A characterization of \mathbb{F}_{q}-linear subsets of affine spaces $\mathbb{F}_{q^{2}}^{n}$

Edoardo Ballico ${ }^{1}$ (D)
${ }^{1}$ Department of Mathematics, University of Trento,
38123 Povo (TN), Italy.
edoardo.ballico@unitn.it

Abstract

Let q be an odd prime power. We discuss possible definitions over $\mathbb{F}_{q^{2}}$ (using the Hermitian form) of circles, unit segments and half-lines. If we use our unit segments to define the convex hulls of a set $S \subset \mathbb{F}_{q^{2}}^{n}$ for $q \notin\{3,5,9\}$ we just get the \mathbb{F}_{q}-affine span of S.

RESUMEN

Sea q una potencia de primo impar. Discutimos posibles definiciones sobre $\mathbb{F}_{q^{2}}$ (usando la forma Hermitiana) de círculos, segmentos unitarios y semi-líneas. Si usamos nuestros segmentos unitarios para definir las cápsulas convexas de un conjunto $S \subset \mathbb{F}_{q^{2}}^{n}$ para $q \notin\{3,5,9\}$ simplemente obtenemos el \mathbb{F}_{q}-generado afín de S.

Keywords and Phrases: Finite field, Hermitian form.
2020 AMS Mathematics Subject Classification: 15A33; 15A60; 12E20.

1 Introduction

Fix a prime p and a p-power q. There is a unique (up to isomorphism) field \mathbb{F}_{q} with $\# \mathbb{F}_{q}=q$. The field $\mathbb{F}_{q^{2}}$ is a degree 2 Galois extension of \mathbb{F}_{q} and the Frobenius map $t \mapsto t^{q}$ is a generator of the Galois group of this extension. This map allows the definition of the Hermitian product $\langle\rangle:, \mathbb{F}_{q^{2}}^{n} \times \mathbb{F}_{q^{2}}^{n} \rightarrow \mathbb{F}_{q^{2}}$ in the following way: if $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{F}_{q^{2}}^{n}$ and $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q^{2}}^{n}$, then set $\langle u, v\rangle=\sum_{i=1}^{n} u_{i}^{q} v_{i}$. The degree $q+1$ hypersurface $\left\{\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(x_{1}, \ldots, x_{n}\right)\right\rangle=0\right\}$ is the famous full rank Hermitian hypersurface ([11, Ch. 23]).

In the quantum world the classical Hermitian product over the complex numbers is fundamental. The Hermitian product \langle,$\rangle is one of the tools used to pass from a classical code over a finite field$ to a quantum code ([17, pp. 430-431], [14, Introduction], [20, §2.2]).

The Hermitian product was used to define the numerical range of a matrix over a finite field ([1, $2,3,4,8]$) by analogy with the definition of numerical range for complex matrices ($[9,12,13,21]$). Over \mathbb{C} a different, but equivalent, definition of numerical range is obtained as the intersection of certain disks ([5, §15, Lemma 1]). It is an important definition, because it was used to extend the use of numerical ranges to rectangular matrices ([7]) and to tensors ([16]). This different definition immediately gives the convexity of the numerical range of complex matrices. Motivated by that definition we look at possible definitions of the unit disk of $\mathbb{F}_{q^{2}}$. It should be a union of circles with center at 0 and with squared-radius in the unit interval $[0,1] \subset \mathbb{F}_{q}$.

For any $c \in \mathbb{F}_{q}$ and any $a \in \mathbb{F}_{q^{2}}$ set

$$
C(0, c):=\left\{z \in \mathbb{F}_{q^{2}} \mid z^{q+1}=c\right\}, \quad C(a, c):=a+C(0, c)
$$

We say that $C(a, c)$ is the circle of $\mathbb{F}_{q^{2}}$ with center a and squared-radius c. Note that $C(a, 0)=\{a\}$ and $\# C(a, c)=q+1$ for all $c \in \mathbb{F}_{q} \backslash\{0\}$.

