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ABSTRACT

We introduce the k-th Gauduchon condition on almost com-

plex manifolds. We show that if both the conformally k-th

Gauduchon condition and the conformally semi-Kähler con-

dition are satisfied, then it becomes conformally quasi-

Kähler.

RESUMEN

Introducimos la k-ésima condición de Gauduchon en va-

riedades casi complejas. Mostramos que si la k-ésima

condición de Gauduchon conforme y la condición semi-

Kähler conforme se satisfacen ambas, entonces la variedad

es cuasi-Kähler conforme.
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1 Introduction

S. Ivanov and G. Papadopoulous introduced the conditions on the Hermitian form such that

ωl ∧ ∂∂̄ωk = 0 for 1 ≤ k + l ≤ n − 1, which is called the (l|k)-SKT condition. They have proven

that every compact conformally balanced (l|k)-SKT manifold, k < n − 1, n > 2, is Kähler (cf.

[5]). J. Fu, Z. Wang and D. Wu introduced and investigated the generalization of Gauduchon

metrics, which is called k-th Gauduchon. The k-th Gauduchon condition is the case l = n− k− 1,

1 ≤ k ≤ n−1 of the (l|k)-SKT condition. By definition, (n−1)-th Gauduchon metrics are the usual

Gauduchon metrics, astheno-Kähler metrics are examples of (n − 2)-th Gauduchon metrics, and

pluriclosed metrics are in particular 1-st Gauduchon. They proved that there exists a non-Kähler

3-fold which can support a 1-Gauduchon metric and a balanced metric simultaneously (cf. [2]).

Since K. Liu and X. Yang have shown that if a compact complex manifold is k-th Gauduchon for

1 ≤ k ≤ n− 2 and also balanced, then it must be Kähler, a 1-Gauduchon metric and a balanced

metric on a non-Kähler 3-fold which Fu, Wang and Wu discovered must be different Hermitian

metrics. Liu and Yang also have shown that the conformally Kählerianity is equivalent to that

both the conformally k-th Gauduchon for 1 ≤ k ≤ n − 2, and the conformally balancedness are

satisfied (cf. [7]). Our aim in this paper is to generalize the Liu-Yang’s equivalence [7, Corollary

1.17] to almost Hermitian geometry.

Let (M2n, J) be an almost complex manifold with n ≥ 3 and let g be an almost Hermitian metric

on M . Let {Zr} be an arbitrary local (1, 0)-frame around a fixed point p ∈ M and let {ζr} be

the associated coframe. Then the associated real (1, 1)-form ω with respect to g takes the local

expression ω =
√
−1grk̄ζ

r ∧ ζ k̄. We will also refer to ω as to an almost Hermitian metric. We

introduce the definition of a Gauduchon metric and we define a k-th Gauduchon metric as follows.

Definition 1.1. Let (M2n, J) be an almost complex manifold. A metric g is called a Gauduchon

metric onM if g is an almost Hermitian metric whose associated real (1, 1)-form ω =
√
−1gij̄ζ

i∧ζ j̄

satisfies d∗(Jd∗ω) = 0, where d∗ is the adjoint of d with respect to g, which is equivalent to

d(Jd(ωn−1)) = 0, or ∂∂̄(ωn−1) = 0. When an almost Hermitian metric g is Gauduchon, the triple

(M2n, J, g) will be called a Gauduchon manifold. For 1 ≤ k ≤ n− 1, an almost Hermitian metric

ω is called k-th Gauduchon if it satisfies that ∂∂̄ωk ∧ ωn−k−1 = 0.

Notice that the condition ∂∂̄ωk ∧ ωn−k−1 = 0 for 1 ≤ k ≤ n− 2 is not equivalent to d(Jd(ωk)) ∧
ωn−k−1 = 0 for 1 ≤ k ≤ n−2 since there exist A and Ā parts of the exterior differential operator d

in the almost complex setting (Note that these conditions are equivalent in the case of k = n−1 as

we confirmed in Definition 1.1 since then we have A(ωn−1) = Ā(ωn−1) = 0.). Hence the condition

∂∂̄ωk ∧ ωn−k−1 = 0 for 1 ≤ k ≤ n − 1 can be regarded as a natural extension of the Gauduchon

condition on almost complex manifolds.

