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ABSTRACT

Let q be an odd prime power. We discuss possible definitions

over F
q2 (using the Hermitian form) of circles, unit segments

and half-lines. If we use our unit segments to define the

convex hulls of a set S ⊂ Fn

q2
for q /∈ {3, 5, 9} we just get the

Fq-affine span of S.

RESUMEN

Sea q una potencia de primo impar. Discutimos posi-

bles definiciones sobre F
q2 (usando la forma Hermitiana)

de ćırculos, segmentos unitarios y semi-ĺıneas. Si usamos

nuestros segmentos unitarios para definir las cápsulas con-

vexas de un conjunto S ⊂ Fn

q2
para q /∈ {3, 5, 9} simplemente

obtenemos el Fq-generado af́ın de S.
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1 Introduction

Fix a prime p and a p-power q. There is a unique (up to isomorphism) field Fq with #Fq = q.

The field Fq2 is a degree 2 Galois extension of Fq and the Frobenius map t 7→ tq is a generator

of the Galois group of this extension. This map allows the definition of the Hermitian product

〈 , 〉 : Fn
q2 × Fn

q2 −→ Fq2 in the following way: if u = (u1, . . . , un) ∈ Fn
q2 and v = (v1, . . . , vn) ∈ Fn

q2 ,

then set 〈u, v〉 =
∑n

i=1 u
q
i vi. The degree q + 1 hypersurface {〈(x1, . . . , xn), (x1, . . . , xn)〉 = 0} is

the famous full rank Hermitian hypersurface ([11, Ch. 23]).

In the quantum world the classical Hermitian product over the complex numbers is fundamental.

The Hermitian product 〈 , 〉 is one of the tools used to pass from a classical code over a finite field

to a quantum code ([17, pp. 430–431], [14, Introduction], [20, §2.2]).

The Hermitian product was used to define the numerical range of a matrix over a finite field ([1,

2, 3, 4, 8]) by analogy with the definition of numerical range for complex matrices ([9, 12, 13, 21]).

Over C a different, but equivalent, definition of numerical range is obtained as the intersection of

certain disks ([5, §15, Lemma 1]). It is an important definition, because it was used to extend the

use of numerical ranges to rectangular matrices ([7]) and to tensors ([16]). This different definition

immediately gives the convexity of the numerical range of complex matrices. Motivated by that

definition we look at possible definitions of the unit disk of Fq2 . It should be a union of circles

with center at 0 and with squared-radius in the unit interval [0, 1] ⊂ Fq.

For any c ∈ Fq and any a ∈ Fq2 set

C(0, c) := {z ∈ Fq2 | zq+1 = c}, C(a, c) := a+ C(0, c).

We say that C(a, c) is the circle of Fq2 with center a and squared-radius c. Note that C(a, 0) = {a}

and #C(a, c) = q + 1 for all c ∈ Fq \ {0}.

Circles occur in the description of the numerical range of many 2×2 matrices over Fq2 ([8, Lemmas

3.4 and 3.5]). Other subsets of Fq2 (seen as a 2-dimensional vector space of Fq) appear in [6] and are

called ellipses, hyperbolas and parabolas, because they are affine conics whose projective closure

have 0, 2 or 1 points in the line at infinity.

All these constructions are inside Fq2 seen as a plane over Fq. Restricting to planes we get the

following definition for Fn
q2 .

Definition 1.1. A set E ⊂ Fn
q2 is said to be a circle with center 0 ∈ Fn

q2 and squared-radius c

if there is an Fq-linear embedding f : Fq2 −→ Fn
q2 such that E = f(C(0, c)). A set E ⊂ Fn

q2 is

said to be a circle with center a ∈ Fn
q2 and squared-radius c if E − a is a circle with center 0 and

squared-radius c. A set S ⊆ Fn
q2 , S 6= ∅, is said to be circular with respect to a ∈ Fn

q2 if it contains

all circles with center a which meet S.
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In the classical theory of numerical range over C the numerical range of a square matrix which

is the orthogonal direct sum of the square matrices A and B is obtained taking the union of all

segments [a, b] ⊂ C with a in the numerical range of A and b in the numerical range of B ([21,

p. 3]). For the numerical range of matrices over Fq2 instead of segments [a, b] one has to use the

affine Fq-span of {a, b} ([1, Lemma 1], [8, Proposition 3.1]). We wonder if in other linear algebra

constructions something smaller than Fq-linear span occurs. A key statement for square matrices

over C (due to Toeplitz and Hausdorff) is that their numerical range is convex ([9, Th. 1.1-2], [21,

§3]). Convexity is a property over R and to define it one only needs the unit interval [0, 1] ⊂ R.

