

CUBO, A Mathematical Journal Vol. 24, no. 01, pp. 95–103, April 2022 DOI: 10.4067/S0719-06462022000100095

A characterization of $\mathbb{F}_q\text{-linear subsets of affine spaces }\mathbb{F}_{q^2}^n$

Edoardo Ballico¹ 问

¹Department of Mathematics, University of Trento, 38123 Povo (TN), Italy. edoardo.ballico@unitn.it

ABSTRACT

Let q be an odd prime power. We discuss possible definitions over \mathbb{F}_{q^2} (using the Hermitian form) of circles, unit segments and half-lines. If we use our unit segments to define the convex hulls of a set $S \subset \mathbb{F}_{q^2}^n$ for $q \notin \{3, 5, 9\}$ we just get the \mathbb{F}_q -affine span of S.

RESUMEN

Sea q una potencia de primo impar. Discutimos posibles definiciones sobre \mathbb{F}_{q^2} (usando la forma Hermitiana) de círculos, segmentos unitarios y semi-líneas. Si usamos nuestros segmentos unitarios para definir las cápsulas convexas de un conjunto $S \subset \mathbb{F}_{q^2}^n$ para $q \notin \{3, 5, 9\}$ simplemente obtenemos el \mathbb{F}_q -generado afín de S.

Keywords and Phrases: Finite field, Hermitian form.

2020 AMS Mathematics Subject Classification: 15A33; 15A60; 12E20.

1 Introduction

Fix a prime p and a p-power q. There is a unique (up to isomorphism) field \mathbb{F}_q with $\#\mathbb{F}_q = q$. The field \mathbb{F}_{q^2} is a degree 2 Galois extension of \mathbb{F}_q and the Frobenius map $t \mapsto t^q$ is a generator of the Galois group of this extension. This map allows the definition of the Hermitian product $\langle , \rangle : \mathbb{F}_{q^2}^n \times \mathbb{F}_{q^2}^n \longrightarrow \mathbb{F}_{q^2}$ in the following way: if $u = (u_1, \ldots, u_n) \in \mathbb{F}_{q^2}^n$ and $v = (v_1, \ldots, v_n) \in \mathbb{F}_{q^2}^n$, then set $\langle u, v \rangle = \sum_{i=1}^n u_i^q v_i$. The degree q + 1 hypersurface $\{\langle (x_1, \ldots, x_n), (x_1, \ldots, x_n) \rangle = 0\}$ is the famous full rank Hermitian hypersurface ([11, Ch. 23]).

In the quantum world the classical Hermitian product over the complex numbers is fundamental. The Hermitian product \langle , \rangle is one of the tools used to pass from a classical code over a finite field to a quantum code ([17, pp. 430–431], [14, Introduction], [20, §2.2]).

The Hermitian product was used to define the numerical range of a matrix over a finite field ([1, 2, 3, 4, 8]) by analogy with the definition of numerical range for complex matrices ([9, 12, 13, 21]). Over \mathbb{C} a different, but equivalent, definition of numerical range is obtained as the intersection of certain disks ([5, §15, Lemma 1]). It is an important definition, because it was used to extend the use of numerical ranges to rectangular matrices ([7]) and to tensors ([16]). This different definition immediately gives the convexity of the numerical range of complex matrices. Motivated by that definition we look at possible definitions of the unit disk of \mathbb{F}_{q^2} . It should be a union of circles with center at 0 and with squared-radius in the unit interval $[0, 1] \subset \mathbb{F}_q$.

For any $c \in \mathbb{F}_q$ and any $a \in \mathbb{F}_{q^2}$ set

$$C(0,c) := \{ z \in \mathbb{F}_{q^2} \mid z^{q+1} = c \}, \quad C(a,c) := a + C(0,c).$$

We say that C(a, c) is the circle of \mathbb{F}_{q^2} with center a and squared-radius c. Note that $C(a, 0) = \{a\}$ and #C(a, c) = q + 1 for all $c \in \mathbb{F}_q \setminus \{0\}$.