We next introduce the definition of a semi-Kähler metric.
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Definition 1.2. Let (M2n, J) be an almost complex manifold. A metric g is called a semi-Kähler

metric onM if g is an almost Hermitian metric whose associated real (1, 1)-form ω =
√
−1gij̄ζ

i∧ζ j̄

satisfies d(ωn−1) = 0. When an almost Hermitian metric g is semi-Kähler, the triple (M2n, J, ω)

will be called a semi-Kähler manifold.

Recall that on an almost Hermitian manifold (M,J, g), a quasi-Kähler structure is an almost

Hermitian structure whose real (1, 1)-form ω satisfies (dω)(1,2) = ∂̄ω = 0, which is equivalent to

the original definition of quasi-Kählerianity: DXJ(Y ) +DJXJ(JY ) = 0 for all vector fields X,Y

(cf. [4]), where D is the Levi-Civita connection associated to g. It is important for us to study

quasi-Kähler manifolds since they include the classes of almost Kähler manifolds and nearly Kähler

manifolds. An almost Kähler or quasi-Kähler manifold with J integrable is a Kähler manifold. We

define some conformally conditions.

Definition 1.3. Let (M,J, ω) be an almost Hermitian manifold. We say ω is conformally k-th

Gauduchon (resp. semi-Kähler, quasi-Kähler) if there exist a k-th Gauduchon (resp. semi-Kähler,

quasi-Kähler) metric ω̃ and a smooth function F ∈ C∞(M,R) such that ω = eF ω̃.

Our main result is as follows.

Theorem 1.4. On a compact almost Hermitian manifold (M,J, ω), the following are equivalent:

(1) (M,J, ω) is conformally quasi-Kähler.

(2) (M,J, ω) is conformally k-th Gauduchon for 1 ≤ k ≤ n− 2, and conformally semi-Kähler.

In particular, the following are also equivalent:

(a) (M,J, ω) is quasi-Kähler.

(b) (M,J, ω) is k-th Gauduchon for 1 ≤ k ≤ n− 2, and conformally semi-Kähler.

This paper is organized as follows: in the second section, we recall some basic definitions and

computations. In the last section, we will give a proof of the main result. Notice that we assume

the Einstein convention omitting the symbol of sum over repeated indexes in all this paper.

2 Preliminaries

2.1 The Nijenhuis tensor of the almost complex structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure on M is

an endomorphism J of TM , J ∈ Γ(End(TM)), satisfying J2 = −IdTM . The pair (M,J) is called
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an almost complex manifold. Let (M,J) be an almost complex manifold. We define a bilinear

map on C∞(M) for X,Y ∈ Γ(TM) by

4N(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ], (2.1)

which is the Nijenhuis tensor of J . The Nijenhuis tensor N satisfies N(X,Y ) = −N(Y,X),

N(JX, Y ) = −JN(X,Y ), N(X, JY ) = −JN(X,Y ), N(JX, JY ) = −N(X,Y ). For any (1, 0)-

vector fields W and V , N(V,W ) = −[V,W ](0,1), N(V, W̄ ) = N(V̄ ,W ) = 0 and N(V̄ , W̄ ) =

−[V̄ , W̄ ](1,0) since we have 4N(V,W ) = −2([V,W ] +
√
−1J [V,W ]), 4N(V̄ , W̄ ) = −2([V̄ , W̄ ] −

√
−1J [V̄ , W̄ ]). An almost complex structure J is called integrable if N = 0 everywhere on M .

Giving a complex structure on a differentiable manifold M is equivalent to giving an integrable

almost complex structure on M . Let (M,J) be an almost complex manifold. A Riemannian

metric g on M is called J-invariant if J is compatible with g, i.e., for any X,Y ∈ Γ(TM),

g(X,Y ) = g(JX, JY ). In this case, the pair (J, g) is called an almost Hermitian structure. The

fundamental 2-form ω associated to a J-invariant Riemannian metric g, i.e., an almost Hermitian

metric, is determined by, for X,Y ∈ Γ(TM), ω(X,Y ) = g(JX, Y ). Indeed we have, for any

X,Y ∈ Γ(TM),

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X,Y ) (2.2)

and ω ∈ Γ(
∧2

T ∗M). We will also refer to the associated real fundamental (1, 1)-form ω as an

almost Hermitian metric. The form ω is related to the volume form dVg by n!dVg = ωn. Let a local

(1, 0)-frame {Zr} on (M,J) with an almost Hermitian metric g and let {ζr} be a local associated

coframe with respect to {Zr}, i.e., ζi(Zj) = δij for i, j = 1, . . . , n. Since g is almost Hermitian, its

components satsfy gij = gīj̄ = 0 and gij̄ = gj̄i = ḡīj .

