Cubo
A Mathematical Journal

On graphs that have a unique least common multiple

Reji T. ${ }^{1}$ (i)
Jinitha Varughese ${ }^{2}$ (id
Ruby R. ${ }^{1}$ (D)
${ }^{1}$ Department of Mathematics, Government College Chittur Palakkad, India. rejiaran@gmail.com
rubymathpkd@gmail.com
${ }^{2}$ Department of Mathematics, B. K. College Amalagiri, Kottayam, India.
jinith@gmail.com

Abstract

A graph G without isolated vertices is a least common multiple of two graphs H_{1} and H_{2} if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of G into edge disjoint copies of H_{1} and there exists a decomposition of G into edge disjoint copies of H_{2}. The concept was introduced by G. Chartrand et al. and they proved that every two nonempty graphs have a least common multiple. Least common multiple of two graphs need not be unique. In fact two graphs can have an arbitrary large number of least common multiples. In this paper graphs that have a unique least common multiple with $P_{3} \cup K_{2}$ are characterized.

RESUMEN

Un grafo G sin vértices aislados es un mínimo común múltiplo de dos grafos H_{1} y H_{2} si G es uno de los grafos más pequeños, en términos del número de ejes, tal que existe una descomposición de G en copias de H_{1} disjuntas por ejes y existe una descomposición de G en copias de H_{2} disjuntas por ejes. El concepto fue introducido por G. Chartrand et al. donde ellos demostraron que cualquera dos grafos no vaciós tienen un mínimo común múltiplo. El mínimo común múltiplo de dos grafos no es necesariamente único. De hecho, dos grafos pueden tener un número arbitrariamente grande de mínimos comunes múltiplos. En este artículo caracterizamos los grafos que tienen un único mínimo común múltiplo con $P_{3} \cup K_{2}$.

Keywords and Phrases: Graph decomposition, common multiple of graphs.
2020 AMS Mathematics Subject Classification: 05C38, 05C51, 05C70.

1 Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices. The number of edges of a graph G denoted by $e(G)$, is called the size of $G . \delta(G)$ and $\Delta(G)$ respectively denote the minimum and maximum of the degrees of all vertices in $G . \chi^{\prime}(G)$ denotes the edge chromatic number of G, the minimum number of colors needed to color the edges of G, so that no two adjacent edges in G have the same color. An odd component of a graph is a maximal connected subgraph of the graph with odd number of edges. Two graphs G and H are said to be isomorphic, denoted as $G \cong H$ if there exists a bijection between the vertex sets of G and H, $f: V(G) \rightarrow V(H)$ such that two vertices u and v of G are adjacent in G if and only if $f(u)$ and $f(v)$ are adjacent in H. For graphs G_{1} and G_{2}, their union $G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set consisting of all the edges in G_{1} together with all the edges in G_{2}. If k is a positive integer, then $k G$ is the union of k disjoint copies of G.

Figure 1: $G_{1} \cup G_{2}$

Let $G=G_{2}$. Then $G \cong G_{3}$ and $2 G$ is shown in Figure 2 .

Figure 2: $2 G$

A vertex u of a graph G is said to cover an edge e of G or e is covered by u, if e is incident with u. Let u, w be two vertices of a graph G and take two copies of $G: G_{1}, G_{2}$. The graph H obtained by identifying the vertex u in G_{1} with the vertex w in G has vertex set $V(H)=V\left(G_{1}\right) \cup V\left(G_{2}\right)-\{w\}$ and edge set $E(H)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$, where the edges in G_{2} incident with w are now incident with u.

A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-decomposition
of G. If G has an H-decomposition, we say that G is H-decomposable and write $H \mid G$.

