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ABSTRACT

A graph G without isolated vertices is a least common multi-

ple of two graphs H1 andH2 if G is a smallest graph, in terms

of number of edges, such that there exists a decomposition of

G into edge disjoint copies of H1 and there exists a decom-

position of G into edge disjoint copies of H2. The concept

was introduced by G. Chartrand et al. and they proved that

every two nonempty graphs have a least common multiple.

Least common multiple of two graphs need not be unique. In

fact two graphs can have an arbitrary large number of least

common multiples. In this paper graphs that have a unique

least common multiple with P3 ∪K2 are characterized.

RESUMEN

Un grafo G sin vértices aislados es un mı́nimo común

múltiplo de dos grafos H1 y H2 si G es uno de los grafos

más pequeños, en términos del número de ejes, tal que existe

una descomposición de G en copias de H1 disjuntas por ejes

y existe una descomposición de G en copias de H2 disjun-

tas por ejes. El concepto fue introducido por G. Chartrand

et al. donde ellos demostraron que cualquera dos grafos no

vaciós tienen un mı́nimo común múltiplo. El mı́nimo común

múltiplo de dos grafos no es necesariamente único. De hecho,

dos grafos pueden tener un número arbitrariamente grande

de mı́nimos comunes múltiplos. En este art́ıculo caracteri-

zamos los grafos que tienen un único mı́nimo común múltiplo

con P3 ∪K2.
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1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices. The

number of edges of a graph G denoted by e(G), is called the size of G. δ(G) and ∆(G) respectively

denote the minimum and maximum of the degrees of all vertices in G. χ′(G) denotes the edge

chromatic number of G, the minimum number of colors needed to color the edges of G, so that

no two adjacent edges in G have the same color. An odd component of a graph is a maximal

connected subgraph of the graph with odd number of edges. Two graphs G and H are said to

be isomorphic, denoted as G ∼= H if there exists a bijection between the vertex sets of G and H ,

f : V (G) → V (H) such that two vertices u and v of G are adjacent in G if and only if f(u) and

f(v) are adjacent in H . For graphs G1 and G2, their union G1 ∪ G2 is the graph with vertex set

V (G1 ∪G2) = V (G1) ∪ V (G2) and edge set consisting of all the edges in G1 together with all the

edges in G2. If k is a positive integer, then kG is the union of k disjoint copies of G.

G1
v1

v2

G2
v3

v4

v5 G3
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Figure 1: G1 ∪G2

Let G = G2. Then G ∼= G3 and 2G is shown in Figure 2.
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Figure 2: 2G

A vertex u of a graph G is said to cover an edge e of G or e is covered by u, if e is incident with u.

Let u,w be two vertices of a graph G and take two copies of G : G1, G2. The graphH obtained by

identifying the vertex u in G1 with the vertex w in G has vertex set V (H) = V (G1)∪V (G2)−{w}

and edge set E(H) = E(G1) ∪ E(G2), where the edges in G2 incident with w are now incident

with u.

A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic to H ,

whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-decomposition
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of G. If G has an H-decomposition, we say that G is H-decomposable and write H |G.

A graph is called a common multiple of two graphs H1 and H2 if both H1|G and H2|G. A graph

G is a least common multiple of H1 and H2 if G is a common multiple of H1 and H2 and no other

common multiple has a smaller positive number of edges. Several authors have investigated the

problem of finding least common multiples of pairs of graphsH1 and H2; that is graphs of minimum

size which are both H1 and H2 decomposable. The problem was introduced by Chartrand et al.

in [5] and they showed that every two nonempty graphs have a least common multiple. The

problem of finding the size of least common multiples of graphs has been studied for several pairs

of graphs: cycles and stars [5, 13, 14], paths and complete graphs [11], pairs of cycles [10], pairs of

complete graphs [4], complete graphs and a 4-cycle [1], pairs of cubes [2] and paths and stars [8].

Least common multiple of digraphs were considered in [7].

If G is a common multiple of H1 and H2 and G has q edges, then we call G a (q,H1, H2) graph. An

obvious necessary condition for the existence of a (q,H1, H2) graph is that e(H1)|q and e(H2)|q.