We write TRM for the real tangent space of M . Then its complexified tangent space is given

by TCM = TRM ⊗R C. By extending J C-linearly and g, ω, C-bilinearly to TCM , they are also

defined on TCM and we observe that the complexified tangent space TCM can be decomposed as

TCM = T 1,0M⊕T 0,1M, where T 1,0M , T 0,1M are the eigenspaces of J corresponding to eigenvalues
√
−1 and −

√
−1, respectively:

T 1,0M = {X −
√
−1JX

∣∣X ∈ TM}, T 0,1M = {X +
√
−1JX

∣∣X ∈ TM}. (2.3)

Let ΛrM =
⊕

p+q=r Λ
p,qM for 0 ≤ r ≤ 2n denote the decomposition of complex differential

r-forms into (p, q)-forms, where Λp,qM = Λp(Λ1,0M)⊗ Λq(Λ0,1M),

Λ1,0M = {α+
√
−1Jα

∣∣α ∈ Λ1M}, Λ0,1M = {α−
√
−1Jα

∣∣α ∈ Λ1M} (2.4)

and Λ1M denotes the dual of TM . For any α ∈ Λ1M , we define Jα(X) = −α(JX) for X ∈ TM .

Let (M2n, J, g) be an almost Hermitian manifold. An affine connection D on TM is called almost

Hermitian connection if Dg = DJ = 0. For the almost Hermitian connection, we have the following

Lemma (cf. [3, 9, 11]).
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Lemma 2.1. Let (M,J, g) be an almost Hermitian manifold with dimRM = 2n. Then for any

given vector valued (1, 1)-form Θ = (Θi)1≤i≤n, there exists a unique almost Hermitian connection

D on (M,J, g) such that the (1, 1)-part of the torsion is equal to the given Θ.

If the (1, 1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the

connction is called the second canonical connection or the Chern connection. We will refer the

connection as the Chern connection and denote it by ∇.

Note that for any p-form ψ, there holds that

dψ(X1, . . . , Xp+1) =

p+1∑

i=1

(−1)i+1Xi(ψ(X1, . . . , X̂i, . . . , Xp+1))

+
∑

i<j

(−1)i+jψ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1) (2.5)

for any vector fields X1, . . . , Xp+1 on M (cf. [11]). We directly compute that

dζs = −1

2
Bs

klζ
k ∧ ζl −Bs

kl̄
ζk ∧ ζ l̄ + 1

2
Ns

k̄l̄
ζ k̄ ∧ ζ l̄. (2.6)

According to the direct computation above, we may split the exterior differential operator d :

ΛpM ⊗R C → Λp+1M ⊗R C, into four components

d = A+ ∂ + ∂̄ + Ā (2.7)

with

∂ : Λp,qM → Λp+1,qM, ∂̄ : Λp,qM → Λp,q+1M, (2.8)

A : Λp,qM → Λp+2,q−1M, Ā : Λp,qM → Λp−1,q+2M, (2.9)

since we have

d(Γ(Λr,sM)) ⊆ Γ(Λr+2,s−1M ⊕ Λr+1,sM ⊕ Λr,s+1M ⊕ Λr−1,s+2M). (2.10)

In terms of these components, the condition d2 = 0 can be written as

A2 = 0, ∂A+A∂ = 0, ∂̄Ā+ Ā∂̄ = 0, Ā2 = 0,

A∂̄ + ∂2 + ∂̄A = 0, AĀ+ ∂∂̄ + ∂̄∂ + ĀA = 0, ∂Ā+ ∂̄2 + Ā∂ = 0. (2.11)

Notice that J is integrable if and only if A = 0, equivalently, if and only if ∂̄2 = 0.