Circles occur in the description of the numerical range of many 2×2 matrices over \mathbb{F}_{q^2} ([8, Lemmas 3.4 and 3.5]). Other subsets of \mathbb{F}_{q^2} (seen as a 2-dimensional vector space of \mathbb{F}_q) appear in [6] and are called ellipses, hyperbolas and parabolas, because they are affine conics whose projective closure have 0, 2 or 1 points in the line at infinity.

All these constructions are inside \mathbb{F}_{q^2} seen as a plane over \mathbb{F}_q . Restricting to planes we get the following definition for $\mathbb{F}_{q^2}^n$.

Definition 1.1. A set $E \subset \mathbb{F}_{q^2}^n$ is said to be a circle with center $0 \in \mathbb{F}_{q^2}^n$ and squared-radius c if there is an \mathbb{F}_q -linear embedding $f : \mathbb{F}_{q^2} \longrightarrow \mathbb{F}_{q^2}^n$ such that E = f(C(0,c)). A set $E \subset \mathbb{F}_{q^2}^n$ is said to be a circle with center $a \in \mathbb{F}_{q^2}^n$ and squared-radius c if E - a is a circle with center 0 and squared-radius c. A set $S \subseteq \mathbb{F}_{q^2}^n$, $S \neq \emptyset$, is said to be circular with respect to $a \in \mathbb{F}_{q^2}^n$ if it contains all circles with center a which meet S.

In the classical theory of numerical range over \mathbb{C} the numerical range of a square matrix which is the orthogonal direct sum of the square matrices A and B is obtained taking the union of all segments $[a, b] \subset \mathbb{C}$ with a in the numerical range of A and b in the numerical range of B ([21, p. 3]). For the numerical range of matrices over \mathbb{F}_{q^2} instead of segments [a, b] one has to use the affine \mathbb{F}_q -span of $\{a, b\}$ ([1, Lemma 1], [8, Proposition 3.1]). We wonder if in other linear algebra constructions something smaller than \mathbb{F}_q -linear span occurs. A key statement for square matrices over \mathbb{C} (due to Toeplitz and Hausdorff) is that their numerical range is convex ([9, Th. 1.1-2], [21, §3]). Convexity is a property over \mathbb{R} and to define it one only needs the unit interval $[0, 1] \subset \mathbb{R}$. Obviously $[0, 1] = [0, +\infty) \cap (-\infty, 1]$ and $(-\infty, 1] = 1 - [0, +\infty)$. As a substitute for the unit interval $[0, 1] \subset \mathbb{R}$ (resp. the half-line $[0, +\infty) \subset \mathbb{R}$) we propose the following sets I_q and I'_q (resp. E_q).

Definition 1.2. Assume q odd. Set $E_q := \{a^2\}_{a \in \mathbb{F}_q} \subset \mathbb{F}_q$, $I_q := E_q \cap (1 - E_q)$, $I''_q := E_q \cap (1 + xE_q)$ with $x \in \mathbb{F}_q \setminus E_q$, and $I'_q := I''_q \cup \{0\}$.

Note that $I'_q = \{0, 1\} \cup (E_q \cap (1 + (\mathbb{F}_q \setminus E_q)))$. In the first version of this note we only used I_q , but a referee suggested that it is more natural to consider I''_q . We use I_q and I'_q because $\{0, 1\} \subseteq I_q \cap I'_q$, while $0 \in I''_q$ if and only if -1 is not a square in \mathbb{F}_q , *i. e.* if and only if $q \equiv 3 \pmod{4}$ ([10, (ix) and (x) at p. 5], [22, p. 22]). In all statements for odd q we handle both I_q and I'_q .

In the case q even we propose to use $\{a(a+1)\}_{\{a\in\mathbb{F}_q\}}$ as E_q , *i.* e. $E_q := \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_2}^{-1}(0)$. Thus E_q is a subgroup of $(\mathbb{F}_q, +)$ of index 2. If q is even we do not have a useful definition of I_q .

Thus we restrict to odd prime powers, except for Propositions 1.8, 2.9 and Remarks 2.1 and 2.2. We see I_q or I'_q (resp. E_q) as the unit segment [0, 1] (resp. positive half-line starting at 0) of $\mathbb{F}_q \subset \mathbb{F}_{q^2}$. In most of the proofs we only use that $\{0, 1\} \subseteq I_q$ and that $\#I_q$ is large, say $\#I_q > (q-1)/4$.