Circles occur in the description of the numerical range of many 2×2 matrices over $\mathbb{F}_{q^{2}}$ ([8, Lemmas 3.4 and 3.5$]$). Other subsets of $\mathbb{F}_{q^{2}}$ (seen as a 2-dimensional vector space of \mathbb{F}_{q}) appear in $[6]$ and are called ellipses, hyperbolas and parabolas, because they are affine conics whose projective closure have 0,2 or 1 points in the line at infinity.

All these constructions are inside $\mathbb{F}_{q^{2}}$ seen as a plane over \mathbb{F}_{q}. Restricting to planes we get the following definition for $\mathbb{F}_{q^{2}}^{n}$.

Definition 1.1. A set $E \subset \mathbb{F}_{q^{2}}^{n}$ is said to be a circle with center $0 \in \mathbb{F}_{q^{2}}^{n}$ and squared-radius c if there is an $\mathbb{F}_{q^{\prime}}$-linear embedding $f: \mathbb{F}_{q^{2}} \longrightarrow \mathbb{F}_{q^{2}}^{n}$ such that $E=f(C(0, c))$. A set $E \subset \mathbb{F}_{q^{2}}^{n}$ is said to be a circle with center $a \in \mathbb{F}_{q^{2}}^{n}$ and squared-radius c if $E-a$ is a circle with center 0 and squared-radius c. A set $S \subseteq \mathbb{F}_{q^{2}}^{n}, S \neq \emptyset$, is said to be circular with respect to $a \in \mathbb{F}_{q^{2}}^{n}$ if it contains all circles with center a which meet S.

In the classical theory of numerical range over \mathbb{C} the numerical range of a square matrix which is the orthogonal direct sum of the square matrices A and B is obtained taking the union of all segments $[a, b] \subset \mathbb{C}$ with a in the numerical range of A and b in the numerical range of B ([21, p. 3]). For the numerical range of matrices over $\mathbb{F}_{q^{2}}$ instead of segments $[a, b]$ one has to use the affine \mathbb{F}_{q}-span of $\{a, b\}$ ([1, Lemma 1], [8, Proposition 3.1]). We wonder if in other linear algebra constructions something smaller than \mathbb{F}_{q}-linear span occurs. A key statement for square matrices over \mathbb{C} (due to Toeplitz and Hausdorff) is that their numerical range is convex ([9, Th. 1.1-2], [21, $\S 3])$. Convexity is a property over \mathbb{R} and to define it one only needs the unit interval $[0,1] \subset \mathbb{R}$. Obviously $[0,1]=[0,+\infty) \cap(-\infty, 1]$ and $(-\infty, 1]=1-[0,+\infty)$. As a substitute for the unit interval $[0,1] \subset \mathbb{R}($ resp. the half-line $[0,+\infty) \subset \mathbb{R})$ we propose the following sets I_{q} and I_{q}^{\prime} (resp. E_{q}).

Definition 1.2. Assume q odd. Set $E_{q}:=\left\{a^{2}\right\}_{a \in \mathbb{F}_{q}} \subset \mathbb{F}_{q}, I_{q}:=E_{q} \cap\left(1-E_{q}\right), I_{q}^{\prime \prime}:=E_{q} \cap\left(1+x E_{q}\right)$ with $x \in \mathbb{F}_{q} \backslash E_{q}$, and $I_{q}^{\prime}:=I_{q}^{\prime \prime} \cup\{0\}$.

Note that $I_{q}^{\prime}=\{0,1\} \cup\left(E_{q} \cap\left(1+\left(\mathbb{F}_{q} \backslash E_{q}\right)\right)\right.$. In the first version of this note we only used I_{q}, but a referee suggested that it is more natural to consider $I_{q}^{\prime \prime}$. We use I_{q} and I_{q}^{\prime} because $\{0,1\} \subseteq I_{q} \cap I_{q}^{\prime}$, while $0 \in I_{q}^{\prime \prime}$ if and only if -1 is not a square in \mathbb{F}_{q}, i. e. if and only if $q \equiv 3(\bmod 4)$ ([10, (ix) and (x) at p. 5], [22, p. 22]). In all statements for odd q we handle both I_{q} and I_{q}^{\prime}.