Obviously [0, 1] = [0,+∞) ∩ (−∞, 1] and (−∞, 1] = 1 − [0,+∞). As a substitute for the unit

interval [0, 1] ⊂ R (resp. the half-line [0,+∞) ⊂ R) we propose the following sets Iq and I ′q (resp.

Eq).

Definition 1.2. Assume q odd. Set Eq := {a2}a∈Fq
⊂ Fq, Iq := Eq∩(1−Eq), I

′′
q := Eq∩(1+xEq)

with x ∈ Fq \ Eq, and I ′q := I ′′q ∪ {0}.

Note that I ′q = {0, 1}∪ (Eq ∩ (1+ (Fq \Eq)). In the first version of this note we only used Iq, but a

referee suggested that it is more natural to consider I ′′q . We use Iq and I ′q because {0, 1} ⊆ Iq ∩ I ′q,

while 0 ∈ I ′′q if and only if −1 is not a square in Fq, i. e. if and only if q ≡ 3 (mod 4) ([10, (ix)

and (x) at p. 5], [22, p. 22]). In all statements for odd q we handle both Iq and I ′q.

In the case q even we propose to use {a(a+ 1)}{a∈Fq} as Eq, i. e. Eq := Tr−1
Fq/F2

(0). Thus Eq is a

subgroup of (Fq,+) of index 2. If q is even we do not have a useful definition of Iq.

Thus we restrict to odd prime powers, except for Propositions 1.8, 2.9 and Remarks 2.1 and 2.2.

We see Iq or I ′q (resp. Eq) as the unit segment [0, 1] (resp. positive half-line starting at 0) of Fq ⊂

Fq2 . In most of the proofs we only use that {0, 1} ⊆ Iq and that #Iq is large, say #Iq > (q− 1)/4.

Remark 1.3. Note that #Eq = (q + 1)/2 for all odd prime powers q.

We prove that #Iq = #I ′q − 1 = (q + 3)/4 if q ≡ 1 mod 4 and #Iq = #I ′q = (q + 5)/4 if q ≡ 3

(mod 4) (Proposition 2.3).

We only use the case A = Eq, A = Iq and A = I ′q of the following definition.

Definition 1.4. Fix S ⊆ Fn
q2 , S 6= ∅, and A ⊆ Fq such that 0 ∈ A. We say that S is A-closed if

a+ (b− a)A ⊆ S for all a, b ∈ S.

In the set-up of Definition 1.4 for any a, b ∈ Fn
q2 the A-segment [a, b]A of {a, b} is the set a+(b−a)A.

Note that [a, a]A = {a} and that if b 6= a then b ∈ [a, b]A if and only if 1 ∈ A. If S is a subset of

a real vector space and A is the unit interval [0, 1] ⊂ R, Definition 1.4 gives the usual notion of

convexity, because a+ (b − a)t = (1 − t)a+ tb for all t ∈ [0, 1].
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Remark 1.5. Take any A ⊆ Fq such that 0 ∈ A. Any translate by an element of Fn
q2 of an

Fq-linear subspace of Fn
q2 is A-closed. In particular Fn

q and Fn
q2 are A-closed. The intersection of

A-closed sets is A-closed, if non-empty. Hence we may define the A-closure of any S ⊆ Fn
q2 , S 6= ∅,

as the intersection of all A-closed subsets of Fn
q2 containing S.

In most cases Iq is not Iq-closed. We prove the following result.

Theorem 1.6. Assume q odd. Then:

(a) If q /∈ {3, 5, 9} (resp. q 6= 3), then Fq is the Iq-closure of Iq (resp. the I ′q-closure of I ′q).