A graph is called a common multiple of two graphs H_{1} and H_{2} if both $H_{1} \mid G$ and $H_{2} \mid G$. A graph G is a least common multiple of H_{1} and H_{2} if G is a common multiple of H_{1} and H_{2} and no other common multiple has a smaller positive number of edges. Several authors have investigated the problem of finding least common multiples of pairs of graphs H_{1} and H_{2}; that is graphs of minimum size which are both H_{1} and H_{2} decomposable. The problem was introduced by Chartrand et al. in [5] and they showed that every two nonempty graphs have a least common multiple. The problem of finding the size of least common multiples of graphs has been studied for several pairs of graphs: cycles and stars [5, 13, 14], paths and complete graphs [11], pairs of cycles [10], pairs of complete graphs [4], complete graphs and a 4-cycle [1], pairs of cubes [2] and paths and stars [8]. Least common multiple of digraphs were considered in [7].

If G is a common multiple of H_{1} and H_{2} and G has q edges, then we call G a $\left(q, H_{1}, H_{2}\right)$ graph. An obvious necessary condition for the existence of a $\left(q, H_{1}, H_{2}\right)$ graph is that $e\left(H_{1}\right) \mid q$ and $e\left(H_{2}\right) \mid q$. This obvious necessary condition is not always sufficient. Therefore, we may ask: Given two graphs H_{1} and H_{2}, for which value of q does there exist a (q, H_{1}, H_{2}) graph? Adams, Bryant and Maenhaut [1] gave a complete solution to this problem in the case where H_{1} is the 4-cycle and H_{2} is a complete graph; Bryant and Maenhaut [4] gave a complete solution to this problem when H_{1} is the complete graph K_{3} and H_{2} is a complete graph. The problem to find least common multiples of two graphs H_{1} and H_{2} is to find all $\left(q, H_{1}, H_{2}\right)$ graphs G of minimum size q. We denote the set of all least common multiples of H_{1} and H_{2} by $L C M\left(H_{1}, H_{2}\right)$. The size of a least common multiple of H_{1} and H_{2} is denoted by $\operatorname{lcm}\left(H_{1}, H_{2}\right)$. Since every two nonempty graphs have a least common multiple, $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ is nonempty. For many pairs of graphs the number of elements of $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ is greater than one. For example both P_{7} and C_{6} are least common multiples of P_{4} and P_{3}. In fact Chartrand et al. [6] proved that for every positive integer n there exist two graphs having exactly n least common multiples. In [11] it was shown that every least common multiple of two connected graphs is connected and that every least common multiple of two 2 -connected graphs is 2 -connected. But this is not the case for disconnected graphs. For example if we take $H_{1}=2 K_{2}, H_{2}=C_{5}$, then $G_{1}=2 C_{5}$ and G_{2} - the graph obtained by identifying two vertices in two copies of C_{5}, are in $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ of which G_{1} is disconnected while G_{2} is connected.

As two graphs can have several least common multiples, it is interesting to search for pairs of graphs that have a unique least common multiple. Pairs of graphs having a unique least common multiple were investigated by G. Chartrand et al. in [6] and they proved the following results.

Theorem 1.1. A graph G of order p without isolated vertices and the graph P_{3} have a unique least common multiple if and only if every component of G has even size or $G \cong K_{p}$, where $p \equiv 2$ or 3 ($\bmod 4$).
Theorem 1.2. A nonempty graph G without isolated vertices and the graph $2 K_{2}$ have a unique
least common multiple if and only if $G \cong K_{2}, G \cong K_{3}$ or $2 K_{2} \mid G$.
Theorem 1.3. Let r and s be integers with $2 \leq r \leq s$. Then the stars $K_{1, r}$ and $K_{1, s}$ have a unique least common multiple if and only if $\operatorname{gcd}(r, s) \neq 1$.

