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ABSTRACT

The purpose of this article is to move towards a more com-
plete understanding of the qualitative properties of solutions to
discrete boundary value problems. In particular, we introduce
and develop sufficient conditions under which the existence of a
unique solution for a third-order difference equation subject to
three-point boundary conditions is guaranteed. Our contribu-
tions are realized in the following ways. First, we construct the
corresponding Green’s function for the problem and formulate
some new bounds on its summation. Second, we apply these
properties to the boundary value problem by drawing on Ba-
nach’s fixed point theorem in conjunction with interesting met-
rics and appropriate inequalities. We discuss several examples
to illustrate the nature of our advancements.

RESUMEN

El propósito de este artículo es avanzar hacia un entendimiento
más completo de las propiedades cualitativas de las soluciones a
problemas discretos de valor en la frontera. En particular, intro-
ducimos y desarrollamos condiciones suficientes bajo las cuales se
garantiza la existencia de una única solución para una ecuación
en diferencias de tercer orden sujeta a condiciones de borde en
tres puntos. Nuestras contribuciones son de dos tipos. En primer
lugar, construimos las funciones de Green correspondientes para
el problema y formulamos nuevas cotas para su suma. En se-
gundo lugar, aplicamos estas propiedades al problema de valor en
la frontera usando el teorema del punto fijo de Banach junto con
métricas interesantes y desigualdades apropiadas. Discutimos
varios ejemplos para ilustrar la naturaleza de nuestros avances.
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1 Introduction

Discrete boundary value problems are of significant interest to scientific and technical communi-

ties. For instance, their perceived utility is partly due to their ability to act as a mathematical

framework to model purely discrete processes and phenomena that arise in various fields of science

and engineering. In addition, developing a theory of discrete boundary value problems has the po-

tential to inform our understanding of continuous boundary value problems. For example, discrete

boundary value problems can arise as approximations to “continuous” boundary value problems

that involve differential equations, where the numerical aspects of solutions are of importance. Fur-

thermore, it is also possible to construct a theory of differential equations by only using difference

equations [7].

Although discrete problems have enjoyed continued interest, the mathematics community is yet to

reach a complete understanding of the qualitative and quantitative properties of their solutions.

This includes, for example, discrete boundary value problems of the third order, which have not

been advanced to the same degree as their “continuous cousins” or to the same extent as discrete

problems of the second order. Moreover, we are yet to achieve a total comprehension of the

mathematical similarities and distinctions between such continuous and discrete problems.

Motivated by the above discussion, the purpose of the current paper is to make progress towards

a more complete theory concerning the existence and uniqueness of solutions to discrete bound-

ary value problems of the third order. “Knowing an equation has a unique solution is important

from both a modelling and theoretical point of view” [19, p. 794] as it informs our mathematical

understanding from applied and pure perspectives. For example, by developing a deeper under-

standing of the existence and uniqueness of solutions to discrete boundary value problems we are

simultaneously expanding capacity and knowledge of the associated models and the mathematical

frameworks that attempt to describe them.

For any a, b ∈ R such that (b − a) ∈ N, we will denote Na = {a, a + 1, a + 2, . . . } and Nb
a =

{a, a+ 1, a+ 2, . . . , b}. Let ∆ denote the usual forward difference operator defined by(
∆u
)
(t) = u(t+ 1)− u(t), t ∈ NT+2

0 ,

Herein we will consider the following third-order, three-point discrete boundary value problem
(
∆3u

)
(t− 2) + f(t, u(t)) = 0, t ∈ NT+2

2 ,

u(0) =
(
∆u
)
(0) = 0, u(T + 3) = ku(η)

(1.1)

where f is a continuous function from NT+3
0 × R to R which we denote via f ∈ C

[
NT+3

0 × R,R
]
.

In addition, T ∈ N1, k ∈ R and η ∈ NT+2
1 .