(b) If q /∈ {3, 5, 9} (resp. q 6= 3), then the Iq-closed (resp. I ′q-closed) subsets of Fn
q2 are the

translations of the Fq-linear subspaces.

Remark 1.7. Fix A ⊆ Fq such that 0 ∈ A. Assume that Fq is the A-closure of Fq. Then S ⊆ Fn
q2 ,

S 6= ∅, is A-closed if and only if it is the translation of an Fq-linear subspace by an element of Fn
q2 .

Thus part (b) of Theorem 1.6 follows at once from part (a) and similar statements are true for the

A-closures for any A whose A-closure is Fq.

As suggested by one of the referees a key part of one of our proofs may be stated in the following

general way.

Proposition 1.8. Let A,B be subsets of Fq containing 0. Assume A 6= {0} and let G be the

subgroup of the multiplicative group Fq \ {0} generated by A \ {0}. Assume that B is A-closed.

Then B \ {0} is a union of cosets of G.

Fix S ⊂ Fn
q2 and a set A ⊂ Fq such that {0, 1} ⊆ A. Instead of the A-closure of S the following

sets Si,A, i ≥ 1, seem to be better. In particular both circles and S1,A appear in some proofs

on the numerical range. Let S1,A be the set of all a + (b − a)A, a, b ∈ S. For all i ≥ 1 set

Si+1,A := (S1,A)1,A. Obviously Si,A is A-closed for i ≫ 0. Note that {0, 1}A = A and hence if we

start with S = {0, 1} we obtain the A-closure of A after finitely many steps.

We thank the referees for an exceptional job, making key corrections and suggestions.

2 The proofs and related observations

We assume q odd, except in Remarks 2.1 and 2.2, Proposition 2.9 and the proof of Proposition

1.8.

Remark 2.1. The notions of Eq-closed, Iq-closed and I ′q-closed subsets of Fn
q2 are invariant by

translations of elements of Fn
q2 and by the action of GL(n,Fq).
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Remark 2.2. Fix any A ⊆ Fq such that 0 ∈ A. Any translate by an element of Fn
q2 of an A-closed

set is A-closed. The Fq-closed subsets of Fn
q2 are the translates by an element of Fn

q2 of the Fq-linear

subspaces. If A ⊆ {0, 1}, then any nonempty subset of Fn
q2 is A-closed.

Proof of Proposition 1.8: Since Fq \ {0} is cyclic, G is cyclic. Let a ∈ A \ {0} be a generator of G.

Fix c ∈ B \ {0} and take t ∈ Fq \ {0} such that c = taz for some positive integer z. We need to

prove that B \ {0} contains all tak, k ∈ Z. Since b ∈ B, B is A-closed, a ∈ A and a = 0+ (a− 0),

we get taz+1 ∈ B. Iterating this trick we get that B contains all tak for large k and hence the

coset tG, because G is cyclic.

Proposition 2.3. We have #Iq = #I ′q−1 = (q+3)/4 if q ≡ 1 (mod 4) and #Iq = #I ′q = (q+5)/4

if q ≡ 3 (mod 4).

Proof. Since A := {x2+y2 = 1} ⊂ F2
q is a smooth affine conic, its projectivization B := {x2+y2 =

z2} ⊂ P2(Fq) has cardinality q + 1 ([10, th. 5.1.8]). Note that the line z = 0 is not tangent to

B and hence B ∩ {z = 0} has 2 points over Fq2 . It has 2 points over Fq if and only if −1 is a

square in Fq, i. e. if and only if q ≡ 1 (mod 4) ([10, (ix) and (x) at p. 5], [22, p. 22]). Hence

#A = q + 1 if q ≡ 3 (mod 4) and #A = q − 1 if q ≡ 1 (mod 4). Note that a ∈ Iq if and only if

there is (e, f) ∈ F2
q such that e2 + f2 = 1 and a = e2. Note that (e, f) ∈ A and that conversely for

each (e, f) ∈ A, e2 ∈ Iq . Obviously 0 ∈ Iq and (0, f) ∈ A if and only if either f = 1 or f = −1.

