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ABSTRACT

We prove that for certain polynomial differential equations

in the plane arising from predator-prey type III models with

generalized rational functional response, any algebraic solu-

tion should be a rational function. As a consequence, limit

cycles, which are unique for these dynamical systems, are

necessarily trascendental ovals. We exemplify these findings

by showing a numerical simulation within a system arising

from zooplankton-phytoplankton dynamics.

RESUMEN

Probamos que para ciertas ecuaciones diferenciales poli-

nomiales en el plano que aparecen a partir de modelos

predador-presa de tipo III con respuesta funcional racional

generalizada, toda solución algebraica debe ser una función

racional. Como consecuencia, los ciclos ĺımite, que son únicos

para estos sistemas dinámicos, son necesariamente óvalos

trascendentes. Ejemplificamos estos resultados mostrando

una simulación numérica para un sistema que aparece en la

dinámica de zooplancton-fitoplancton.
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1 Introduction

We consider predator-prey model

u̇ = ru
(
1− u

K

)
− vp(u),

v̇ = v (−D + γp(u)) ,
(1.1)

with functional response proposed in [13]

p(u) = mun/(a+ un).

where the parameters are: the maximal feeding rate m; an affinity constant a, related to handling

times, capture efficiencies, etc.; and the number of encounters n ≥ 1 a predator must have with a

prey item before becoming maximally efficient at utilizing the prey item as a resource. According to

[13], this last parameter is derived from an analogy with Michaelis-Menten equation for enzymatic

kinetics. Here n measures the amount of ‘learning’ exhibited by the predator. For n > 1, this

functional response has Holling type III, while for n = 1 it has Holling type II, that is why this

functional is also called generalized functional response. Increasing the attack exponent 1 < n < 2

introduces the stability of simple consumer-resource population models, theoretical findings reveal

that this increases biodiversity, see [14] and references therein. By fitting parameters, it is shown

that n ≥ 2 appear in certain models in ecology, where predator free-space is a component of the

habitat structure, see [1]. Other theoretical models of biological relevance consider the specific

attack exponent n = 2, see [15, 18].

For 1 < n < 2 existence and uniqueness of limit cycles for predator-prey system (1.1) is proved

in [16]. Existence and uniqueness for 0 ≤ n ≤ 1, n ≥ 2 also holds true under certain conditions,

see [17]. Along this work we consider only integer values n ≥ 2.

Existence of non-algebraic limit cycles for the Lotka-Volterra model were first exhibited by [12].

Since then, existence of trascendental ovals as limit cycles in system generalizing Lotka-Voltera

models have been proved, see for instance [9, 5, 6]. Motivated by these results we explore this

question for generalized functional responses.

Our main result is contained in Theorem 2.1 which asserts that limit cycles can not be algebraic

ovals in the case of Holing type III predator-prey models. The proof uses Puiseux series at infinity

in the variable x. We estimate the number of branches of solutions given by the Puiseux series.

We perform calculation of the leading term and prove that there exists at most one determination

or branch of such series. To see this we show how each coefficient cn is completely specified by

the parameters of the system. Thus, we conclude that any invariant algebraic curve must have at

most degree one in y. Thus any algebraic invariant curve y(x), should be a rational function.

For related works which also apply formal and Puiseux series to planar polynomial systems see [4,

7, 8].
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2 Rational functions as invariant algebraic curves

Under a suitable change of variables, x = u, y = −v/m, and time reparametrization, ds
dt =

1/(a+ u2), system (1.1) becomes

ẋ = x
(
(r − 1/K)a+ (r − 1/K)xn + xn−1y

)
,

ẏ = y (−D + (γm−D)xn) .
(2.1)

Thus we study the algebraic system:

ẋ = x
(
a0 + anx

n + xn−1y
)
,

ẏ = y (b0 + bnx
n) , an ̸= bn.

(2.2)

Notice that the axes x = 0, y = 0 are algebraic solutions of (2.1).

Take the ODE defined by system (2.1) in the complex domain

dy

dx
=

y (b0 + bnx
n)

x (a0 + anxn + xn−1y)
. (2.3)

Solutions are Riemann surfaces immersed in Cx × Cy, where Cx ≃ C and poles of solutions

correspond to values y = ∞ in the compactification Cy = Cy ∪ {∞} ≃ CP1.

If we ask for the existence of algebraic solutions F (x, y) = 0 for F ∈ C[x, y], of the dynamical

system (2.1). Then, such algebraic curve should be rational.

Theorem 2.1. Suppose that the following conditions hold,

a0 ̸= b0, an ̸= bn. (2.4)

If there exists an invariant algebraic curve F (x, y) = 0 of equation (2.3) with x, y ∤ F (x, y), then

degy F = 1. Therefore, any algebraic (possibly multivalued) solution should also be a rational

(univalued) solution, y = ϕ(x), provided we exclude the trivial solution, y(x) ≡ 0.