Let us briefly outline recent and relevant literature to situate and contextualize our work. Agarwal

and Henderson [2] initiated the study of positive solutions to the third-order three-point discrete
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boundary value problem
(
∆3u

)
(t− 2) + a(t)g(u(t)) = 0, t ∈ NT+2

2 ,

u(0) = u(1) = u(T + 3) = 0,
(1.2)

where a : NT+2
0 → R+ and g ∈ C [R+,R+]. Following this work, Anderson [5] and Anderson

and Avery [6] examined the existence of multiple solutions to third-order, three-point discrete

focal boundary value problems. Positive solutions to discrete, third-order problems have been

shown to exist using fixed point theory in cones [13]. In addition, several authors have discussed

various qualitative properties of different classes of third-order three-point discrete boundary value

problems and a detailed discussion can be found in [11, 12, 23, 24, 25, 13] and the references

therein.

Motivated by the recent work [4, 15], where the differential equation version of (1.1) was analyzed,

in the present article we investigate the discrete boundary value problem (1.1). When compared

with the ideas in [4, 15] our methods and results herein are different; and they reveal some thought-

provoking distinctions and connections between the sets of works. For example, the present work

develops alternative bounds on the Green’s functions to those in [4, 15] and we employ purely

discrete ways of working. In particular, we observe that some of our bounds for the discrete

case are sharp, while others are rougher. The bounds are different from those developed for the

continuous case [4]. This highlights some of the interesting distinctions between the discrete and

the continuous in terms of results and methods within the domain of third order problems.

Our article is organized as follows: In Section 2, we construct the Green’s function corresponding

to the boundary value problem (1.1) and establish new bounds on its summation. In Section 3 we

apply the properties of the Green’s function to the boundary value problem (1.1) in conjunction

with Banach’s contraction mapping theorem to establish sufficient conditions for the existence of

a unique solution. We provide a discussion of examples in Section 4 to illustrate how our ideas can

be put into practice and the relationships between them. Finally, we conclude with some ideas for

further work in Section 5.

For more on discrete problems, see the monographs [1, 8, 9, 10, 14].

2 Green’s function and its properties

In order to develop the Green’s function for the three-point case, we first analyze the two-point

discrete boundary value problem
(
∆3v

)
(t− 2) + h(t) = 0, t ∈ NT+2

2 ,

v(0) =
(
∆v
)
(0) = v(T + 3) = 0,

(2.1)
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where h ∈ C
[
NT+2

2 ,R
]
. The boundary value problem (2.1) can be equivalently rewritten as

(
∆3v

)
(t− 2) + h(t) = 0, t ∈ NT+2

2 ,

v(0) = v(1) = v(T + 3) = 0.
(2.2)

Yang and Weng [25] derived a Green’s function for the boundary value problem (2.2) and also

investigated its sign. The following two results are found therein and will be helpful in our present

analysis.

Lemma 2.1 ([25]). The unique solution of the boundary value problem (2.2) (or (2.1)) is given

by

v(t) =

T+2∑
s=2

H(t, s)h(s), t ∈ NT+3
0 , (2.3)

where

H(t, s) =


t(t− 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)
− (t− s)(t− s+ 1)

2
, s ∈ Nt−1

0 ,

t(t− 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)
, s ∈ NT+3

t .
(2.4)

Lemma 2.2 ([25]). The Green’s function H(t, s) in (2.4) satisfies H(t, s) ≥ 0 for all (t, s) ∈
NT+3

0 × NT+2
2 .

Now let us construct the Green’s function for the boundary value problem
(
∆3u

)
(t− 2) + h(t) = 0, t ∈ NT+2

2 ,

u(0) =
(
∆u
)
(0) = 0, u(T + 3) = ku(η)

(2.5)

to form the following new result.

Lemma 2.3. Let h ∈ C
[
NT+2

2 ,R
]

and assume

(T + 2)(T + 3) ̸= kη(η − 1).