In the case q even we propose to use $\{a(a+1)\}_{\left\{a \in \mathbb{F}_{q}\right\}}$ as E_{q}, i. e. $E_{q}:=\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{2}}^{-1}(0)$. Thus E_{q} is a subgroup of $\left(\mathbb{F}_{q},+\right)$ of index 2 . If q is even we do not have a useful definition of I_{q}.

Thus we restrict to odd prime powers, except for Propositions 1.8, 2.9 and Remarks 2.1 and 2.2.
We see I_{q} or $I_{q}^{\prime}\left(\right.$ resp. $\left.E_{q}\right)$ as the unit segment $[0,1]$ (resp. positive half-line starting at 0) of $\mathbb{F}_{q} \subset$ $\mathbb{F}_{q^{2}}$. In most of the proofs we only use that $\{0,1\} \subseteq I_{q}$ and that $\# I_{q}$ is large, say $\# I_{q}>(q-1) / 4$.

Remark 1.3. Note that $\# E_{q}=(q+1) / 2$ for all odd prime powers q.

We prove that $\# I_{q}=\# I_{q}^{\prime}-1=(q+3) / 4$ if $q \equiv 1 \bmod 4$ and $\# I_{q}=\# I_{q}^{\prime}=(q+5) / 4$ if $q \equiv 3$ $(\bmod 4)($ Proposition 2.3).

We only use the case $A=E_{q}, A=I_{q}$ and $A=I_{q}^{\prime}$ of the following definition.
Definition 1.4. Fix $S \subseteq \mathbb{F}_{q^{2}}^{n}, S \neq \emptyset$, and $A \subseteq \mathbb{F}_{q}$ such that $0 \in A$. We say that S is A-closed if $a+(b-a) A \subseteq S$ for all $a, b \in S$.

In the set-up of Definition 1.4 for any $a, b \in \mathbb{F}_{q^{2}}^{n}$ the A-segment $[a, b]_{A}$ of $\{a, b\}$ is the set $a+(b-a) A$. Note that $[a, a]_{A}=\{a\}$ and that if $b \neq a$ then $b \in[a, b]_{A}$ if and only if $1 \in A$. If S is a subset of a real vector space and A is the unit interval $[0,1] \subset \mathbb{R}$, Definition 1.4 gives the usual notion of convexity, because $a+(b-a) t=(1-t) a+t b$ for all $t \in[0,1]$.

Remark 1.5. Take any $A \subseteq \mathbb{F}_{q}$ such that $0 \in A$. Any translate by an element of $\mathbb{F}_{q^{2}}^{n}$ of an \mathbb{F}_{q}-linear subspace of $\mathbb{F}_{q^{2}}^{n}$ is A-closed. In particular \mathbb{F}_{q}^{n} and $\mathbb{F}_{q^{2}}^{n}$ are A-closed. The intersection of A-closed sets is A-closed, if non-empty. Hence we may define the A-closure of any $S \subseteq \mathbb{F}_{q^{2}}^{n}, S \neq \emptyset$, as the intersection of all A-closed subsets of $\mathbb{F}_{q^{2}}^{n}$ containing S.

In most cases I_{q} is not I_{q}-closed. We prove the following result.
Theorem 1.6. Assume q odd. Then:
(a) If $q \notin\{3,5,9\}$ (resp. $q \neq 3$), then \mathbb{F}_{q} is the I_{q}-closure of I_{q} (resp. the I_{q}^{\prime}-closure of I_{q}^{\prime}).
(b) If $q \notin\{3,5,9\}$ (resp. $q \neq 3$), then the I_{q}-closed (resp. I_{q}^{\prime}-closed) subsets of $\mathbb{F}_{q^{2}}^{n}$ are the translations of the \mathbb{F}_{q}-linear subspaces.