The following claim becomes of interest.

Corollary 2.2. There can not exist algebraic limit cycles of the dynamical system (2.1) as a real

vector field in R2, whenever conditions (2.4) hold true.

For the proof of Theorem 2.1 we consider the Newton-Puiseux algorithm to describe explicitly the

nature of solutions at the infinites x = ∞ and y = ∞. For further explanation of the Newton-

Puiseux method for ODE, see [2, 10, 11]. The crucial step of the proof is to apply the following

result.

Theorem 2.3 (Theorem 1.4 in [3]). Let G(z, w) = 0 be an invariant algebraic curve, ∂wG ̸= 0 of

the polynomial ODE

P (z, w)
dw

dz
−Q(z, w) = 0. (2.5)
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Then degw G is at most the number of Puiseux series

w(z) = c0z
µ0 +

∞∑
l=1

clz
l

m0
+µ0 , (2.6)

solving (2.5), whenever the number of these series is finite. Here µ0 = l0/m0 with m0, l0 relatively

prime integers m0 ≥ 0.

Proof of Theorem 2.1. We proceed analyzing poles and algebraic branch points according to Painle-

vé methodology, see [10, 11]. Notice that under the blow-up change of coordinates ξ = 1
x , equation

(2.1) yields an equation at x = ∞ corresponding to ξ = 0

dy

dξ
= − y(a0ξ

n + an)

ξ(b0ξn + bn + ξy)
, (2.7)

At infinity the trivial solution y ≡ 0 yields a trivial solution which tends to ξ = 0. To find an

expansion of non-trivial solutions along ξ = 0, with ξ = 1/x, in equation (2.7), we adopt the

following Puiseux series expansion:

y(ξ) = c0ξ
µ0 +

∞∑
l=1

clξ
l

m0
+µ0 , (2.8)

where µ0 = l0/m0 and −1/µ0 is one of many possible slopes of the corresponding Newton polygon,

and l0,m0 are relatively prime integers. For equation (2.7) the Newton polygon is a right-angled

triangle whose only oblique side is the hypothenuse, see Fig. 1.
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Figure 1: Newton polygon associated to the ODE (2.7) and used to calculate µ0. Circled vertices

correspond to monomials appearing in By′ within the expression A(ξ, y) +B(ξ, y)dydξ = 0.

Therefore, the only slope to consider is −1/µ0 = 1. Accordingly, µ0 = −1 and c0(bn−an)−c20 = 0,

with two possible roots: c0 = 0, bn−an ∈ C. If we make a direct substitution c0 = 0 of the Laurent

expansion,
∑∞

l=0 clξ
−1+l. This yields the trivial solution, y ≡ 0. We claim that the remaining

value,

c0 = bn − an ̸= 0 (2.9)
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gives rise to a unique Laurent series of a simple pole at x = ∞, and therefore to just one branch

of the Puiseux series. Indeed, under substitution

ξ1 = ξ, y = c0ξ
−1
1 + y1,

we obtain a Newton polygon for

(a0ξ
n
1 + bn + ξ1y1)ξ1

dy1
dξ1

+ (b0ξ
n
1 + an)y1 + (an − bn)(a0 − b0)ξ

n−1
1 = 0 (2.10)

which has two possible slopes and corresponding values µ1 = 1,−1/(n− 1). See Fig. 2.
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Figure 2: Newton polygon associated to the ODE (2.10) and used to calculate µ1.

According to the algorithm given in [2], for positive slope −1/µ1, we choose as principal side,

µ1 = n− 1. We have

cn =
(an − bn)(a0 − b0)

(1− n)bn − an
. (2.11)

In the following step, we have a principal side with µ2 = 2n − 1. See the corresponding Newton

polygon used to calculate µ2 in Fig. 3.

This determines c2n. Therefore, there is a unique determination for the Puiseux-Laurent series:

y = c0ξ
−1 +

∞∑
k=1

cknξ
kn−1 + . . . . (2.12)

By direct substitution of the Puiseux-Laurent series in eq. (2.7) we can also verify that the middle

coefficients vanish, i.e. for each k = 0, 1, 2, . . . , we have

cl = 0, ∀l = kn+ 1, . . . , (k + 1)n− 1.

Theorem 2.3 implies that degy F ≤ 1.

Thus, under the hypothesis of Theorem 2.1 we conclude that y = ϕ(x) is a rational function which

cannot contain an algebraic limit cycle because of the uniqueness of its determination with respect

to x.
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Figure 3: Newton polygon used to calculate µ2.

Remark 2.4. We have chosen Puiseux-Laurent series of the form y = y(x) because there is a

recognizable pattern in the successive Newton polygons, namely triangles with a moving low vertex.