The unique solution to the boundary value problem (2.5) is given by

u(t) =

T+2∑
s=2

G(t, s)h(s), t ∈ NT+3
0 , (2.6)

where

G(t, s) = H(t, s) +
kt(t− 1)

(T + 2)(T + 3)− kη(η − 1)
H(η, s). (2.7)

Proof. Assume the solution of the boundary value problem (2.5) can be expressed as

u(t) = v(t) + [C0 + C1t+ C2t(t− 1)] v(η), (2.8)
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where C0, C1 and C2 are constants to be determined and v be the unique solution of the boundary

value problem (2.1). When v(η) = 0, the u(t) defined by (2.8) is the same as v(t) and it is actually

the solution of (2.5). In what follows, we assume that v(η) ̸= 0.

It follows from (2.8) that (
∆u
)
(t) =

(
∆v
)
(t) + [C1 + 2C2t] v(η). (2.9)

From (2.1), (2.5), (2.8) and (2.9), we have

u(0) = 0 ⇒ v(0) + C0v(η) = 0 ⇒ C0 = 0, (2.10)(
∆u
)
(0) = 0 ⇒

(
∆v
)
(0) + C1v(η) = 0 ⇒ C1 = 0, (2.11)

and

u(T + 3) = ku(η)

⇒ v(T + 3) + C2(T + 2)(T + 3)v(η) = k [v(η) + C2η(η − 1)v(η)]

⇒ C2 =
k

(T + 2)(T + 3)− kη(η − 1)
. (2.12)

Using (2.3) and (2.10) – (2.12) in (2.8) and rearranging the terms, we obtain (2.6) and (2.7). The

proof is complete.

Let us now establish new bounds on the summation of the Green’s functions H(t, s) and G(t, s)

via the following result, which is of interest in its own right, for example, the bounds may prove

useful in areas beyond the scope of this paper, such as in the application of topological ways of

working with fixed point theory. We will draw on it to establish the main existence and uniqueness

results of Section 3. The bounds will be formulated in terms of T, k, η. To assist with notation,

we define the following constant Λ (that depends on the form of T ) that we will use below. For

n ∈ N1 we define

Λ =



n(n+ 2)(2n+ 1)

3
, if T = 3n,

n(n+ 1)(2n+ 1)

3
, if T = 3n− 1,

n(n+ 1)(2n− 1)

3
, if T = 3n− 2.

(2.13)

Lemma 2.4. The Green’s function G(t, s) in (2.7) satisfies
T+2∑
s=2

|G(t, s)| ≤ Γ,

where Γ depends on T, k, η and is explicitly given by

Γ = Λ +

∣∣∣∣ k

(T + 2)(T + 3)− kη(η − 1)

∣∣∣∣ (T + 2)(T + 3)

[
η(η − 1)(T + 7)

6
+ η

]
(2.14)

and Λ is defined in (2.13).
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Proof. Consider

T+2∑
s=2

H(t, s) =

t−1∑
s=2

[
t(t− 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)
− (t− s)(t− s+ 1)

2

]

+

T+2∑
s=t

[
t(t− 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)

]

=

T+2∑
s=2

[
t(t− 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)

]
−

t−1∑
s=2

[
(t− s)(t− s+ 1)

2

]

=
t(t− 1)

2(T + 3)(T + 2)

T+1∑
s=1

s(s+ 1)− 1

2

t−2∑
s=1

s(s+ 1)

=
t(t− 1)

2(T + 3)(T + 2)

[
T+1∑
s=1

s2 +

T+1∑
s=1

s

]
− 1

2

[
t−2∑
s=1

s2 +

t−2∑
s=1

s

]

=
t(t− 1)

2(T + 3)(T + 2)

[
(T + 1)(T + 2)(2T + 3)

6
+

(T + 1)(T + 2)

2

]
− 1

2

[
(t− 2)(t− 1)(2t− 3)

6
+

(t− 2)(t− 1)

2

]
=

t(t− 1)(T + 1)− t(t− 1)(t− 2)

6
=

t(t− 1)(T + 3− t)

6
.