Remark 1.3. Note that $\#E_q = (q+1)/2$ for all odd prime powers q.

We prove that $\#I_q = \#I'_q - 1 = (q+3)/4$ if $q \equiv 1 \mod 4$ and $\#I_q = \#I'_q = (q+5)/4$ if $q \equiv 3 \pmod{4}$ (Proposition 2.3).

We only use the case $A = E_q$, $A = I_q$ and $A = I'_q$ of the following definition.

Definition 1.4. Fix $S \subseteq \mathbb{F}_{q^2}^n$, $S \neq \emptyset$, and $A \subseteq \mathbb{F}_q$ such that $0 \in A$. We say that S is A-closed if $a + (b - a)A \subseteq S$ for all $a, b \in S$.

In the set-up of Definition 1.4 for any $a, b \in \mathbb{F}_{q^2}^n$ the A-segment $[a, b]_A$ of $\{a, b\}$ is the set a + (b-a)A. Note that $[a, a]_A = \{a\}$ and that if $b \neq a$ then $b \in [a, b]_A$ if and only if $1 \in A$. If S is a subset of a real vector space and A is the unit interval $[0, 1] \subset \mathbb{R}$, Definition 1.4 gives the usual notion of convexity, because a + (b-a)t = (1-t)a + tb for all $t \in [0, 1]$. **Remark 1.5.** Take any $A \subseteq \mathbb{F}_q$ such that $0 \in A$. Any translate by an element of $\mathbb{F}_{q^2}^n$ of an \mathbb{F}_q -linear subspace of $\mathbb{F}_{q^2}^n$ is A-closed. In particular \mathbb{F}_q^n and $\mathbb{F}_{q^2}^n$ are A-closed. The intersection of A-closed sets is A-closed, if non-empty. Hence we may define the A-closure of any $S \subseteq \mathbb{F}_{q^2}^n$, $S \neq \emptyset$, as the intersection of all A-closed subsets of $\mathbb{F}_{q^2}^n$ containing S.

In most cases I_q is not I_q -closed. We prove the following result.

Theorem 1.6. Assume q odd. Then:

- (a) If $q \notin \{3,5,9\}$ (resp. $q \neq 3$), then \mathbb{F}_q is the I_q -closure of I_q (resp. the I'_q -closure of I'_q).
- (b) If $q \notin \{3,5,9\}$ (resp. $q \neq 3$), then the I_q -closed (resp. I'_q -closed) subsets of $\mathbb{F}^n_{q^2}$ are the translations of the \mathbb{F}_q -linear subspaces.

Remark 1.7. Fix $A \subseteq \mathbb{F}_q$ such that $0 \in A$. Assume that \mathbb{F}_q is the A-closure of \mathbb{F}_q . Then $S \subseteq \mathbb{F}_{q^2}^n$, $S \neq \emptyset$, is A-closed if and only if it is the translation of an \mathbb{F}_q -linear subspace by an element of $\mathbb{F}_{q^2}^n$. Thus part (b) of Theorem 1.6 follows at once from part (a) and similar statements are true for the A-closures for any A whose A-closure is \mathbb{F}_q .

As suggested by one of the referees a key part of one of our proofs may be stated in the following general way.

Proposition 1.8. Let A, B be subsets of \mathbb{F}_q containing 0. Assume $A \neq \{0\}$ and let G be the subgroup of the multiplicative group $\mathbb{F}_q \setminus \{0\}$ generated by $A \setminus \{0\}$. Assume that B is A-closed. Then $B \setminus \{0\}$ is a union of cosets of G.

Fix $S \subset \mathbb{F}_{q^2}^n$ and a set $A \subset \mathbb{F}_q$ such that $\{0,1\} \subseteq A$. Instead of the A-closure of S the following sets $S_{i,A}$, $i \geq 1$, seem to be better. In particular both circles and $S_{1,A}$ appear in some proofs on the numerical range. Let $S_{1,A}$ be the set of all a + (b - a)A, $a, b \in S$. For all $i \geq 1$ set $S_{i+1,A} := (S_{1,A})_{1,A}$. Obviously $S_{i,A}$ is A-closed for $i \gg 0$. Note that $\{0,1\}_A = A$ and hence if we start with $S = \{0,1\}$ we obtain the A-closure of A after finitely many steps.