A result proved by N. Alon [3] on $t K_{2}$-decomposition of a graph is used to find those graphs that have a unique least common multiple with $t K_{2}$.
Theorem 1.4. For every graph G and every $t>1, t K_{2} \mid G$ if and only if $t \mid e(G)$ and $\chi^{\prime}(G) \leq \frac{e(G)}{t}$.
We will also make use of a result proved by O. Favaron, Z. Lonc and M. Truszczynski [9] to characterize those graphs that have a unique least common multiple with $P_{3} \cup K_{2}$.
Theorem 1.5. If G is none of the six graphs G_{1} to G_{6} listed below, then G is $P_{3} \cup K_{2}$ decomposable if and only if
(1) $e(G) \equiv 0(\bmod 3)$,
(2) $\Delta(G) \leq \frac{2}{3} e(G)$,
(3) $c(G) \leq \frac{1}{3} e(G)$, where $c(G)$ denote the number of odd components of G,
(4) the edges of G cannot be covered by two adjacent vertices;
where,

2 Main results

In this section we are characterizing those graphs that have a unique least common multiple with $t K_{2}$ and $P_{3} \cup K_{2}$.

2.1 On graphs that have a unique least common multiple with $t K_{2}$

Theorem 2.1. A nonempty graph G without isolated vertices and the graph $t K_{2}$ have a unique least common multiple if and only if $t K_{2} \mid G$ or $\delta(G)>\frac{\operatorname{lcm}\left(t K_{2}, G\right)}{2 t}$.

Proof. Consider the graph $t G$. Clearly $t G$ is both G and $t K_{2}$ decomposable. Let $q=e(G)$. Since $e(t G)=t q$, we have $l c m\left(t K_{2}, G\right) \leq t q$. But $l c m\left(t K_{2}, G\right)$ is a multiple of q. So $l c m\left(t K_{2}, G\right)=q l$, where $l \leq t$. This implies $\frac{l c m\left(t K_{2}, G\right)}{t}=\frac{q l}{t}$. Let H be a least common multiple of G and $t K_{2}$.

Case 1. $l>1$.
Since H is $t K_{2}$-decomposable, by Theorem 1.4, $\chi^{\prime}(H) \leq \frac{q l}{t}$. Since $G \mid H, \chi^{\prime}(G) \leq \chi^{\prime}(H) \leq \frac{q l}{t}$. Thus $\Delta(G) \leq \frac{q l}{t}$.

Subcase (i): $\delta(G) \leq \frac{q l}{2 t}$.
Consider the graph $G \circ G$, which is obtained by identifying two vertices of least degree in G. In this subcase $\Delta(G \circ G) \leq \frac{q l}{t}$, since $\Delta(G) \leq \frac{q l}{t} . \chi^{\prime}(G) \leq \frac{q l}{t}$ implies $\chi^{\prime}(G \circ G) \leq \frac{q l}{t}$. Color G_{1}, a copy of G in $G \circ G$, with $k \leq \frac{q l}{t}$ colors. This is possible, since $\chi^{\prime}(G) \leq \frac{q l}{t}$. Let v be the identified vertex in $G \circ G$. Since $\delta(G) \leq \frac{q l}{2 t}$, the edges adjacent to v in G_{1} are colored using at most $\frac{q l}{2 t}$ colors. Color G_{2}, the copy of G in $G \circ G$ other than G_{1}, with the same k colors as follows. Color the edges adjacent to v in G_{2} using colors different from those which were used to color the edges adjacent to v in G_{1}. The remaining colors used in the coloring of G_{1} can be used to color other edges of G_{2}. Thus $\chi^{\prime}(G \circ G)=k \leq \frac{q l}{t}$.

Let $H_{1}=l G$, the union of l disjoint copies of G and $H_{2}=G \circ G \cup(l-2) G$. Clearly H_{1} and H_{2} are divisible by G. Since $\chi^{\prime}\left(H_{1}\right)=\chi^{\prime}(G) \leq \frac{q l}{t}, H_{1}$ is $t K_{2}$-decomposable. $\chi^{\prime}\left(H_{2}\right)=\chi^{\prime}(G \circ G) \leq \frac{q l}{t}, H_{2}$ is $t K_{2}$-decomposable by Theorem 1.4. Thus $H_{1}, H_{2} \in L C M\left(t K_{2}, G\right) . e\left(H_{1}\right)=e\left(H_{2}\right)=q l$, where $q=e(G)$. Since $l c m\left(t K_{2}, G\right)=q l, H_{1}$ and H_{2} are two non-isomorphic least common multiples of $t K_{2}$ and G.