Clearly,
T+2∑
s=2

H(0, s) =

T+2∑
s=2

H(1, s) = 0.

Now we wish to maximize
T+2∑
s=2

H(t, s) for t ∈ NT+3
2 . Denote by

g(t) =
t(t− 1)(T + 3− t)

6
, t ∈ NT+3

2 .

The first forward difference of g with respect to t is given by(
∆g
)
(t) =

t (2T − 3t+ 5)

6
.

In this expression, the term t/6 is positive for all t ∈ NT+3
2 . The equation 2T − 3t+ 5 = 0 has the

solution t = 2T+5
3 , so we consider t = ⌊ 2T+5

3 ⌋ ∈ NT+3
2 . If t ≤ ⌊ 2T+5

3 ⌋, the difference 2T − 3t+ 5 is

positive, and thus g is increasing. If t > ⌊ 2T+5
3 ⌋, the quantity 2T − 3t+ 5 is negative, and thus g

is decreasing. Hence, the maximum value of g occurs at t = ⌊ 2T+5
3 ⌋. We observe that, for n ∈ N1,

⌊
2T + 5

3

⌋
=


2n+ 1, if T = 3n,

2n+ 1, if T = 3n− 1,

2n, if T = 3n− 2.

Therefore,

max
t∈NT+3

0

T+2∑
s=2

H(t, s) = max
t∈NT+3

2

g(t) = g

(⌊
2T + 5

3

⌋)
= Λ. (2.15)
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Consider

T+2∑
s=2

H(η, s) =

t−1∑
s=2

[
η(η − 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)
− (η − s)(η − s+ 1)

2

]

+

T+2∑
s=t

[
η(η − 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)

]

=

T+2∑
s=2

[
η(η − 1)(T + 3− s)(T + 4− s)

2(T + 3)(T + 2)

]
−

t−1∑
s=2

[
(η − s)(η − s+ 1)

2

]

=
η(η − 1)

2(T + 3)(T + 2)

T+1∑
s=1

s(s+ 1)− 1

2

t−2∑
s=1

(η − s)(η − s− 1)

=
η(η − 1)

2(T + 3)(T + 2)

[
T+1∑
s=1

s2 +

T+1∑
s=1

s

]
− 1

2

[
η(η − 1)

t−2∑
s=1

1− (2η − 1)

t−2∑
s=1

s+

t−2∑
s=1

s2

]

=
η(η − 1)

2(T + 3)(T + 2)

[
(T + 1)(T + 2)(2T + 3)

6
+

(T + 1)(T + 2)

2

]
− 1

2

[
η(η − 1)(t− 2)− (2η − 1)

(t− 2)(t− 1)

2
+

(t− 2)(t− 1)(2t− 3)

6

]
=

η(η − 1)(T − 3t+ 7) + (3η − t)(t− 1)(t− 2)

6
.

Now we wish to maximize
T+2∑
s=2

H(η, s) for t ∈ NT+3
0 . Denote by

h(t) =
η(η − 1)(T − 3t+ 7) + (3η − t)(t− 1)(t− 2)

6
, t ∈ NT+3

0 .

The first forward difference of h with respect to t is given by

(
∆h
)
(t) = − t2 − (2η + 1)t+ η(η + 1)

2
.

We observe that

(
∆h
)
(t)



< 0, for t ∈ Nη−1
0 ,

= 0, for t = η,

= 0, for t = η + 1,

< 0, for t ∈ NT+3
η+2 ,

implying that

max
t∈NT+3

0

h(t) = h(0) =
η(η − 1)(T + 7)

6
+ η.