This obvious necessary condition is not always sufficient. Therefore, we may ask: Given two

graphs H1 and H2, for which value of q does there exist a (q,H1, H2) graph? Adams, Bryant and

Maenhaut [1] gave a complete solution to this problem in the case where H1 is the 4-cycle and H2

is a complete graph; Bryant and Maenhaut [4] gave a complete solution to this problem when H1 is

the complete graph K3 and H2 is a complete graph. The problem to find least common multiples

of two graphs H1 and H2 is to find all (q,H1, H2) graphs G of minimum size q. We denote the

set of all least common multiples of H1 and H2 by LCM(H1, H2). The size of a least common

multiple of H1 and H2 is denoted by lcm(H1, H2). Since every two nonempty graphs have a least

common multiple, LCM(H1, H2) is nonempty. For many pairs of graphs the number of elements of

LCM(H1, H2) is greater than one. For example both P7 and C6 are least common multiples of P4

and P3. In fact Chartrand et al. [6] proved that for every positive integer n there exist two graphs

having exactly n least common multiples. In [11] it was shown that every least common multiple

of two connected graphs is connected and that every least common multiple of two 2-connected

graphs is 2-connected. But this is not the case for disconnected graphs. For example if we take

H1 = 2K2, H2 = C5, then G1 = 2C5 and G2 - the graph obtained by identifying two vertices in

two copies of C5, are in LCM(H1, H2) of which G1 is disconnected while G2 is connected.

As two graphs can have several least common multiples, it is interesting to search for pairs of

graphs that have a unique least common multiple. Pairs of graphs having a unique least common

multiple were investigated by G. Chartrand et al. in [6] and they proved the following results.

Theorem 1.1. A graph G of order p without isolated vertices and the graph P3 have a unique

least common multiple if and only if every component of G has even size or G ∼= Kp, where p ≡ 2

or 3 (mod 4).

Theorem 1.2. A nonempty graph G without isolated vertices and the graph 2K2 have a unique
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least common multiple if and only if G ∼= K2, G ∼= K3 or 2K2|G.

Theorem 1.3. Let r and s be integers with 2 ≤ r ≤ s. Then the stars K1,r and K1,s have a

unique least common multiple if and only if gcd(r, s) 6= 1.

A result proved by N. Alon [3] on tK2-decomposition of a graph is used to find those graphs that

have a unique least common multiple with tK2.

Theorem 1.4. For every graph G and every t > 1, tK2|G if and only if t|e(G) and χ′(G) ≤
e(G)

t
.

We will also make use of a result proved by O. Favaron, Z. Lonc and M. Truszczynski [9] to

characterize those graphs that have a unique least common multiple with P3 ∪K2.

Theorem 1.5. If G is none of the six graphs G1 to G6 listed below, then G is P3∪K2 decomposable

if and only if

(1) e(G) ≡ 0 (mod 3),

(2) ∆(G) ≤ 2
3e(G),

(3) c(G) ≤ 1
3e(G), where c(G) denote the number of odd components of G,

(4) the edges of G cannot be covered by two adjacent vertices;

where,

G1 G2 G3 G4

G5 G6

2 Main results

In this section we are characterizing those graphs that have a unique least common multiple with

tK2 and P3 ∪K2.
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2.1 On graphs that have a unique least common multiple with tK2

Theorem 2.1. A nonempty graph G without isolated vertices and the graph tK2 have a unique

least common multiple if and only if tK2|G or δ(G) >
lcm(tK2, G)

2t
.

Proof. Consider the graph tG. Clearly tG is both G and tK2 decomposable. Let q = e(G). Since

e(tG) = tq, we have lcm(tK2, G) ≤ tq. But lcm(tK2, G) is a multiple of q. So lcm(tK2, G) = ql,

where l ≤ t. This implies lcm(tK2,G)
t

= ql

t
. Let H be a least common multiple of G and tK2.

Case 1. l > 1.

Since H is tK2-decomposable, by Theorem 1.4, χ′(H) ≤ ql
t
. Since G|H , χ′(G) ≤ χ′(H) ≤ ql

t
.