This yields a unique side with a unique slope. Therefore a unique µk yields a unique linear relation

that allows us to compute all the coefficients ck.

3 On the degree with respect to x

We may ask whether the degree in x for an invariant curve can be estimated with the same

methods. Notice that expression (2.12) suggests that degx F = nk for some k ∈ N. We illustrate

the difficulties to calculate an upper bound for degx F using the same techniques by considering

n = 3.

If we take, x = x(y) at y = ∞, then we may take the coordinate change y = 1
η . Thus system (2.1)

becomes
dx

dη
=

a0xη + anx
n+1η − xn−1

η2(b0 + bnxnη2)

The corresponding Newton polygon is shown in Fig. 4.

There are three posible cases for Puiseux-Laurent series

x(η) = c0η
µ0 +

∞∑
l=1

clη
l

m0
+µ0 ,

corresponding to slopes −1/µ0 equal to 1,∞,−(n − 1) which yield µ0 equal to −1, 0, 1
n−1 . No

infinite values c0 ∈ R arise in each case. This can be verified as follows:

(1) Case µ0 = −1. Under substitution

η1 = η, x = c0η
µ0

1 + x1,
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Figure 4: Newton polygon for x(y) at infinity used to calculate µ0 = 1
n−1 .

we regard the least degree coefficient. There exists a unique Puiseux series where c0 is

determined by a linear relation

cn0 (c0(bn − an)− 1) = 0,

therefore there exists just one branch.

(2) Case µ0 = 0. Corresponds to the trivial solution x ≡ 0 with c0 = 0.

(3) Case µ0 = 1
n−1 . Puiseux-Laurent series arise as c0 solve a relation:

a0c0 +
b0c0
n− 1

+ cn0 = 0,

therefore there exists n− 1 posible branches. Each branch corresponds to a (n− 1)−th root

c0 =

(
−a0 −

b0
n− 1

)1/n−1

.

If we choose µ0 = 1
n−1 , then we get the ODE,

A(η1, x1) +B(η1, x1)
dx1

dη1
,

with extended expression,

A(3,0)η
3
1 +A(1,1)η1x1 +A(5/2,1)η

5/2
1 x1

+A(1/2,2)η
1/2
1 x2

1 +A(2,2)η
2
1x

2
1 +A(0,3)x

3
1 +A(3/2,1)η

3/2
1 x1

+A(1,4)η1x
4
1

+
dx1

dη1
× [B(1,1)η

2
1 +B(5/2,1)η

7/2 +B(2,2)η
3
1x1

+B(3/2,3)η
5/2
1 x2

1 +B(1,4)η
2
1x

4
1] = 0.
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whose Newton polygon is shown in Fig 5. Circled vertices correspond to monomials appearing in

Bx′
1 within the ODE.

Under the same assumptions of Theorem 2.1, if there exists an invariant algebraic curve F (x, y) = 0

of (2.3) with x, y ∤ F (x, y), then degx F has upper bound at least n− 1, provided we exclude the

trivial solution, y(x) ≡ 0. This would require

a0 +
b0

n− 1
̸= 0. (3.1)

We still can not conclude that degx F ≤ n− 1, since the proof of this fact would require a suitable

description of successive Newton polygons, as well as an effective calculation of the number of

branches of the corresponding Puiseux-Laurent series. Two main difficulties arise: On one hand

these Newton polygons may follow a complex pattern. On the other hand, we may have several

different relations defining general coefficients ck, k > 0 requiring enough conditions so that there

is a finite number of branches rather than a continuum.
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Figure 5: Newton polygon that determines µ1 = 2 with n = 3.

In the second step we have the possibility to choose either µ1 = 2 or µ1 = 1/2. If we choose µ1 = 2.

Then, the corresponding relations arising from the least degree terms in the substitution

η1 = η2, x1 = c1η
µ1

2 + x2

become,

4c1(4a0 − b0) = 8a3a
2
0 + 4a20b3 + 8a3a0b0 + 4a0b3b0 + 2a3b

2
0 + b3b

2
0,

Therefore, we would require the additional condition

4a0 ̸= b0 (3.2)

in order to be able to calculate c1 and thus have a finite number of branches.
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According to [2, Lemma 2], in order to have a finite number of branches, i.e. a good side of the

Newton Polygon in its terminology, it is sufficient that the following conditions hold for the high

and low vertices of such a side, (a, b), (a′, b′), respectively:

(1) B(a,b) ̸= 0 and
A(a,b)

B(a,b)
/∈ Q≥µ1 = {q ∈ Q : q ≥ µ},

(2) A(a′,b′) + µB(a′,b′) ̸= 0,

where A(a,b), B(a,b) refer to the coefficients for the monomials in the equation A + B dx1

dη1
= 0

associated to the vertex (a, b).