We thank the referees for an exceptional job, making key corrections and suggestions.

2 The proofs and related observations

We assume q odd, except in Remarks 2.1 and 2.2, Proposition 2.9 and the proof of Proposition 1.8.

Remark 2.1. The notions of E_q -closed, I_q -closed and I'_q -closed subsets of $\mathbb{F}^n_{q^2}$ are invariant by translations of elements of $\mathbb{F}^n_{q^2}$ and by the action of $GL(n, \mathbb{F}_q)$.

Remark 2.2. Fix any $A \subseteq \mathbb{F}_q$ such that $0 \in A$. Any translate by an element of $\mathbb{F}_{q^2}^n$ of an A-closed set is A-closed. The \mathbb{F}_q -closed subsets of $\mathbb{F}_{q^2}^n$ are the translates by an element of $\mathbb{F}_{q^2}^n$ of the \mathbb{F}_q -linear subspaces. If $A \subseteq \{0, 1\}$, then any nonempty subset of $\mathbb{F}_{q^2}^n$ is A-closed.

Proof of Proposition 1.8: Since $\mathbb{F}_q \setminus \{0\}$ is cyclic, G is cyclic. Let $a \in A \setminus \{0\}$ be a generator of G. Fix $c \in B \setminus \{0\}$ and take $t \in \mathbb{F}_q \setminus \{0\}$ such that $c = ta^z$ for some positive integer z. We need to prove that $B \setminus \{0\}$ contains all ta^k , $k \in \mathbb{Z}$. Since $b \in B$, B is A-closed, $a \in A$ and a = 0 + (a - 0), we get $ta^{z+1} \in B$. Iterating this trick we get that B contains all ta^k for large k and hence the coset tG, because G is cyclic.

Proposition 2.3. We have $\#I_q = \#I'_q - 1 = (q+3)/4$ if $q \equiv 1 \pmod{4}$ and $\#I_q = \#I'_q = (q+5)/4$ if $q \equiv 3 \pmod{4}$.

Proof. Since $A := \{x^2 + y^2 = 1\} \subset \mathbb{F}_q^2$ is a smooth affine conic, its projectivization $B := \{x^2 + y^2 = z^2\} \subset \mathbb{P}^2(\mathbb{F}_q)$ has cardinality q + 1 ([10, th. 5.1.8]). Note that the line z = 0 is not tangent to B and hence $B \cap \{z = 0\}$ has 2 points over \mathbb{F}_{q^2} . It has 2 points over \mathbb{F}_q if and only if -1 is a square in \mathbb{F}_q , *i. e.* if and only if $q \equiv 1 \pmod{4}$ ([10, (ix) and (x) at p. 5], [22, p. 22]). Hence #A = q + 1 if $q \equiv 3 \pmod{4}$ and #A = q - 1 if $q \equiv 1 \pmod{4}$. Note that $a \in I_q$ if and only if there is $(e, f) \in \mathbb{F}_q^2$ such that $e^2 + f^2 = 1$ and $a = e^2$. Note that $(e, f) \in A$ and that conversely for each $(e, f) \in A$, $e^2 \in I_q$. Obviously $0 \in I_q$ and $(0, f) \in A$ if and only if either f = 1 or f = -1. Thus $0 \in I_q$ comes from 2 points of A. Obviously $1 \in I_q$. If either e = 1 or e = -1, then $(e, f) \in A$ if and only if f = 0. Thus $1 \in I_q$ comes from 2 points of A. If $e^2 \notin \{0, 1\}$ and $e^2 \in I_q$, then e^2 comes from 4 points of A.

Fix a non-square $c \in \mathbb{F}_q$ and set $A' := \{x^2 - cy^2 = 1\} \subset \mathbb{F}_q^2$. Let $B' := \{x^2 - cy^2 = z^2\} \subset \mathbb{P}^2(\mathbb{F}_q)$ be the smooth conic which is the projectivization of A'. The line $\{z = 0\}$ is not tangent to B' and $\{z = 0\} \cap A' = \emptyset$. Thus #A' = q + 1. Note that $a \in I''_q$ if and only if there is $(e, f) \in \mathbb{F}_q^2$ such that $a = e^2$ and $e^2 - cf^2 = 1$. The element $1 \in I''_q$ comes from two elements of A'. If $0 \in I''_q$, then it comes from two elements of A'. If $0 \notin I''_q$, *i. e.* if $q \equiv 3 \pmod{4}$, we get $\#I''_q = (q + 1)/4$ and $\#I'_q = (q + 5)/4$. If $0 \in I''_q$ we get $\#I''_q = \#I'_q = (q + 7)/4$.