Thus ∆(G) ≤ ql

t
.

Subcase (i): δ(G) ≤ ql
2t .

Consider the graph G ◦ G, which is obtained by identifying two vertices of least degree in G. In

this subcase ∆(G ◦ G) ≤ ql

t
, since ∆(G) ≤ ql

t
. χ′(G) ≤ ql

t
implies χ′(G ◦ G) ≤ ql

t
. Color G1, a

copy of G in G ◦G, with k ≤ ql
t
colors. This is possible, since χ′(G) ≤ ql

t
. Let v be the identified

vertex in G◦G. Since δ(G) ≤ ql

2t , the edges adjacent to v in G1 are colored using at most ql

2t colors.

Color G2, the copy of G in G◦G other than G1, with the same k colors as follows. Color the edges

adjacent to v in G2 using colors different from those which were used to color the edges adjacent

to v in G1. The remaining colors used in the coloring of G1 can be used to color other edges of

G2. Thus χ
′(G ◦G) = k ≤ ql

t
.

Let H1 = lG, the union of l disjoint copies of G and H2 = G◦G∪ (l− 2)G. Clearly H1 and H2 are

divisible by G. Since χ′(H1) = χ′(G) ≤ ql

t
, H1 is tK2-decomposable. χ′(H2) = χ′(G ◦G) ≤ ql

t
, H2

is tK2-decomposable by Theorem 1.4. Thus H1, H2 ∈ LCM(tK2, G). e(H1) = e(H2) = ql, where

q = e(G). Since lcm(tK2, G) = ql, H1 and H2 are two non-isomorphic least common multiples of

tK2 and G.

Subcase (ii): δ(G) > ql
2t .

In this case l > 1 and lcm(tK2, G) = ql, where q = e(G). Thus H ∈ LCM(tK2, G), should be

decomposed into at least two copies of G. If H is different from lG, then ∆(H) > ql

t
which implies

χ′(H) > ql

t
and hence by Theorem 1.4, H is not tK2-decomposable. Thus lG is the unique least

common multiple of tK2 and G.

Case 2. l = 1.

In this case lcm(tK2, G) = q. Thus tK2|G and G is the unique least common multiple.

Remark 2.2. The result in the above theorem, Theorem 2.1, appeared in [12]. We are giving the

proof of this result here since the result is needed for proving Theorem 2.3. The result was proved
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by the first author of this manuscript.

2.2 On graphs that have a unique least common multiple with P3 ∪K2

Theorem 2.3. A nonempty graph G without isolated vertices and the graph P3∪K2 have a unique

least common multiple if and only if G = K2 or P3 ∪K2 | G.

Proof. Let q = e(G).

Case 1. G is a connected graph.

If G = K2, then G | P3∪K2. Thus LCM(P3∪K2,K2) = {P3∪K2} and hence their least common

multiple is unique. So we are going to analyse the case where G 6= K2.

Consider the graph 3G, a union of three disjoint copies of G. Then

(1) e(3G) ≡ 0 (mod 3).

(2) ∆(3G) = ∆(G) ≤ q = 1
3 (3q) ≤

2
3 (3q) =

2
3e(3G).

(3) c(3G) ≤ 3 ≤ 1
3 (3q) =

1
3e(3G), if e(G) ≥ 3. If e(G) = 2, then c(3G) = 0 ≤ 1

3e(3G).

(4) The edges of 3G cannot be covered by two adjacent vertices, since the graph is disconnected.

Thus by Theorem 1.5, 3G is P3∪K2-decomposable. Clearly 3G is G-decomposable. Hence lcm(P3∪

K2, G) ≤ 3q.

Subcase (i): lcm(P3 ∪K2, G) = 3q.

Consider the graph H = G◦G∪G, where G◦G is the graph obtained by identifying a least degree

vertex in two copies of G. Then

(1) e(H) ≡ 0 (mod 3).

(2) ∆(H) ≤ 2q = 2
3 (3q) =

2
3e(H).

(3) c(H) ≤ 1 ≤ 1
3 (3q) =

1
3e(H).