In our concrete example, in Fig. 5 we have chosen µ1 = 2 because it corresponds to the slope

−1/µ1 of the unique good side which has vertices (a, b) = (1, 1) and (a′, b′) = (3, 0). Calculations

yield

A(1,1) =
1

8
(16a0 + 12b0), B(1,1) = −b0,

A(3,0) = −c40

(
a0 +

b0
2

)
, B(3,0) = 0.

Recall that under our conventions, B(3,0) = 0 is implied by the fact that the vertex (3, 0) is not

circled. Conditions for a good side which are sufficient to have a finite number of branches read as

follows:

(1) 16a0+12b0
8b0

/∈ Q≥µ1 = {q ∈ Q : q ≥ µ1}. That is, either

a0
b0

<
1

4
or

a0
b0

≥ 1

4
but

a0
b0

/∈ Q. (3.3)

(2) a0 +
b0
2 ̸= 0. We recover condition (3.1).

Notice that condition (3.3) is stronger than (3.2).

In the following step we choose µ2 = 7/2 by considering the slopes of the Newton polygon shown

in Fig. 6 with the unique good side which has vertex (a′, b′) on the η1−axis. Remark the increasing

complexity of the polygon. Thus in the step k ≥ 2, we can always choose the good side largest

negative slope −1/µk with vertex (a′, b′) = (a′, 0) on the ηk−axis and vertex (a, b) = (1, 1).

But even if in each step k ≥ 2 we achieve linear relations to determine coefficients ck, we still can

not conclude that there is a finite number of determinations. An additional calculation needs to be

done, namely to verify that no other side in the Newton polygon, yield a continuous indetermination

ck ∈ C. Those additional sides are not good. To illustrate this difficulty suppose that we do not

choose the unique good side in Fig. 5. Suppose that on the contrary we choose the side with

vertices (a, b) = (0, 3) and (a′, b′) = (1, 1) which is not good. Further calculation yields

(a0 + 2b0)c0 = 0.
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Therefore, either c0 = 0 or an indetermination c0 ∈ C arises whenever the following relation does

or does not hold:

a0 + 2b0 ̸= 0. (3.4)
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Figure 6: Newton polygon to determine µ2 = 7/2. Notice its increasing complexity with respect

to Figs. 5 and 4.

Summarizing, if we follow the same strategy, to find an effective upper bound for degx F requires

further calculations and a detailed and complete description of the conditions that allow a finite

number of branches. We leave it for a future work.

4 Zooplankton-phytoplankton dynamics

We consider the dependence of a predator’s (zooplankton) grazing rate on prey (phytoplankton)

is taken as that of Holling type III response as in [15], instead of type II as in (2.67), (2.68) in [18].

Suppose that phytoplankton grows in logistic form whereas the zooplankton predation by fish is

neglected. We then get the following system

u̇ = u (1− u)− vu2

h+ u2
,

v̇ =
γvu2

h+ u2
− δv,

(4.1)

which yields a system similar to (2.1):

ẋ = x (xy) ,

ẏ = y
(
−δ + (γ − δ)x2

)
.

(4.2)
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The criterion exposed in [17] for existence and uniqueness of a limit cycle adapted to system (1.1)

with m = 1 and n ≥ 2 states that

(nD − (n− 2)γ) · n

√
aD

γ −D
< (pD − (p− 1)γ)K,

which for (4.1) yields

2δ

√
hδ

γ − δ
< 2δ − γ. (4.3)

For the specific choice of parameters: δ = 0.25, γ = 0.35, h = 0.01, condition (4.3) holds true.

Therefore there exists a unique limit cycle. Indeed, numerical evidence for the existence of a limit

cycle is given in Fig. 7.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Figure 7: Solutions of system (4.1) with initial conditions (0.1, 0.05) and (0.2, 0.2) converge to a

limit cycle.

On the other hand, due to Corollary 2.2 this limit cycle can not be an algebraic curve. Indeed, for

an algebraic invariant curve F (x, y) = 0, there is only one branch of a simple pole at x = ∞. The

corresponding Puiseux-Laurent series of this branch is

y =

∞∑
k=0

c2kξ
2k−1 = c0ξ

−1 + c2ξ + c4ξ
3 + . . . ,

where ξ = 1/x. A straightforward calculation of the coefficients yields

c0 = γ − δ = 0.1, c2 = δ = 0.25, c4 = 0 = c2k, k ≥ 2.

Therefore, y = c0ξ
−1 + c2ξ. Hence for an invariant algebraic curve, degy F = 1, and y = ϕ(x),

should be rational with F (x, ϕ(x)) = 0. In this example degx F = 2.
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