That is,

max
t∈NT+3

0

T+2∑
s=2

H(η, s) =
η(η − 1)(T + 7)

6
+ η.
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Now, consider

T+2∑
s=2

|G(t, s)| =
T+2∑
s=2

∣∣∣∣H(t, s) +
kt(t− 1)

(T + 2)(T + 3)− kη(η − 1)
H(η, s)

∣∣∣∣
≤

T+2∑
s=2

|H(t, s)|+
∣∣∣∣ k

(T + 2)(T + 3)− kη(η − 1)

∣∣∣∣ t(t− 1)

T+2∑
s=2

|H(η, s)|

=

T+2∑
s=2

H(t, s) +

∣∣∣∣ k

(T + 2)(T + 3)− kη(η − 1)

∣∣∣∣ t(t− 1)

T+2∑
s=2

H(η, s)

≤ Λ +

∣∣∣∣ k

(T + 2)(T + 3)− kη(η − 1)

∣∣∣∣ (T + 2)(T + 3)

[
η(η − 1)(T + 7)

6
+ η

]
= Γ.

The proof is complete.

Remark 2.5. From the proof of Lemma 2.4 we see that (2.15) implies that the bound Λ on

T+2∑
s=2

H(t, s), t ∈ NT+3
0

is sharp therein. If we compare this sharp bound with the sharp bound for the integral of the

corresponding Green’s function in the continuous case of (T +3)3/81 in [4] then we see the bounds

between the discrete and continuous cases are different. This is partly due to the differing forms of

the Green’s function for the discrete and continuous problems. However, it is possible to establish

a connection between the two theories by forming a new bound that is common to both problems

simply by choosing the larger of the two bounds. The price to pay for this unity in this situation

is that one of the bounds will no longer be sharp. Thus we see a trade-off between unification and

sharpness in this situation.

3 Application of Banach’s theorem

In this section we establish sufficient conditions on the existence of a unique solution for the

boundary value problem (1.1) using Banach’s fixed point theorem. “The field of fixed point theory

aims to establish conditions under which certain classes of problems will admit one, or more, fixed

points [21, 20]” [16, C16]. First let us recall the statement of this theorem.

Theorem 3.1 ([3]). Let (X, d) be a complete metric space and T : X → X be a contraction

mapping, that is, there is an α, 0 ≤ α < 1, such that

d(Tx, Ty) ≤ αd(x, y),

for all x, y in X. Then T has a unique fixed point z in X, that is, Tz = z.
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Every solution of the boundary value problem (1.1) can be treated as a (T + 4)-tuple real vector.

Denote the set X = RT+4 and consider the following metrics defined on X:

d(u, v) = max
t∈NT+3

0

|u(t)− v(t)| ,

δ(u, v) =

(
T+3∑
t=0

|u(t)− v(t)|p
) 1

p

, p > 1,

for all u, v ∈ X. The pair (X, d) forms a complete metric space, and the pair (X, δ) also forms a

complete metric space. Define the operator T : X → X by

(
Tu
)
(t) =

T+2∑
s=2

G(t, s)f(s, u(s)), t ∈ NT+3
0 .

Note that u is a solution of the boundary value problem (1.1) if and only if u is a fixed point of T .

We apply Theorem 3.1 to show that T has a unique fixed point in X with the ideas manifested in

the following two new theorems.

Theorem 3.2. Let f ∈ C
[
NT+3

0 × R,R
]
, let f(t, 0) ̸= 0 for all t ∈ NT+3

0 , let (T + 2)(T + 3) ̸=
kη(η − 1) and let Γ be defined in (2.14). If f satisfies a Lipschitz condition with respect to the

second variable on NT+3
0 × R with Lipschitz constant K, that is, there is a nonnegative constant

K, such that

|f(t, x)− f(t, y)| ≤ K|x− y|, for all t ∈ NT+3
0 and all x, y ∈ R

and

KΓ < 1, (3.1)

then the boundary value problem (1.1) has a unique nontrivial solution.