For any real (1, 1)-form σ =
√
−1σij̄ζ

i ∧ ζ j̄ , we have

∂̄σ =

√
−1

2

(
Zj̄(σkī)− Zī(σkj̄)−Bs

kīσsj̄ +Bs
kj̄σs̄i +Bs̄

īj̄σks̄

)
ζk ∧ ζ ī ∧ ζ j̄ ,

∂σ =

√
−1

2

(
Zi(σjk̄)− Zj(σik̄)−Bs

ijσsk̄ −Bs̄
ik̄
σjs̄ +Bs̄

jk̄
σis̄

)
ζi ∧ ζj ∧ ζ k̄.
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From these computations above, we have

∂̄ω =

√
−1

2

(
Zj̄(gkī)−Zī(gkj̄)−Bs

kīgsj̄+B
s
kj̄gs̄i+B

s̄
īj̄gks̄

)
ζk∧ζ ī∧ζ j̄ =

√
−1

2
Tj̄īkζ

k∧ζ ī∧ζ j̄ (2.12)

and

∂ω =

√
−1

2

(
Zi(gjk̄)−Zj(gik̄)−Bs

ijgsk̄−Bs̄
ik̄
gjs̄+B

s̄
jk̄
gis̄

)
ζi∧ζj∧ζ k̄ =

√
−1

2
Tijk̄ζ

i∧ζj∧ζ k̄, (2.13)

where T is the torsion of the Chern connection. For any ϕ ∈ C∞(M,R), a direct computation

yields

√
−1∂∂̄ϕ =

1

2
(dJdϕ)(1,1) =

√
−1(ZiZj̄ − [Zi, Zj̄]

(0,1))(ϕ)ζi ∧ ζ j̄ , (2.14)

so we write locally

∂i∂j̄ϕ = (ZiZj̄ − [Zi, Zj̄]
(0,1))ϕ. (2.15)

For basic definitions and computations about the torsion and the curvature on almost Hermitian

manifolds, see [6, Section 2].

3 Proof of Theorem 1.4

We need the following lemmas in order to prove Theorem 1.4. Here we introduce the following

characterizations of quasi-Kählerianity and semi-Kählerianity.

Lemma 3.1 (cf. [8, Lemma 2.4]). An almost Hermitian manifold (M2n, g, J) is quasi-Kähler if

and only if T k
ij = 0 for all i, j and k when a local unitary (1, 0)-frame is fixed, where T is the

torsion of the Chern connection ∇.

Here, we define wr := T i
ri and the torsion (1, 0)-form η := T i

irζ
r = −wrζ

r (cf. [10]), where T = (T i)

is the torsion of the Chern connection ∇.

Lemma 3.2 (cf. [6, Lemma 4.3]). An almost Hermitian manifold (M2n, J, ω) is semi-Kähler if

and only if η = 0.

Proof. We have ∂ω =
√
−1
2 Tijk̄ζ

i∧ ζj ∧ ζ k̄ as we see (2.12), (2.13). Then a direct calculation shows

that

∂ωn−1 = (n− 1)∂ω ∧ ωn−2 = −η ∧ ωn−1, (3.1)

where we used that η = −wiζ
i = −(n− 1)

∂ω ∧ ωn−2

ωn−1
. Similarly, we obtain that

∂̄ωn−1 = (n− 1)∂̄ω ∧ ωn−2 = −η̄ ∧ ωn−1, (3.2)

since we have ∂̄ω =
√
−1
2 Tj̄īkζ

k ∧ ζ ī ∧ ζ j̄ and η̄ = −wīζ
ī = −(n− 1)

∂̄ω ∧ ωn−2

ωn−1
.
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Recall that the metric g is said to be semi-Kähler if ωn−1 is closed. These identities (3.1), (3.2)

show that g is semi-Kähler if and only if η = 0.

Proof of Theorem 1.4. Assume that ω is conformally k-th Gauduchon and conformally semi-Kähler.

Then since ω is conformally semi-Kähler, there exist an semi-Kähler metric ωB and a smooth func-

tion F ∈ C∞(M,R) such that ω = eFωB. By the conformally k-th Gauduchon condition, there

exist a k-th Gauduchon ωG and a smooth function F̃ ∈ C∞(M,R) such that ω = eF̃ωG. Set

f := F − F̃ , then we have ωG = efωB. Since ωG is k-th Gauduchon, we get

(efωB)
n−k−1 ∧ ∂∂̄(efωB)

k = 0,

and then

ωn−k−1
B ∧ ∂∂̄(efωB)

k = 0. (3.3)

Since ωB is semi-Kähler, 0 = d(ωn−1
B ) = (∂ + A + Ā + ∂̄)(ωn−1

B ) = (∂ + ∂̄)(ωn−1
B ), which tells us

that ∂(ωn−1
B ) = ∂̄(ωn−1

B ) = 0, where we have used that A(ωn−1
B ) = Ā(ωn−1

B ) = 0. Hence we see

that

ωn−k−1
B ∧ ∂(ωk

B) = kωn−2
B ∧ ∂ωB =

k

n− 1
∂(ωn−1

B ) = 0. (3.4)