Subcase (ii): $\delta(G)>\frac{q l}{2 t}$.
In this case $l>1$ and $\operatorname{lcm}\left(t K_{2}, G\right)=q l$, where $q=e(G)$. Thus $H \in L C M\left(t K_{2}, G\right)$, should be decomposed into at least two copies of G. If H is different from $l G$, then $\Delta(H)>\frac{q l}{t}$ which implies $\chi^{\prime}(H)>\frac{q l}{t}$ and hence by Theorem 1.4, H is not $t K_{2}$-decomposable. Thus $l G$ is the unique least common multiple of $t K_{2}$ and G.

Case 2. $l=1$.

In this case $l c m\left(t K_{2}, G\right)=q$. Thus $t K_{2} \mid G$ and G is the unique least common multiple.
Remark 2.2. The result in the above theorem, Theorem 2.1, appeared in [12]. We are giving the proof of this result here since the result is needed for proving Theorem 2.3. The result was proved
by the first author of this manuscript.

2.2 On graphs that have a unique least common multiple with $P_{3} \cup K_{2}$

Theorem 2.3. A nonempty graph G without isolated vertices and the graph $P_{3} \cup K_{2}$ have a unique least common multiple if and only if $G=K_{2}$ or $P_{3} \cup K_{2} \mid G$.

Proof. Let $q=e(G)$.
Case 1. G is a connected graph.
If $G=K_{2}$, then $G \mid P_{3} \cup K_{2}$. Thus $L C M\left(P_{3} \cup K_{2}, K_{2}\right)=\left\{P_{3} \cup K_{2}\right\}$ and hence their least common multiple is unique. So we are going to analyse the case where $G \neq K_{2}$.

Consider the graph $3 G$, a union of three disjoint copies of G. Then
(1) $e(3 G) \equiv 0(\bmod 3)$.
(2) $\Delta(3 G)=\Delta(G) \leq q=\frac{1}{3}(3 q) \leq \frac{2}{3}(3 q)=\frac{2}{3} e(3 G)$.
(3) $c(3 G) \leq 3 \leq \frac{1}{3}(3 q)=\frac{1}{3} e(3 G)$, if $e(G) \geq 3$. If $e(G)=2$, then $c(3 G)=0 \leq \frac{1}{3} e(3 G)$.
(4) The edges of $3 G$ cannot be covered by two adjacent vertices, since the graph is disconnected.

Thus by Theorem 1.5, $3 G$ is $P_{3} \cup K_{2}$-decomposable. Clearly $3 G$ is G-decomposable. Hence $\operatorname{lcm}\left(P_{3} \cup\right.$ $\left.K_{2}, G\right) \leq 3 q$.

Subcase (i): lcm $\left(P_{3} \cup K_{2}, G\right)=3 q$.
Consider the graph $H=G \circ G \cup G$, where $G \circ G$ is the graph obtained by identifying a least degree vertex in two copies of G. Then
(1) $e(H) \equiv 0(\bmod 3)$.
(2) $\Delta(H) \leq 2 q=\frac{2}{3}(3 q)=\frac{2}{3} e(H)$.
(3) $c(H) \leq 1 \leq \frac{1}{3}(3 q)=\frac{1}{3} e(H)$.
(4) Since H is disconnected, edges of H cannot be covered by two adjacent vertices.

Thus by Theorem 1.5, H is $P_{3} \cup K_{2^{-}}$decomposable. Clearly H is G - decomposable. Hence in this case both H and $3 G$ are elements of $\operatorname{LCM}\left(P_{3} \cup K_{2}, G\right)$ and hence their least common multiple is not unique.