Remark 1.7. Fix $A \subseteq \mathbb{F}_{q}$ such that $0 \in A$. Assume that \mathbb{F}_{q} is the A-closure of \mathbb{F}_{q}. Then $S \subseteq \mathbb{F}_{q^{2}}^{n}$, $S \neq \emptyset$, is A-closed if and only if it is the translation of an \mathbb{F}_{q}-linear subspace by an element of $\mathbb{F}_{q^{2}}^{n}$. Thus part (b) of Theorem 1.6 follows at once from part (a) and similar statements are true for the A-closures for any A whose A-closure is \mathbb{F}_{q}.

As suggested by one of the referees a key part of one of our proofs may be stated in the following general way.

Proposition 1.8. Let A, B be subsets of \mathbb{F}_{q} containing 0. Assume $A \neq\{0\}$ and let G be the subgroup of the multiplicative group $\mathbb{F}_{q} \backslash\{0\}$ generated by $A \backslash\{0\}$. Assume that B is A-closed. Then $B \backslash\{0\}$ is a union of cosets of G.

Fix $S \subset \mathbb{F}_{q^{2}}^{n}$ and a set $A \subset \mathbb{F}_{q}$ such that $\{0,1\} \subseteq A$. Instead of the A-closure of S the following sets $S_{i, A}, i \geq 1$, seem to be better. In particular both circles and $S_{1, A}$ appear in some proofs on the numerical range. Let $S_{1, A}$ be the set of all $a+(b-a) A, a, b \in S$. For all $i \geq 1$ set $S_{i+1, A}:=\left(S_{1, A}\right)_{1, A}$. Obviously $S_{i, A}$ is A-closed for $i \gg 0$. Note that $\{0,1\}_{A}=A$ and hence if we start with $S=\{0,1\}$ we obtain the A-closure of A after finitely many steps.

We thank the referees for an exceptional job, making key corrections and suggestions.

2 The proofs and related observations

We assume q odd, except in Remarks 2.1 and 2.2, Proposition 2.9 and the proof of Proposition 1.8.

Remark 2.1. The notions of E_{q}-closed, I_{q}-closed and I_{q}^{\prime}-closed subsets of $\mathbb{F}_{q^{2}}^{n}$ are invariant by translations of elements of $\mathbb{F}_{q^{2}}^{n}$ and by the action of $G L\left(n, \mathbb{F}_{q}\right)$.

Remark 2.2. Fix any $A \subseteq \mathbb{F}_{q}$ such that $0 \in A$. Any translate by an element of $\mathbb{F}_{q^{2}}^{n}$ of an A-closed set is A-closed. The $\mathbb{F}_{q^{\prime}}$-closed subsets of $\mathbb{F}_{q^{2}}^{n}$ are the translates by an element of $\mathbb{F}_{q^{2}}^{n}$ of the \mathbb{F}_{q}-linear subspaces. If $A \subseteq\{0,1\}$, then any nonempty subset of $\mathbb{F}_{q^{2}}^{n}$ is A-closed.

Proof of Proposition 1.8: Since $\mathbb{F}_{q} \backslash\{0\}$ is cyclic, G is cyclic. Let $a \in A \backslash\{0\}$ be a generator of G. Fix $c \in B \backslash\{0\}$ and take $t \in \mathbb{F}_{q} \backslash\{0\}$ such that $c=t a^{z}$ for some positive integer z. We need to prove that $B \backslash\{0\}$ contains all $t a^{k}, k \in \mathbb{Z}$. Since $b \in B, B$ is A-closed, $a \in A$ and $a=0+(a-0)$, we get $t a^{z+1} \in B$. Iterating this trick we get that B contains all $t a^{k}$ for large k and hence the coset $t G$, because G is cyclic.

Proposition 2.3. We have $\# I_{q}=\# I_{q}^{\prime}-1=(q+3) / 4$ if $q \equiv 1(\bmod 4)$ and $\# I_{q}=\# I_{q}^{\prime}=(q+5) / 4$ if $q \equiv 3(\bmod 4)$.