Proof. For u, v ∈ X and t ∈ NT+3
0 , consider

∣∣(Tu)(t)− (Tv)(t)∣∣ = ∣∣∣∣∣
T+2∑
s=2

G(t, s)f(s, u(s))−
T+2∑
s=2

G(t, s)f(s, v(s))

∣∣∣∣∣
≤

T+2∑
s=2

|G(t, s)| |f(s, u(s))− f(s, v(s))|

≤ K

T+2∑
s=2

|G(t, s)| |u(s)− v(s)|

≤ Kd(u, v)

T+2∑
s=2

|G(t, s)|

≤ KΓd(u, v),

implying that

d(Tu, Tv) ≤ αd(u, v),
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where α = KΓ < 1. Thus, T is a contraction mapping on X. Hence, by Theorem 3.1, our T has

a unique fixed point in X. This is equivalent to the boundary value problem (1.1) admitting a

unique nontrivial solution. The proof is complete.

The following result sharpens the inequality (3.1) in Theorem 3.2 through the strategic use of a

different metric.

Theorem 3.3. Let the conditions of Theorem 3.2 hold, with the assumption (3.1) removed. If

there are constants p > 1 and q > 1 such that 1/p+ 1/q = 1 and

K

T+3∑
t=0

(
T+2∑
s=2

|G(t, s)|q
) p

q


1
p

< 1, (3.2)

then the boundary value problem (1.1) has a unique nontrivial solution.

Proof. We apply Theorem 3.1 to show that T has a unique fixed point in X where X is defined in

the proof of Theorem 3.2 but is now coupled with the metric

δ(u, v) :=

(
T+3∑
t=0

|u(t)− v(t)|p
) 1

p

.

Consider ∣∣(Tu)(t)− (Tv)(t)∣∣ = ∣∣∣∣∣
T+2∑
s=2

G(t, s)f(s, u(s))−
T+2∑
s=2

G(t, s)f(s, v(s))

∣∣∣∣∣
≤

T+2∑
s=2

|G(t, s)| |f(s, u(s))− f(s, v(s))|

≤ K

T+2∑
s=2

|G(t, s)| |u(s)− v(s)| . (3.3)

By Holder’s inequality, we have

T+2∑
s=2

|G(t, s)| |u(s)− v(s)| ≤

(
T+2∑
s=2

|u(s)− v(s)|p
) 1

p
(

T+2∑
s=2

|G(t, s)|q
) 1

q

. (3.4)

Thus,

∣∣(Tu)(t)− (Tv)(t)∣∣ ≤ K

(
T+2∑
s=2

|u(s)− v(s)|p
) 1

p
(

T+2∑
s=2

|G(t, s)|q
) 1

q

(3.5)

≤ K

(
T+2∑
s=2

|G(t, s)|q
) 1

q

δ(u, v)

and so, we have(
T+3∑
t=0

∣∣(Tu)(t)− (Tv)(t)∣∣p) 1
p

≤ K

T+3∑
t=0

(
T+2∑
s=2

|G(t, s)|q
) p

q


1
p

δ(u, v),
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implying that

δ(Tu, Tv) ≤ γδ(u, v),

where

γ = K

T+3∑
t=0

(
T+2∑
s=2

|G(t, s)|q
) p

q


1
p

< 1.

Thus, the conditions of Theorem 3.1 hold. Hence, by Theorem 3.1, our T has a unique fixed

point in X. This is equivalent to the boundary value problem (1.1) furnishing a unique nontrivial

solution. The proof is complete.

For the choices p = q = 2, Theorem 3.3 takes the following form:

Theorem 3.4. Let the conditions of Theorem 3.2 hold, with the assumption (3.1) removed. If

K

(
T+3∑
t=0

(
T+2∑
s=2

|G(t, s)|2
)) 1

2

< 1, (3.6)

then the boundary value problem (1.1) has a unique nontrivial solution.

4 Discussion of examples

Let us discuss two examples to illustrate the nature of our new theorems and the relationship

between them.