Subcase (ii): $\operatorname{lcm}\left(P_{3} \cup K_{2}, G\right)=2 q$.
In this case there exists a graph H such that $e(H)=2 q$ and $H \in L C M\left(P_{3} \cup K_{2}, G\right)$. Consider the graph $2 G$.
(1) Since $H \in L C M\left(P_{3} \cup K_{2}, G\right)$ we get $3 \mid e(H)=2 q=e(2 G)$ and hence $e(2 G) \equiv 0(\bmod 3)$.
(2) Since H is G-decomposable and $\Delta(G)=\Delta(2 G), \Delta(2 G) \leq \Delta(H) . H$ is $P_{3} \cup K_{2}$-decomposable and so by Theorem 1.5, $\Delta(H) \leq \frac{2}{3} e(H)=\frac{2}{3} e(2 G)$. Thus $\Delta(2 G) \leq \frac{2}{3} e(2 G)$.
(3) In this case $q \geq 3$ (if $q=1$, then $G=K_{2}$ and if $q=2$, then $\left.e(2 G)=4 \not \equiv 0(\bmod 3)\right)$. So $c(2 G) \leq 2 \leq \frac{1}{3} 2 q=\frac{1}{3} e(2 G)$.
(4) Since $2 G$ is disconnected, the edges of $2 G$ cannot be covered by two adjacent vertices.

By applying Theorem 1.5, 2G is $P_{3} \cup K_{2}$-decomposable. $2 G$ is clearly G-decomposable. Thus $2 G \in L C M\left(P_{3} \cup K_{2}, G\right)$.

We can also prove that $G \circ G \in L C M\left(P_{3} \cup K_{2}, G\right)$.
(1) $e(G \circ G)=e(2 G) \equiv 0(\bmod 3)$.
(2) In order to prove that $\Delta(G \circ G) \leq \frac{2}{3} e(G \circ G)$ it is enough to prove that $\Delta(G)$ and $2 \delta(G)$ are less than or equal to $\frac{2}{3} e(G \circ G)$, since $G \circ G$ is obtained by identifying a vertex of least degree in two copies of G.

Since $H \in L C M\left(P_{3} \cup K_{2}, G\right), \Delta(G) \leq \Delta(H) \leq \frac{2}{3} e(H)=\frac{2}{3} e(G \circ G)$.
$2 \delta(G) \leq \frac{2}{3} e(G \circ G) \Longleftrightarrow \delta(G) \leq \frac{2 q}{3}$. Suppose $\delta(G)>\frac{2 q}{3}$. Then $2 q=\sum_{v \in V(G)} d(v) \geq$ $\sum_{v \in V(G)} \delta(G)=n \delta(G)>n \frac{2 q}{3}$, where $n=|V(G)|$. This implies $n<3$. G is a connected graph without isolated vertices and $G \neq K_{2}$. Thus $n \geq 3$ and so $\delta(G) \leq \frac{2 q}{3}$.
(3) $c(G \circ G)=0<\frac{1}{3} e(G \circ G)$.
(4) The edges of $G \circ G$ cannot be covered by two adjacent vertices. Suppose the edges of $G \circ G$ can be covered by two adjacent vertices, then the identified vertex is one such vertex, since in $G \circ G$, no two vertices are adjacent except the identified vertex. This implies using the identified vertex and one other vertex it is possible to cover all the edges of $G \circ G$. This is possible only if G is a star with the identified vertex as the center of the star. This is a contradiction, since to construct $G \circ G$ a vertex of least degree in G is identified.

Applying Theorem 1.5, $G \circ G$ is $P_{3} \cup K_{2^{-}}$decomposable and it is clearly G-decomposable. So $G \circ G \in L C M\left(P_{3} \cup K_{2}, G\right)$.

We have proved that $2 G$ and $G \circ G \in L C M\left(P_{3} \cup K_{2}, G\right)$ and hence their least common multiple is not unique.

Subcase (iii): $\operatorname{lcm}\left(P_{3} \cup K_{2}, G\right)=q$.
In this subcase G is the unique least common multiple, since $q=e(G)$.
Case 2. G is disconnected.