(4) Since H is disconnected, edges of H cannot be covered by two adjacent vertices.

Thus by Theorem 1.5, H is P3 ∪K2- decomposable. Clearly H is G- decomposable. Hence in this

case both H and 3G are elements of LCM(P3 ∪K2, G) and hence their least common multiple is

not unique.

Subcase (ii): lcm(P3 ∪K2, G) = 2q.

In this case there exists a graph H such that e(H) = 2q and H ∈ LCM(P3 ∪K2, G). Consider the

graph 2G.
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(1) Since H ∈ LCM(P3 ∪K2, G) we get 3 | e(H) = 2q = e(2G) and hence e(2G) ≡ 0 (mod 3).

(2) Since H is G-decomposable and ∆(G) = ∆(2G), ∆(2G) ≤ ∆(H). H is P3∪K2-decomposable

and so by Theorem 1.5, ∆(H) ≤ 2
3e(H) = 2

3e(2G). Thus ∆(2G) ≤ 2
3e(2G).

(3) In this case q ≥ 3
(

if q = 1, then G = K2 and if q = 2, then e(2G) = 4 6≡ 0 (mod 3)
)

. So

c(2G) ≤ 2 ≤ 1
32q = 1

3e(2G).

(4) Since 2G is disconnected, the edges of 2G cannot be covered by two adjacent vertices.

By applying Theorem 1.5, 2G is P3 ∪ K2-decomposable. 2G is clearly G-decomposable. Thus

2G ∈ LCM(P3 ∪K2, G).

We can also prove that G ◦G ∈ LCM(P3 ∪K2, G).

(1) e(G ◦G) = e(2G) ≡ 0 (mod 3).

(2) In order to prove that ∆(G ◦ G) ≤ 2
3e(G ◦ G) it is enough to prove that ∆(G) and 2δ(G)

are less than or equal to 2
3e(G ◦G), since G ◦G is obtained by identifying a vertex of least

degree in two copies of G.

Since H ∈ LCM(P3 ∪K2, G), ∆(G) ≤ ∆(H) ≤ 2
3e(H) = 2

3e(G ◦G).

2δ(G) ≤ 2
3e(G ◦ G) ⇐⇒ δ(G) ≤ 2q

3 . Suppose δ(G) > 2q
3 . Then 2q =

∑

v∈V (G) d(v) ≥
∑

v∈V (G) δ(G) = nδ(G) > n 2q
3 , where n = |V (G)|. This implies n < 3. G is a connected

graph without isolated vertices and G 6= K2. Thus n ≥ 3 and so δ(G) ≤ 2q
3 .

(3) c(G ◦G) = 0 < 1
3e(G ◦G).

(4) The edges of G ◦G cannot be covered by two adjacent vertices. Suppose the edges of G ◦G

can be covered by two adjacent vertices, then the identified vertex is one such vertex, since

in G ◦ G, no two vertices are adjacent except the identified vertex. This implies using the

identified vertex and one other vertex it is possible to cover all the edges of G ◦ G. This

is possible only if G is a star with the identified vertex as the center of the star. This is a

contradiction, since to construct G ◦G a vertex of least degree in G is identified.

Applying Theorem 1.5, G ◦ G is P3 ∪ K2- decomposable and it is clearly G-decomposable. So

G ◦G ∈ LCM(P3 ∪K2, G).

We have proved that 2G and G ◦ G ∈ LCM(P3 ∪K2, G) and hence their least common multiple

is not unique.

Subcase (iii): lcm(P3 ∪K2, G) = q.

In this subcase G is the unique least common multiple, since q = e(G).

Case 2. G is disconnected.
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As in the first case, assume that G 6= tK2. Then at least one component of G has more than one

edge. We construct a graph of size 3q, which is a (3q,G, P3 ∪ K2)-graph, where q = e(G). The

construction is as follows. Take a least degree vertex from each component of G. Let H be the

connected graph obtained by identifying all these vertices together. Take a least degree vertex in

H . Denote by H ◦H ◦H , the graph obtained by identifying this least degree vertex in three copies

of H .