Thus 0 ∈ Iq comes from 2 points of A. Obviously 1 ∈ Iq . If either e = 1 or e = −1, then (e, f) ∈ A

if and only if f = 0. Thus 1 ∈ Iq comes from 2 points of A. If e2 /∈ {0, 1} and e2 ∈ Iq, then e2

comes from 4 points of A.

Fix a non-square c ∈ Fq and set A′ := {x2 − cy2 = 1} ⊂ F2
q. Let B′ := {x2 − cy2 = z2} ⊂ P2(Fq)

be the smooth conic which is the projectivization of A′. The line {z = 0} is not tangent to B′ and

{z = 0} ∩ A′ = ∅. Thus #A′ = q + 1. Note that a ∈ I ′′q if and only if there is (e, f) ∈ F2
q such

that a = e2 and e2 − cf2 = 1. The element 1 ∈ I ′′q comes from two elements of A′. If 0 ∈ I ′′q , then

it comes from two elements of A′. If 0 /∈ I ′′q , i. e. if q ≡ 3 (mod 4), we get #I ′′q = (q + 1)/4 and

#I ′q = (q + 5)/4. If 0 ∈ I ′′q we get #I ′′q = #I ′q = (q + 7)/4.

Remark 2.4. If q ∈ {3, 5}, then Iq = {0, 1} and hence each non-empty subset of Fn
q2 is Iq-closed if

q ∈ {3, 5}. Since {0, 1} ⊆ I ′q, Proposition 2.3 gives I ′3 = I3. We have I ′5 = {0, 1, 4} = E5, because

3 is not a square in F5.

Remark 2.5. Fix any t ∈ Fq \ Eq. Then Fq \ Eq = t(Eq \ {0}). Obviously EqEq = Eq.

The following result characterizes Eq2 and hence characterizes all Er with r a square odd prime

power.

Proposition 2.6. The set of Eq2 \ {0} of all squares of Fq2 \ {0} is the set of all ab such that

a ∈ Fq \ {0} and bq+1 = 1. We have ab = a1b1 if and only if (a1, b1) ∈ {(a, b), (−a,−b)}.
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Proof. Fix z ∈ Fq2 \ {0}. Hence zq
2−1 = 1. Thus z(q−1)q+1

= 1 (and so z(1−q)q+1
= 1) and

z(q+1)q−1
= 1, i. e. zq+1 ∈ Fq \ {0}. Note that z2 = zq+1z1−q. Assume ab = a1b1 with a,

a1 ∈ Fq \ {0} (i.e., with aq−1 = a1
q−1 = 1) and bq+1 = b1

q+1 = 1. Taking aa1
−1 and bb1

−1 instead

of a and b we reduce to the case a1 = b1 = 1 and hence ab = 1. Thus aq+1bq+1 = 1. Hence a2 = 1.

Since q is odd and a 6= 1, then a = −1. Thus b = −1.

Proposition 2.7. Take S ⊆ Fn
q2 . The set S is Eq-closed if and only if it is a translation of an

Fq-linear subspace.

Proof. Remark 2.2 gives the “if” part. Assume that S is not a translation of an Fq-linear subspace

and fix a, b ∈ S such that a 6= b and the affine Fq-line L spanned by {a, b} is not contained in S.

By Remark 2.1 it is sufficient to find a contradiction in the case n = 1 and L = Fq with a = 0 and

b = 1. Thus Eq ⊆ S. Since S is Eq-closed and 0 ∈ S, c+ (−c)Eq ⊆ S for all c ∈ Eq. First assume

−1 ∈ Eq. In this case −cEq = Eq. Thus S contains all sums of two squares. Thus S = Fq. Now

assume −1 /∈ Eq. In this case we obtained that S contains all differences of two squares. Thus

−Eq ⊂ S. Since −1 /∈ Eq, −Eq = {0} ∪ (Fq \ Eq) (Remark 2.5). Thus S ⊇ L.