Remark 2.4. If $q \in \{3,5\}$, then $I_q = \{0,1\}$ and hence each non-empty subset of $\mathbb{F}_{q^2}^n$ is I_q -closed if $q \in \{3,5\}$. Since $\{0,1\} \subseteq I'_q$, Proposition 2.3 gives $I'_3 = I_3$. We have $I'_5 = \{0,1,4\} = E_5$, because 3 is not a square in \mathbb{F}_5 .

Remark 2.5. Fix any $t \in \mathbb{F}_q \setminus E_q$. Then $\mathbb{F}_q \setminus E_q = t(E_q \setminus \{0\})$. Obviously $E_q E_q = E_q$.

The following result characterizes E_{q^2} and hence characterizes all E_r with r a square odd prime power.

Proposition 2.6. The set of $E_{q^2} \setminus \{0\}$ of all squares of $\mathbb{F}_{q^2} \setminus \{0\}$ is the set of all ab such that $a \in \mathbb{F}_q \setminus \{0\}$ and $b^{q+1} = 1$. We have $ab = a_1b_1$ if and only if $(a_1, b_1) \in \{(a, b), (-a, -b)\}$.

Proof. Fix $z \in \mathbb{F}_{q^2} \setminus \{0\}$. Hence $z^{q^2-1} = 1$. Thus $z^{(q-1)q+1} = 1$ (and so $z^{(1-q)q+1} = 1$) and $z^{(q+1)q-1} = 1$, *i. e.* $z^{q+1} \in \mathbb{F}_q \setminus \{0\}$. Note that $z^2 = z^{q+1}z^{1-q}$. Assume $ab = a_1b_1$ with a, $a_1 \in \mathbb{F}_q \setminus \{0\}$ (*i.e.*, with $a^{q-1} = a_1^{q-1} = 1$) and $b^{q+1} = b_1^{q+1} = 1$. Taking aa_1^{-1} and bb_1^{-1} instead of a and b we reduce to the case $a_1 = b_1 = 1$ and hence ab = 1. Thus $a^{q+1}b^{q+1} = 1$. Hence $a^2 = 1$. Since q is odd and $a \neq 1$, then a = -1. Thus b = -1.

Proposition 2.7. Take $S \subseteq \mathbb{F}_{q^2}^n$. The set S is E_q -closed if and only if it is a translation of an \mathbb{F}_q -linear subspace.

Proof. Remark 2.2 gives the "if" part. Assume that S is not a translation of an \mathbb{F}_q -linear subspace and fix $a, b \in S$ such that $a \neq b$ and the affine \mathbb{F}_q -line L spanned by $\{a, b\}$ is not contained in S. By Remark 2.1 it is sufficient to find a contradiction in the case n = 1 and $L = \mathbb{F}_q$ with a = 0 and b = 1. Thus $E_q \subseteq S$. Since S is E_q -closed and $0 \in S$, $c + (-c)E_q \subseteq S$ for all $c \in E_q$. First assume $-1 \in E_q$. In this case $-cE_q = E_q$. Thus S contains all sums of two squares. Thus $S = \mathbb{F}_q$. Now assume $-1 \notin E_q$. In this case we obtained that S contains all differences of two squares. Thus $-E_q \subset S$. Since $-1 \notin E_q$, $-E_q = \{0\} \cup (\mathbb{F}_q \setminus E_q)$ (Remark 2.5). Thus $S \supseteq L$.

The cases of I_q -closures and I'_q -closures are more complicated, because $I_q = I'_q = \{0, 1\}$ if q = 3, 5and hence all subsets of $\mathbb{F}^n_{q^2}$ are I_q -closed if q = 3, 5. The following observation shows that the I_9 -closed subsets of \mathbb{F}^n_{81} are exactly the translations of the \mathbb{F}_3 -linear subspaces and gives many examples with $I_q \notin I'_q$.