Proof. Since $A:=\left\{x^{2}+y^{2}=1\right\} \subset \mathbb{F}_{q}^{2}$ is a smooth affine conic, its projectivization $B:=\left\{x^{2}+y^{2}=\right.$ $\left.z^{2}\right\} \subset \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ has cardinality $q+1([10$, th. 5.1.8]). Note that the line $z=0$ is not tangent to B and hence $B \cap\{z=0\}$ has 2 points over $\mathbb{F}_{q^{2}}$. It has 2 points over \mathbb{F}_{q} if and only if -1 is a square in \mathbb{F}_{q}, i. e. if and only if $q \equiv 1(\bmod 4)([10,(\mathrm{ix})$ and (x) at p .5$],[22, \mathrm{p} .22])$. Hence $\# A=q+1$ if $q \equiv 3(\bmod 4)$ and $\# A=q-1$ if $q \equiv 1(\bmod 4)$. Note that $a \in I_{q}$ if and only if there is $(e, f) \in \mathbb{F}_{q}^{2}$ such that $e^{2}+f^{2}=1$ and $a=e^{2}$. Note that $(e, f) \in A$ and that conversely for each $(e, f) \in A, e^{2} \in I_{q}$. Obviously $0 \in I_{q}$ and $(0, f) \in A$ if and only if either $f=1$ or $f=-1$. Thus $0 \in I_{q}$ comes from 2 points of A. Obviously $1 \in I_{q}$. If either $e=1$ or $e=-1$, then $(e, f) \in A$ if and only if $f=0$. Thus $1 \in I_{q}$ comes from 2 points of A. If $e^{2} \notin\{0,1\}$ and $e^{2} \in I_{q}$, then e^{2} comes from 4 points of A.

Fix a non-square $c \in \mathbb{F}_{q}$ and set $A^{\prime}:=\left\{x^{2}-c y^{2}=1\right\} \subset \mathbb{F}_{q}^{2}$. Let $B^{\prime}:=\left\{x^{2}-c y^{2}=z^{2}\right\} \subset \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ be the smooth conic which is the projectivization of A^{\prime}. The line $\{z=0\}$ is not tangent to B^{\prime} and $\{z=0\} \cap A^{\prime}=\emptyset$. Thus $\# A^{\prime}=q+1$. Note that $a \in I_{q}^{\prime \prime}$ if and only if there is $(e, f) \in \mathbb{F}_{q}^{2}$ such that $a=e^{2}$ and $e^{2}-c f^{2}=1$. The element $1 \in I_{q}^{\prime \prime}$ comes from two elements of A^{\prime}. If $0 \in I_{q}^{\prime \prime}$, then it comes from two elements of A^{\prime}. If $0 \notin I_{q}^{\prime \prime}, i$. e. if $q \equiv 3(\bmod 4)$, we get $\# I_{q}^{\prime \prime}=(q+1) / 4$ and $\# I_{q}^{\prime}=(q+5) / 4$. If $0 \in I_{q}^{\prime \prime}$ we get $\# I_{q}^{\prime \prime}=\# I_{q}^{\prime}=(q+7) / 4$.

Remark 2.4. If $q \in\{3,5\}$, then $I_{q}=\{0,1\}$ and hence each non-empty subset of $\mathbb{F}_{q^{2}}^{n}$ is I_{q}-closed if $q \in\{3,5\}$. Since $\{0,1\} \subseteq I_{q}^{\prime}$, Proposition 2.3 gives $I_{3}^{\prime}=I_{3}$. We have $I_{5}^{\prime}=\{0,1,4\}=E_{5}$, because 3 is not a square in \mathbb{F}_{5}.

Remark 2.5. Fix any $t \in \mathbb{F}_{q} \backslash E_{q}$. Then $\mathbb{F}_{q} \backslash E_{q}=t\left(E_{q} \backslash\{0\}\right)$. Obviously $E_{q} E_{q}=E_{q}$.

The following result characterizes $E_{q^{2}}$ and hence characterizes all E_{r} with r a square odd prime power.