The cases of Iq-closures and I ′q-closures are more complicated, because Iq = I ′q = {0, 1} if q = 3, 5

and hence all subsets of Fn
q2 are Iq-closed if q = 3, 5. The following observation shows that the

I9-closed subsets of Fn
81 are exactly the translations of the F3-linear subspaces and gives many

examples with Iq * I ′q .

Remark 2.8. We always have 2 /∈ 1+ cEq, c a non-square, because 1 is a square. If q is a square,

say q = s2, then obviously Fs ⊆ Eq ∩ (1−Eq) = Iq and hence 2 ∈ Iq. Take q = 9. We get F3 ⊆ I9.

Since #I9 = 3 (Proposition 2.3), we get Iq = F3. Thus the I9-closed subsets of Fn
81 are exactly the

translations of the F3-linear subspaces. Now assume that q is not a square. We have 2 ∈ 1−Eq if

and only if −1 is a square, i. e. if and only if q ≡ 1 (mod 4). Since q is not a square, we have

2 ∈ Eq if and only if 2 is a square in Fp, i. e. if and only if p ≡ −1, 1 (mod 8) ([15, Proposition

5.1.3]). Thus for a non-square q holds: 2 ∈ Iq if and only if p ≡ 1 (mod 8).

Proof of Theorem 1.6: Let Y be the Iq-closure of Iq. By Proposition 1.8, Y ′ := Y \ {0} is a union

of the cosets of H := 〈Iq \ {0}〉. Since #(Iq \ {0}) ≥ (q − 1)/4 with equality if and only if q ≡ 1

(mod 4), H is either F∗
q , the set of non-zero squares, the set of non-zero cubes or (only if q ≡ 1

mod 4), the set of all non-zero 4-powers. Since Iq ⊆ Eq, H 6= F∗
q . If H is the set of cubes, then,

as all elements of Iq are squares, it would be the set of 6-th powers, contradicting the inequality

#Iq > (q − 1)/4.

(a) Assume that H = Eq \{0}. It suffices to show that the Iq-closure of the set of squares contains

a non-square. Suppose otherwise. Take an element a ∈ Iq with a /∈ {0, 1}. Then we obtain

that for all squares x, y, x+ (y − x)a is also a square. Since a is a non-zero square, this is the
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same as the statement that for all squares x, z the element z + (1 − a)x is a square. If 1 − a

is a square we deduce that the set of all squares is closed under addition, a contradiction. If

1− a is not a square we may take x = 1, z = 0 to obtain a contradiction.

(b) Assume q ≡ 1 (mod 4), q 6= 9, and that H is the set of all non-zero 4-powers. We also saw

that H = Iq \ {0}. The proof of step (a) works using the word “4-power” instead of “square”

with a a 4-power. We get that the set of all 4-powers is closed under taking differences. Thus

Iq is closed under taking differences and, since it contains 0, under the multiplication by −1.

H is obviously closed under taking products. Thus Iq is a subfield of order (q+3)/4, which is

absurd if q 6= 9.

(c) Now we consider I ′q and set H ′ := 〈Iq \ {0}〉. The cases in which H ′ is the set of all squares

or all cubes are excluded as above. Since #(I ′q \ {0}) > (q − 1)/4, Y is not the set of all 4-th

powers.

Proposition 2.9. Assume q even and set Eq := {a(a+ 1)}a∈Fq
.

(1) If q = 2, 4, then Eq is the Eq-closure of itself.

(2) If q ≥ 8, then Fq is the Eq-closure of Eq.

Proof. We have E2 = {0} and E4 = {0, 1}.

Now assume q ≥ 8 and call B the Eq-closure of Eq. Let G be the subgroup of the multiplicative

group Fq \ {0} generated by Eq \ {0}. By Proposition 1.8 it is sufficient to prove that G = Fq \ {0}.

Since #Eq = q/2, Eq \ {0} 6= ∅. Fix a ∈ Eq \ {0} and a positive integer k. The Eq-closure

of {0, ak} contains ak+1. Thus B contains the multiplicative subgroup of Fq \ {0} generated by

Eq \ {0}. Since q ≥ 8, #(Fq \ {0}) = q − 1 is odd and q − 1 < 3(q/2− 1) = 3#(Fq \ {0}), we get

G = Fq \ {0}.
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