU) = −g(AfQU,W ) = −(fUµ)g(W,Q). (3.15)

If N⊥ is a leaf of B⊥ and σ⊥ is the second fundamental form of the immersion of D⊥ into M , then

for any W,Q ∈ B⊥, we have

g(σ⊥(W,Q), fU) = g(∇WQ, fU). (3.16)

Hence, from (3.15) and (3.16), we find that

g(σ⊥(W,Q), fU) = −(fUµ)g(W,Q).
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This means that the integral manifold D⊥ of B⊥ is totally umbilical in M . Since C(µ) = 0 for

each C ∈ B⊥, which implies that the integral manifold of B⊥ is an extrinsic sphere in M , this

means that the curvature vector field is nonzero and parallel along N⊥. Hence by virtue of a result

in [7], M is locally a warped product DT×yD⊥, where DT and N⊥ denote the integral manifolds

of the distributions B ⊕ 〈ξ〉 and B⊥, respectively and y is the warping function.
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