Proposition 2.6. The set of $E_{q^{2}} \backslash\{0\}$ of all squares of $\mathbb{F}_{q^{2}} \backslash\{0\}$ is the set of all ab such that $a \in \mathbb{F}_{q} \backslash\{0\}$ and $b^{q+1}=1$. We have $a b=a_{1} b_{1}$ if and only if $\left(a_{1}, b_{1}\right) \in\{(a, b),(-a,-b)\}$.

Proof. Fix $z \in \mathbb{F}_{q^{2}} \backslash\{0\}$. Hence $z^{q^{2}-1}=1$. Thus $z^{(q-1)^{q+1}}=1\left(\right.$ and so $\left.z^{(1-q)^{q+1}}=1\right)$ and $z^{(q+1)^{q-1}}=1$, i. e. $z^{q+1} \in \mathbb{F}_{q} \backslash\{0\}$. Note that $z^{2}=z^{q+1} z^{1-q}$. Assume $a b=a_{1} b_{1}$ with a, $a_{1} \in \mathbb{F}_{q} \backslash\{0\}$ (i.e., with $a^{q-1}=a_{1}^{q-1}=1$) and $b^{q+1}=b_{1}^{q+1}=1$. Taking a $a_{1}{ }^{-1}$ and $b b_{1}{ }^{-1}$ instead of a and b we reduce to the case $a_{1}=b_{1}=1$ and hence $a b=1$. Thus $a^{q+1} b^{q+1}=1$. Hence $a^{2}=1$. Since q is odd and $a \neq 1$, then $a=-1$. Thus $b=-1$.

Proposition 2.7. Take $S \subseteq \mathbb{F}_{q^{2}}^{n}$. The set S is E_{q}-closed if and only if it is a translation of an \mathbb{F}_{q}-linear subspace.

Proof. Remark 2.2 gives the "if" part. Assume that S is not a translation of an \mathbb{F}_{q}-linear subspace and fix $a, b \in S$ such that $a \neq b$ and the affine \mathbb{F}_{q}-line L spanned by $\{a, b\}$ is not contained in S. By Remark 2.1 it is sufficient to find a contradiction in the case $n=1$ and $L=\mathbb{F}_{q}$ with $a=0$ and $b=1$. Thus $E_{q} \subseteq S$. Since S is E_{q}-closed and $0 \in S, c+(-c) E_{q} \subseteq S$ for all $c \in E_{q}$. First assume $-1 \in E_{q}$. In this case $-c E_{q}=E_{q}$. Thus S contains all sums of two squares. Thus $S=\mathbb{F}_{q}$. Now assume $-1 \notin E_{q}$. In this case we obtained that S contains all differences of two squares. Thus $-E_{q} \subset S$. Since $-1 \notin E_{q},-E_{q}=\{0\} \cup\left(\mathbb{F}_{q} \backslash E_{q}\right)$ (Remark 2.5). Thus $S \supseteq L$.

The cases of I_{q}-closures and I_{q}^{\prime}-closures are more complicated, because $I_{q}=I_{q}^{\prime}=\{0,1\}$ if $q=3,5$ and hence all subsets of $\mathbb{F}_{q^{2}}^{n}$ are I_{q}-closed if $q=3,5$. The following observation shows that the I_{9}-closed subsets of \mathbb{F}_{81}^{n} are exactly the translations of the \mathbb{F}_{3}-linear subspaces and gives many examples with $I_{q} \nsubseteq I_{q}^{\prime}$.