(1) e(H ◦H ◦H) = e(3H) = 3e(G) ≡ 0 (mod 3).

(2) ∆(H ◦H ◦H) ≤ 2∆(H) ≤ 2e(G) = 2
3e(3G) = 2

3e(H ◦H ◦H).

(3) c(H ◦H ◦H) ≤ 1 ≤ 1
3e(H ◦H ◦H).

(4) As in Subcase (ii) of the previous case, the edges of H ◦ H ◦ H cannot be covered by two

adjacent vertices.

By Theorem 1.5, H ◦H ◦H is P3 ∪K2-decomposable and obviously it is G-decomposable. Thus

lcm(P3 ∪K2, G) ≤ 3q.

Subcase (i): lcm(P3 ∪K2, G) = 3q.

From the above discussion H ◦ H ◦ H is a least common multiple in this subcase. Consider the

graph H ◦H ∪H .

(1) e(H ◦H ∪H) = 3e(G) ≡ 0 (mod 3).

(2) ∆(H ◦H ∪H) ≤ 2∆(H) ≤ 2e(G) = 2
3e(3G) = 2

3e(H ◦H ∪H).

(3) c(H ◦H ∪H) ≤ 1 = 1
3e(H ◦H ∪H).

(4) Since H ◦H ∪H is disconnected, the edges of H ◦H ∪H cannot be covered by two adjacent

vertices.

Applying Theorem 1.5,H◦H∪H is P3∪K2-decomposable and by construction it isG-decomposable.

Thus both H ◦ H ◦ H and H ◦ H ∪ H are in LCM(P3 ∪ K2, G) and hence their least common

multiple is not unique.

Subcase (ii): lcm(P3 ∪K2, G) = 2q.

In this subcase there exists a graph H ′ of size 2q which is both G and P3 ∪K2 decomposable. We

will prove that H ◦H and H ∪H are in LCM(P3 ∪K2, G).

(1) e(H ◦H) = 2q ≡ 0 (mod 3), since e(H ′) = 2q and H ′ is P3 ∪K2- decomposable.

(2) In order to prove that ∆(H ◦H) ≤ 2
3e(H ◦H), it is enough to prove that 2δ(H) ≤ 2

3e(H ◦H).

That is we need to prove δ(H) ≤ 1
3 (2q), where q = e(H) = e(G).
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Suppose δ(H) > 2q
3 . Then 2q =

∑

v∈V (H) d(v) ≥
∑

v∈V (H) δ(H) = nδ(H) > n(2q3 ) ⇒ n < 3.

Since G is a disconnected graph without isolated vertices, n < 3 is not possible. Hence

δ(H) ≤ 2q
3 . Thus ∆(H ◦H) ≤ 2

3e(H ◦H).

(3) c(H ◦H) = 0 < 1
3e(H ◦H).

(4) By the construction of H ◦H , the edges of H ◦H cannot be covered by two adjacent vertices.

By Theorem 1.5, H ◦H is P3 ∪K2-decomposable and by construction, H ◦H is G-decomposable

and so H ◦H ∈ LCM(P3 ∪K2, G).

Also H ∪H ∈ LCM(P3 ∪K2, G), since

(1) e(H ∪H) = 2q ≡ 0 (mod 3), since lcm(P3 ∪K2) = 2q, where q = e(G) = e(H).

(2) ∆(H ∪H) ≤ ∆(H ◦H) ≤ 2
3e(H ◦H) = 2

3e(H ∪H).

(3) Here c(H ∪ H) ≤ 2. Thus c(H ∪ H) ≤ 1
3e(H ∪ H) if 2 ≤ 2q

3 , that is if q ≥ 3, where, q =

e(G) = e(H). Since G is a disconnected graph without isolated vertices, q 6= 1. Also if q = 2,

then 2q = 4 6≡ 0 (mod 3). Thus in this subcase, q ≥ 3 and hence c(H ∪H) ≤ 1
3e(H ∪H).

Thus H ◦H and H ∪H belong to LCM(P3 ∪K2, G) and hence their least common multiple is not

unique.
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