As in the first case, assume that $G \neq t K_{2}$. Then at least one component of G has more than one edge. We construct a graph of size $3 q$, which is a ($3 q, G, P_{3} \cup K_{2}$)-graph, where $q=e(G)$. The construction is as follows. Take a least degree vertex from each component of G. Let H be the connected graph obtained by identifying all these vertices together. Take a least degree vertex in H. Denote by $H \circ H \circ H$, the graph obtained by identifying this least degree vertex in three copies of H.
(1) $e(H \circ H \circ H)=e(3 H)=3 e(G) \equiv 0(\bmod 3)$.
(2) $\Delta(H \circ H \circ H) \leq 2 \Delta(H) \leq 2 e(G)=\frac{2}{3} e(3 G)=\frac{2}{3} e(H \circ H \circ H)$.
(3) $c(H \circ H \circ H) \leq 1 \leq \frac{1}{3} e(H \circ H \circ H)$.
(4) As in Subcase (ii) of the previous case, the edges of $H \circ H \circ H$ cannot be covered by two adjacent vertices.

By Theorem 1.5, $H \circ H \circ H$ is $P_{3} \cup K_{2}$-decomposable and obviously it is G-decomposable. Thus $\operatorname{lcm}\left(P_{3} \cup K_{2}, G\right) \leq 3 q$.

Subcase (i): $\operatorname{lcm}\left(P_{3} \cup K_{2}, G\right)=3 q$.
From the above discussion $H \circ H \circ H$ is a least common multiple in this subcase. Consider the graph $H \circ H \cup H$.
(1) $e(H \circ H \cup H)=3 e(G) \equiv 0(\bmod 3)$.
(2) $\Delta(H \circ H \cup H) \leq 2 \Delta(H) \leq 2 e(G)=\frac{2}{3} e(3 G)=\frac{2}{3} e(H \circ H \cup H)$.
(3) $c(H \circ H \cup H) \leq 1=\frac{1}{3} e(H \circ H \cup H)$.
(4) Since $H \circ H \cup H$ is disconnected, the edges of $H \circ H \cup H$ cannot be covered by two adjacent vertices.

Applying Theorem 1.5, $H \circ H \cup H$ is $P_{3} \cup K_{2}$-decomposable and by construction it is G-decomposable. Thus both $H \circ H \circ H$ and $H \circ H \cup H$ are in $\operatorname{LCM}\left(P_{3} \cup K_{2}, G\right)$ and hence their least common multiple is not unique.

Subcase (ii): $\quad \operatorname{lcm}\left(P_{3} \cup K_{2}, G\right)=2 q$.
In this subcase there exists a graph H^{\prime} of size $2 q$ which is both G and $P_{3} \cup K_{2}$ decomposable. We will prove that $H \circ H$ and $H \cup H$ are in $L C M\left(P_{3} \cup K_{2}, G\right)$.
(1) $e(H \circ H)=2 q \equiv 0(\bmod 3)$, since $e\left(H^{\prime}\right)=2 q$ and H^{\prime} is $P_{3} \cup K_{2^{-}}$decomposable.
(2) In order to prove that $\Delta(H \circ H) \leq \frac{2}{3} e(H \circ H)$, it is enough to prove that $2 \delta(H) \leq \frac{2}{3} e(H \circ H)$. That is we need to prove $\delta(H) \leq \frac{1}{3}(2 q)$, where $q=e(H)=e(G)$.

Suppose $\delta(H)>\frac{2 q}{3}$. Then $2 q=\sum_{v \in V(H)} d(v) \geq \sum_{v \in V(H)} \delta(H)=n \delta(H)>n\left(\frac{2 q}{3}\right) \Rightarrow n<3$. Since G is a disconnected graph without isolated vertices, $n<3$ is not possible. Hence $\delta(H) \leq \frac{2 q}{3}$. Thus $\Delta(H \circ H) \leq \frac{2}{3} e(H \circ H)$.
(3) $c(H \circ H)=0<\frac{1}{3} e(H \circ H)$.
(4) By the construction of $H \circ H$, the edges of $H \circ H$ cannot be covered by two adjacent vertices.

By Theorem 1.5, $H \circ H$ is $P_{3} \cup K_{2}$-decomposable and by construction, $H \circ H$ is G-decomposable and so $H \circ H \in L C M\left(P_{3} \cup K_{2}, G\right)$.