Example 4.1. Consider the following discrete boundary value problem
(
∆3u

)
(t− 2) + 1

150 cos(u(t)) = 0, t ∈ N11
2 ,

u(0) =
(
∆u
)
(0) = 0, u(12) = u(6).

(4.1)

We claim that this problem admits a unique solution.

Proof. Observe that (4.1) is a special case of (1.1) with T = 9, k = 1, η = 6 and f(t, u) = f(u) =

(cos(u))/150.

We show that the conditions of Theorem 3.2 are satisfied.

Since T is a multiple of 3 we have n = 3 and so Λ = 35. Furthermore, appropriate calculations

reveal Γ ≈ 146.294 < 147.

Our f satisfies a Lipschitz condition due to the property that its derivative with respect to u is

uniformly bounded by 1/150 and we may choose this bound to be the Lipschitz constant, that is,

on R we have

|∂f/∂u| = | − sin(u)|/150 ≤ 1/150 = K.
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Finally, we see that KΓ < 147/150 < 1. Thus, all of the conditions of Theorem 3.2 hold and we

conclude that the discrete boundary value problem (4.1) admits a unique solution.

Let us now discuss an example that illustrates Theorem 3.3 and its distinction from Theorem 3.2.

Example 4.2. Consider the following discrete boundary value problem
(
∆3u

)
(t− 2) + 1

54 tan
−1(u(t)) + t2 + 1 = 0, t ∈ N11

2 ,

u(0) =
(
∆u
)
(0) = 0, u(12) = u(6).

(4.2)

We claim that this problem admits a unique solution.

Proof. Observe that (4.2) is a special case of (1.1) with T = 9, k = 1, η = 6 and f(t, u) =

(tan−1(u))/54 + t2 + 1.

We show that the conditions of Theorem 3.3 are satisfied with p = 2 = q, that is, Theorem 3.4 will

hold.

Appropriate calculations using Maple reveal(
T+3∑
t=0

(
T+2∑
s=2

|G(t, s)|2
)) 1

2

≈ 52.3839 < 53.

Our f satisfies a Lipschitz condition due to the property that its derivative with respect to u is

uniformly bounded by 1/54 and we may choose this bound to be the Lipschitz constant, that is,

on R we have

|∂f/∂u| = |1/(54(u2 + 1))| ≤ 1/54 = K.

Finally, we see that (3.6) holds since

K

(
T+3∑
t=0

(
T+2∑
s=2

|G(t, s)|2
)) 1

2

< 53/54 < 1.

Thus, all of the conditions of Theorem 3.3 hold with p = 2 = q (that is, Theorem 3.4 holds) and

we conclude that the discrete boundary value problem (4.2) admits a unique solution.

Remark 4.3. We note that Theorem 3.2 cannot be directly applied to the boundary value problem

(4.2) in Example 4.2. The reason is because the condition KΓ < 1 is not satisfied in this situation.

Thus, we observe that Theorem 3.4 is more general than Theorem 3.2.

5 Concluding remarks and further work

This paper deepened our understanding of the existence and uniqueness of solutions to discrete

boundary value problems. We showed that a larger class of problems admitted a unique solution
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and achieved this by drawing on fixed-point theory and the use of new bounds. Our results add

to the recent literature on discrete boundary value problems and difference equations [17, 18] and

move us closer to a more complete understanding of the underlying theory and application.

Although our bound on the summation of H(t, s) herein is sharp, the corresponding bound involv-

ing G(t, s) remains rough and a natural question for further work is: can this bound be sharpened?

One of the main limitations with many fixed point theorems is the very nature of their assump-

tions. Because sufficient conditions are involved, it may be the case that the conditions of these

theorems do not hold, yet the problem under consideration does actually admit a unique solution

(or solutions). Thus it is important to also look beyond these types of sufficient assumptions and

the development of new methods and altenative perspectives in mathematics are needed [21, 22]

to advance the associated existence and uniqueness theory.
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