Remark 2.8. We always have $2 \notin 1 + cE_q$, c a non-square, because 1 is a square. If q is a square, say $q = s^2$, then obviously $\mathbb{F}_s \subseteq E_q \cap (1 - E_q) = I_q$ and hence $2 \in I_q$. Take q = 9. We get $\mathbb{F}_3 \subseteq I_9$. Since $\#I_9 = 3$ (Proposition 2.3), we get $I_q = \mathbb{F}_3$. Thus the I_9 -closed subsets of \mathbb{F}_{81}^n are exactly the translations of the \mathbb{F}_3 -linear subspaces. Now assume that q is not a square. We have $2 \in 1 - E_q$ if and only if -1 is a square, i. e. if and only if $q \equiv 1 \pmod{4}$. Since q is not a square, we have $2 \in E_q$ if and only if 2 is a square in \mathbb{F}_p , i. e. if and only if $p \equiv -1, 1 \pmod{8}$ ([15, Proposition 5.1.3]). Thus for a non-square q holds: $2 \in I_q$ if and only if $p \equiv 1 \pmod{8}$.

Proof of Theorem 1.6: Let Y be the I_q -closure of I_q . By Proposition 1.8, $Y' := Y \setminus \{0\}$ is a union of the cosets of $H := \langle I_q \setminus \{0\} \rangle$. Since $\#(I_q \setminus \{0\}) \ge (q-1)/4$ with equality if and only if $q \equiv 1$ (mod 4), H is either \mathbb{F}_q^* , the set of non-zero squares, the set of non-zero cubes or (only if $q \equiv 1$ mod 4), the set of all non-zero 4-powers. Since $I_q \subseteq E_q$, $H \neq \mathbb{F}_q^*$. If H is the set of cubes, then, as all elements of I_q are squares, it would be the set of 6-th powers, contradicting the inequality $\#I_q > (q-1)/4$.

(a) Assume that $H = E_q \setminus \{0\}$. It suffices to show that the I_q -closure of the set of squares contains a non-square. Suppose otherwise. Take an element $a \in I_q$ with $a \notin \{0, 1\}$. Then we obtain that for all squares x, y, x + (y - x)a is also a square. Since a is a non-zero square, this is the same as the statement that for all squares x, z the element z + (1 - a)x is a square. If 1 - a is a square we deduce that the set of all squares is closed under addition, a contradiction. If 1 - a is not a square we may take x = 1, z = 0 to obtain a contradiction.

- (b) Assume q ≡ 1 (mod 4), q ≠ 9, and that H is the set of all non-zero 4-powers. We also saw that H = I_q \ {0}. The proof of step (a) works using the word "4-power" instead of "square" with a a 4-power. We get that the set of all 4-powers is closed under taking differences. Thus I_q is closed under taking differences and, since it contains 0, under the multiplication by −1. H is obviously closed under taking products. Thus I_q is a subfield of order (q + 3)/4, which is absurd if q ≠ 9.
- (c) Now we consider I'_q and set $H' := \langle I_q \setminus \{0\} \rangle$. The cases in which H' is the set of all squares or all cubes are excluded as above. Since $\#(I'_q \setminus \{0\}) > (q-1)/4$, Y is not the set of all 4-th powers.

Proposition 2.9. Assume q even and set $E_q := \{a(a+1)\}_{a \in \mathbb{F}_q}$.

- (1) If q = 2, 4, then E_q is the E_q -closure of itself.
- (2) If $q \geq 8$, then \mathbb{F}_q is the E_q -closure of E_q .

Proof. We have $E_2 = \{0\}$ and $E_4 = \{0, 1\}$.