Also $H \cup H \in L C M\left(P_{3} \cup K_{2}, G\right)$, since
(1) $e(H \cup H)=2 q \equiv 0(\bmod 3)$, since $l c m\left(P_{3} \cup K_{2}\right)=2 q$, where $q=e(G)=e(H)$.
(2) $\Delta(H \cup H) \leq \Delta(H \circ H) \leq \frac{2}{3} e(H \circ H)=\frac{2}{3} e(H \cup H)$.
(3) Here $c(H \cup H) \leq 2$. Thus $c(H \cup H) \leq \frac{1}{3} e(H \cup H)$ if $2 \leq \frac{2 q}{3}$, that is if $q \geq 3$, where, $q=$ $e(G)=e(H)$. Since G is a disconnected graph without isolated vertices, $q \neq 1$. Also if $q=2$, then $2 q=4 \not \equiv 0(\bmod 3)$. Thus in this subcase, $q \geq 3$ and hence $c(H \cup H) \leq \frac{1}{3} e(H \cup H)$.

Thus $H \circ H$ and $H \cup H$ belong to $L C M\left(P_{3} \cup K_{2}, G\right)$ and hence their least common multiple is not unique.

Acknowledgements

The authors are thankful to Prof. M. I. Jinnah, formerly University of Kerala, India, for his suggestions during the preparation of this manuscript. The authors are also thankful to the anonymous reviewers for their careful reading and insightful comments for improving this work.

References

[1] P. Adams, D. Bryant and B. Maenhaut, "Common multiples of complete graphs and a 4-cycle", Discrete Math., vol. 275, no. 1-3, pp. 289-297, 2004.
[2] P. Adams, D. Bryant, S. I. El-Zanati, C. Vanden Eynden and B. Maenhaut, "Least common multiples of cubes", Bull. Inst. Combin. Appl., vol. 38, pp. 45-49, 2003.
[3] N. Alon, "A note on the decomposition of graphs into isomorphic matchings", Acta Math. Hungar., vol. 42, no. 3-4, pp. 221-223, 1983.
[4] D. Bryant and B. Maenhaut, "Common multiples of complete graphs", Proc. London Math. Soc. (3), vol. 86, no. 2, pp. 302-326, 2003.
[5] G. Chartrand, L. Holley, G. Kubicki and M. Schultz, "Greatest common divisors and least common multiples of graphs", Period. Math. Hungar., vol. 27, no. 2, pp. 95-104, 1993.
[6] G. Chartrand, G. Kubicki, C. M. Mynhardt and F. Saba, "On graphs with a unique least common multiple", Ars Combin., vol. 46, pp. 177-190, 1997.
[7] G. Chartrand, C. M. Mynhardt and F. Saba, "On least common multiples of digraphs", Utilitas Math., vol. 49, pp. 45-63, 1996.
[8] Z.-C. Chen and T.-W. Shyu, "Common multiples of paths and stars", Ars Combin., vol. 146, pp. 115-122, 2019.
[9] O. Favaron, Z. Lonc and M. Truszczyński, "Decompositions of graphs into graphs with three edges", Ars Combin., vol. 20, pp. 125-146, 1985.
[10] O. Favaron and C. M. Mynhardt, "On the sizes of least common multiples of several pairs of graphs", Ars Combin., vol. 43, pp. 181-190, 1996.
[11] C. M. Mynhardt and F. Saba, "On the sizes of least common multiples of paths versus complete graphs", Utilitas Math., vol. 46, pp. 117-127, 1994.
[12] T. Reji, "On graphs that have a unique least common multiple with matchings", Far East J. Appl. Math., vol. 18, no. 3, pp. 281-288, 2005.
[13] C. Sunil Kumar, "Least common multiple of a cycle and a star", Electron. Notes Discrete Math., vol. 15, pp. 204-206, 2003.
[14] P. Wang, "On the sizes of least common multiples of stars versus cycles", Util. Math., vol. 53, pp. 231-242, 1998.