Then from (3.3), we have

ekfωn−k−1
B ∧ ∂∂̄ωk

B + ωn−1
B ∧ ∂∂̄(ekf ) = 0. (3.5)

Therefore, we obtain
∫

M

ekfωn−k−1
B ∧ ∂∂̄(ωk

B) = −
∫

M

ωn−1
B ∧ ∂∂̄(ekf )

= − 1

n

∫

M

n · ∂∂̄(e
kf ) ∧ ωn−1

B

ωn
B

ωn
B

= − 1

n

∫

M

∆B(e
kf )ωn

B = 0. (3.6)

Applying (3.4) and (3.6), we obtain

0 =

∫

M

ekfωn−k−1
B ∧ ∂∂̄(ωk

B)

=

∫

M

∂(ekfωn−k−1
B ∧ ∂̄(ωk

B))− ∂(ekf ) ∧ ωn−k−1
B ∧ ∂̄(ωk

B)− ekf∂(ωn−k−1
B ) ∧ ∂̄(ωk

B)

=

∫

M

d(ekfωn−k−1
B ∧ ∂̄(ωk

B))− ekf∂(ωn−k−1
B ) ∧ ∂̄(ωk

B)

= −k(n− k − 1)

∫

M

ekfωn−3
B ∧ ∂ωB ∧ ∂̄ωB

= −k(n− k − 1)

∫

M

ekf
T ′
B ∧ T̄ ′

B ∧ ωn−3
B

ωn
B

ωn
B

= − k(n− k − 1)

6n(n− 1)(n− 2)

∫

M

ekfTr(T ′
B ∧ T̄ ′

B)ω
n
B

= − k(n− k − 1)

6n(n− 1)(n− 2)

∫

M

ekf (6|wB|2 − 3|T ′
B|2)ωn

B, (3.7)
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which gives that 2
∫
M
ekf |wB|2ωn

B =
∫
M
ekf |T ′

B|2ωn
B, where we used ωn−k−1

B ∧ ∂̄(ωk
B) = 0 from

(3.4), (∂̄ + A + Ā)(ekfωn−k−1
B ∧ ∂̄(ωk

B)) = 0, and that ∂ωB = T ′
B since we have (∂ωB)jlk̄ =

∂j(gB)lk̄ − ∂l(gB)jk̄ = (TB)jlk̄ from (2.13). Note that as in [1, Chapter 2],

(T ′
B ∧ T̄ ′

B)ikmj̄l̄n̄ = (TB)imj̄(TB)l̄n̄k + (TB)iml̄(TB)n̄j̄k + (TB)imn̄(TB)j̄l̄k

+(TB)mkj̄(TB)l̄n̄i + (TB)mkl̄(TB)n̄j̄i + (TB)mkn̄(TB)j̄l̄i

+(TB)kij̄(TB)l̄n̄m + (TB)kil̄(TB)n̄j̄m + (TB)kin̄(TB)j̄l̄m

and

Tr(T ′
B ∧ T̄ ′

B) = gij̄gkl̄gmn̄(T ′
B ∧ T̄ ′

B)ikmj̄l̄n̄ = 6|wB|2 − 3|T ′
B|2,

where (wB)r = (TB)
i
ri and ηB = (TB)

i
irζ

r = −(wB)rζ
r is the torsion (1, 0)-form of ωB. Since

the metric ωB is semi-Kähler, which is equivalent to that ηB = 0 from Lemma 3.2. Since ηB = 0

implies that (wB)r = 0 for all r = 1, . . . , n, we get

∫

M

ekf |T ′
B|2ωn

B = 2

∫

M

ekf |wB |2ωn
B = 0.

Hence we have T ′
B = 0, which is equivalent to the quasi-Kählerianity from Lemma 3.1. Notice that

since ωB is now quasi-Kähler, we have that from (3.5),

∆B(e
kf ) = n · ∂∂̄(e

kf ) ∧ ωn−1
B

ωn
B

= 0,

which implies that f is constant. The converse is obvious. The equivalence of (a) and (b) in

the statement of Theorem 1.4 follows by the same argument under the condition ω = ωG and

f = F .
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