Now assume $q \ge 8$ and call B the E_q -closure of E_q . Let G be the subgroup of the multiplicative group $\mathbb{F}_q \setminus \{0\}$ generated by $E_q \setminus \{0\}$. By Proposition 1.8 it is sufficient to prove that $G = \mathbb{F}_q \setminus \{0\}$. Since $\#E_q = q/2$, $E_q \setminus \{0\} \ne \emptyset$. Fix $a \in E_q \setminus \{0\}$ and a positive integer k. The E_q -closure of $\{0, a^k\}$ contains a^{k+1} . Thus B contains the multiplicative subgroup of $\mathbb{F}_q \setminus \{0\}$ generated by $E_q \setminus \{0\}$. Since $q \ge 8$, $\#(\mathbb{F}_q \setminus \{0\}) = q - 1$ is odd and $q - 1 < 3(q/2 - 1) = 3\#(\mathbb{F}_q \setminus \{0\})$, we get $G = \mathbb{F}_q \setminus \{0\}$.

References

- E. Ballico, "On the numerical range of matrices over a finite field", Linear Algebra Appl., vol. 512, pp. 162–171, 2017.
- [2] E. Ballico, *Corrigendum* to "On the numerical range of matrices over a finite field" [Linear Algebra Appl., vol. 512, pp. 162–171, 2017], Linear Algebra Appl., vol. 556, pp. 421–427, 2018.
- [3] E. Ballico, "The Hermitian null-range of a matrix over a finite field", Electron. J. Linear Algebra, vol. 34, pp. 205–216, 2018.
- [4] E. Ballico, "A numerical range characterization of unitary matrices over a finite field", Asian-European Journal of Mathematics (AEJM) (to appear). doi: 10.1142/S1793557122500498
- [5] F. F. Bonsall and J. Duncan, Numerical ranges II, London Mathematical Society Lecture Note Series, no. 10, New York-London: Cambridge University Press, 1973.
- [6] K. Camenga, B. Collins, G. Hoefer, J. Quezada, P. X. Rault, J. Willson and R. J. Yates, "On the geometry of numerical ranges over finite fields", Linear Algebra Appl., vol. 628, pp. 182–201, 2021.
- [7] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, "A definition of numerical range of rectangular matrices", Linear Multilinear Algebra, vol. 57, no. 5, pp. 459–475, 2009.
- [8] J. I. Coons, J. Jenkins, D. Knowles, R. A. Luke and P. X. Rault, "Numerical ranges over finite fields", Linear Algebra Appl., vol. 501, pp. 37–47, 2016.
- [9] K. E. Gustafson and D. K. M. Rao, *Numerical range*, Universitext, New York: Springer-Verlag, 1997.
- [10] J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1979.
- [11] J. W. P. Hirschfeld and J. A. Thas, *General Galois geometries*, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1991.
- [12] R. A. Horn and C. R. Johnson, *Matrix analysis*, Cambridge: Cambridge University Press, 1985.
- [13] R. A. Horn and C. R. Johnson, *Topics in matrix analysis*, Cambridge: Cambridge University Press, 1991.
- [14] L. Jin, "Quantum stabilizer codes from maximal curves", IEEE Trans. Inform. Theory, vol. 60, no. 1, pp. 313–316, 2014.

- [15] K. Ireland and M. Rosen, A classical introduction to modern number theory, Second Edition, Graduate Texts in Mathematics, 84, New York: Springer-Verlag, 1990.
- [16] R. Ke, W. Li and M. K. Ng, "Numerical ranges of tensors", Linear Algebra Appl., vol. 508, pp. 100–132, 2016.
- [17] J.-L. Kim and G. L. Matthews, "Quantum error-correcting codes from algebraic curves", in Advances in algebraic geometry codes, Ser. Coding Theory Cryptol., vol. 5, Hackensack, NJ: World Sci. Publ., 2008, pp. 419–444.
- [18] R. Lidl and H. Niederreiter, *Finite fields*, Encyclopedia of Mathematics and its Applications, 20, Cambridge: Cambridge University Press, 1997.
- [19] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge: Cambridge University Press, 1994.
- [20] C. Munuera, W. Tenório and F. Torres, "Quantum error-correcting codes from algebraic geometry codes of Castle type", Quantum Inf. Process., vol. 15, no. 10, pp. 4071–4088, 2016.
- [21] P. J. Psarrakos and M. J. Tsatsomeros, "Numerical range: (in) a matrix nutshell", National Technical University, Athens, Greece, Notes, 2004.
- [22] C. Small, Arithmetic of finite fields, Monographs and Textbooks in Pure and Applied, 148, New York: Marcel Dekker, Inc., 1991.