Remark 2.8. We always have $2 \notin 1+c E_{q}$, c a non-square, because 1 is a square. If q is a square, say $q=s^{2}$, then obviously $\mathbb{F}_{s} \subseteq E_{q} \cap\left(1-E_{q}\right)=I_{q}$ and hence $2 \in I_{q}$. Take $q=9$. We get $\mathbb{F}_{3} \subseteq I_{9}$. Since $\# I_{9}=3$ (Proposition 2.3), we get $I_{q}=\mathbb{F}_{3}$. Thus the I_{9}-closed subsets of \mathbb{F}_{81}^{n} are exactly the translations of the \mathbb{F}_{3}-linear subspaces. Now assume that q is not a square. We have $2 \in 1-E_{q}$ if and only if -1 is a square, i. e. if and only if $q \equiv 1(\bmod 4)$. Since q is not a square, we have $2 \in E_{q}$ if and only if 2 is a square in \mathbb{F}_{p}, i. e. if and only if $p \equiv-1,1(\bmod 8)$ ($[15$, Proposition 5.1.3]). Thus for a non-square q holds: $2 \in I_{q}$ if and only if $p \equiv 1(\bmod 8)$.

Proof of Theorem 1.6: Let Y be the I_{q}-closure of I_{q}. By Proposition 1.8, $Y^{\prime}:=Y \backslash\{0\}$ is a union of the cosets of $H:=\left\langle I_{q} \backslash\{0\}\right\rangle$. Since $\#\left(I_{q} \backslash\{0\}\right) \geq(q-1) / 4$ with equality if and only if $q \equiv 1$ $(\bmod 4), H$ is either \mathbb{F}_{q}^{*}, the set of non-zero squares, the set of non-zero cubes or (only if $q \equiv 1$ $\bmod 4)$, the set of all non-zero 4-powers. Since $I_{q} \subseteq E_{q}, H \neq \mathbb{F}_{q}^{*}$. If H is the set of cubes, then, as all elements of I_{q} are squares, it would be the set of 6 -th powers, contradicting the inequality $\# I_{q}>(q-1) / 4$.
(a) Assume that $H=E_{q} \backslash\{0\}$. It suffices to show that the I_{q}-closure of the set of squares contains a non-square. Suppose otherwise. Take an element $a \in I_{q}$ with $a \notin\{0,1\}$. Then we obtain that for all squares $x, y, x+(y-x) a$ is also a square. Since a is a non-zero square, this is the
same as the statement that for all squares x, z the element $z+(1-a) x$ is a square. If $1-a$ is a square we deduce that the set of all squares is closed under addition, a contradiction. If $1-a$ is not a square we may take $x=1, z=0$ to obtain a contradiction.
(b) Assume $q \equiv 1(\bmod 4), q \neq 9$, and that H is the set of all non-zero 4-powers. We also saw that $H=I_{q} \backslash\{0\}$. The proof of step (a) works using the word "4-power" instead of "square" with a a 4-power. We get that the set of all 4-powers is closed under taking differences. Thus I_{q} is closed under taking differences and, since it contains 0 , under the multiplication by -1 . H is obviously closed under taking products. Thus I_{q} is a subfield of order $(q+3) / 4$, which is absurd if $q \neq 9$.
(c) Now we consider I_{q}^{\prime} and set $H^{\prime}:=\left\langle I_{q} \backslash\{0\}\right\rangle$. The cases in which H^{\prime} is the set of all squares or all cubes are excluded as above. Since $\#\left(I_{q}^{\prime} \backslash\{0\}\right)>(q-1) / 4, Y$ is not the set of all 4 -th powers.

Proposition 2.9. Assume q even and set $E_{q}:=\{a(a+1)\}_{a \in \mathbb{F}_{q}}$.
(1) If $q=2,4$, then E_{q} is the E_{q}-closure of itself.
(2) If $q \geq 8$, then \mathbb{F}_{q} is the E_{q}-closure of E_{q}.

Proof. We have $E_{2}=\{0\}$ and $E_{4}=\{0,1\}$.
Now assume $q \geq 8$ and call B the E_{q}-closure of E_{q}. Let G be the subgroup of the multiplicative group $\mathbb{F}_{q} \backslash\{0\}$ generated by $E_{q} \backslash\{0\}$. By Proposition 1.8 it is sufficient to prove that $G=\mathbb{F}_{q} \backslash\{0\}$. Since $\# E_{q}=q / 2, E_{q} \backslash\{0\} \neq \emptyset$. Fix $a \in E_{q} \backslash\{0\}$ and a positive integer k. The E_{q}-closure of $\left\{0, a^{k}\right\}$ contains a^{k+1}. Thus B contains the multiplicative subgroup of $\mathbb{F}_{q} \backslash\{0\}$ generated by $E_{q} \backslash\{0\}$. Since $q \geq 8, \#\left(\mathbb{F}_{q} \backslash\{0\}\right)=q-1$ is odd and $q-1<3(q / 2-1)=3 \#\left(\mathbb{F}_{q} \backslash\{0\}\right)$, we get $G=\mathbb{F}_{q} \backslash\{0\}$.

References

[1] E. Ballico, "On the numerical range of matrices over a finite field", Linear Algebra Appl., vol. 512, pp. 162-171, 2017.
[2] E. Ballico, Corrigendum to "On the numerical range of matrices over a finite field" [Linear Algebra Appl., vol. 512, pp. 162-171, 2017], Linear Algebra Appl., vol. 556, pp. 421-427, 2018.
[3] E. Ballico, "The Hermitian null-range of a matrix over a finite field", Electron. J. Linear Algebra, vol. 34, pp. 205-216, 2018.
[4] E. Ballico, "A numerical range characterization of unitary matrices over a finite field", AsianEuropean Journal of Mathematics (AEJM) (to appear). doi: 10.1142/S1793557122500498
[5] F. F. Bonsall and J. Duncan, Numerical ranges II, London Mathematical Society Lecture Note Series, no. 10, New York-London: Cambridge University Press, 1973.
[6] K. Camenga, B. Collins, G. Hoefer, J. Quezada, P. X. Rault, J. Willson and R. J. Yates, "On the geometry of numerical ranges over finite fields", Linear Algebra Appl., vol. 628, pp. 182-201, 2021.
[7] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, "A definition of numerical range of rectangular matrices", Linear Multilinear Algebra, vol. 57, no. 5, pp. 459-475, 2009.
[8] J. I. Coons, J. Jenkins, D. Knowles, R. A. Luke and P. X. Rault, "Numerical ranges over finite fields", Linear Algebra Appl., vol. 501, pp. 37-47, 2016.
[9] K. E. Gustafson and D. K. M. Rao, Numerical range, Universitext, New York: Springer-Verlag, 1997.
[10] J. W. P. Hirschfeld, Projective geometries over finite fields, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1979.
[11] J. W. P. Hirschfeld and J. A. Thas, General Galois geometries, Oxford Mathematical Monographs, New York: The Clarendon Press, Oxford University Press, 1991.
[12] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 1985.
[13] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991.
[14] L. Jin, "Quantum stabilizer codes from maximal curves", IEEE Trans. Inform. Theory, vol. 60, no. 1, pp. 313-316, 2014.
[15] K. Ireland and M. Rosen, A classical introduction to modern number theory, Second Edition, Graduate Texts in Mathematics, 84, New York: Springer-Verlag, 1990.
[16] R. Ke, W. Li and M. K. Ng, "Numerical ranges of tensors", Linear Algebra Appl., vol. 508, pp. 100-132, 2016.
[17] J.-L. Kim and G. L. Matthews, "Quantum error-correcting codes from algebraic curves", in Advances in algebraic geometry codes, Ser. Coding Theory Cryptol., vol. 5, Hackensack, NJ: World Sci. Publ., 2008, pp. 419-444.
[18] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications, 20, Cambridge: Cambridge University Press, 1997.
[19] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge: Cambridge University Press, 1994.
[20] C. Munuera, W. Tenório and F. Torres, "Quantum error-correcting codes from algebraic geometry codes of Castle type", Quantum Inf. Process., vol. 15, no. 10, pp. 4071-4088, 2016.
[21] P. J. Psarrakos and M. J. Tsatsomeros, "Numerical range: (in) a matrix nutshell", National Technical University, Athens, Greece, Notes, 2004.
[22] C. Small, Arithmetic of finite fields, Monographs and Textbooks in Pure and Applied, 148, New York: Marcel Dekker, Inc., 1991.

