

CUBO, A Mathematical Journal Vol. 23, no. 02, pp. 299–312, August 2021 DOI: 10.4067/S0719-06462021000200299

# Subclasses of $\lambda$ -bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves

H. Özlem Güney<sup>1</sup> 🕩

G. Murugusundaramoorthy<sup>2</sup> D K. Vijaya<sup>2</sup>

<sup>1</sup> Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır, Turkey. ozlemg@dicle.edu.tr

<sup>2</sup> School of Advanced Sciences, Vellore Institute of Technology, Vellore -632014, India. gmsmoorthy@yahoo.com; kvijaya@vit.ac.in

#### ABSTRACT

In this paper we define the subclass  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$  of the class  $\Sigma$  of bi-univalent functions defined in the unit disk, called  $\lambda$ -bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients  $|a_2|$  and  $|a_3|$  for functions  $f \in \mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$ . Further we determine the Fekete-Szegö result for the function class  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$  and for the special cases  $\alpha = 0, \alpha = 1$  and  $\tau = -0.618$  we state corollaries improving the initial Taylor-Maclaurin coefficients  $|a_2|$  and  $|a_3|$ .

#### RESUMEN

En este artículo definimos la subclase  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$  de la clase  $\Sigma$  de funciones bi-univalentes definidas en el disco unitario, llamadas  $\lambda$ -bi-pseudo-estrelladas, con respecto a puntos simétricos, relacionadas a curvas espirales en conexión con números de Fibonacci. Determinamos los coeficientes iniciales de Taylor-Maclaurin  $|a_2| \neq |a_3|$  para funciones  $f \in$  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$ . Más aún determinamos el resultado de Fekete-Szegö para la clase de funciones  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z)) \neq$ para los casos especiales  $\alpha = 0, \ \alpha = 1 \neq \tau = -0.618$ enunciamos corolarios mejorando los coeficientes iniciales de Taylor-Maclaurin  $|a_2| \neq |a_3|$ .

Keywords and Phrases: Analytic functions, bi-univalent, shell-like curve, Fibonacci numbers, starlike functions.

2020 AMS Mathematics Subject Classification: 30C45, 30C50.



©2021 H. Özlem Güney *et al.* This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



## 1 Introduction

Let  $\mathcal{A}$  denote the class of functions f which are *analytic* in the open unit disk  $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ . Also let  $\mathcal{S}$  denote the class of functions in  $\mathcal{A}$  which are univalent in  $\mathbb{U}$  and normalized by the conditions f(0) = f'(0) - 1 = 0 and are of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

The Koebe one quarter theorem [4] ensures that the image of  $\mathbb{U}$  under every univalent function  $f \in \mathcal{A}$  contains a disk of radius  $\frac{1}{4}$ . Thus every univalent function f has an inverse  $f^{-1}$  satisfying

$$f^{-1}(f(z)) = z, \ (z \in \mathbb{U}) \text{ and } f(f^{-1}(w)) = w \qquad (|w| < r_0(f), \ r_0(f) \ge \frac{1}{4}).$$

A function  $f \in \mathcal{A}$  is said to be bi-univalent in  $\mathbb{U}$  if both f and  $f^{-1}$  are univalent in  $\mathbb{U}$ . Let  $\Sigma$  denote the class of bi-univalent functions defined in the unit disk  $\mathbb{U}$ . Since  $f \in \Sigma$  has the Maclaurin series given by (1.1), a computation shows that its inverse  $g = f^{-1}$  has the expansion

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 + \cdots .$$
(1.2)

We notice that the class  $\Sigma$  is not empty. For example, the functions z,  $\frac{z}{1-z}$ ,  $-\log(1-z)$  and  $\frac{1}{2}\log\frac{1+z}{1-z}$  are members of  $\Sigma$ . However, the Koebe function is not a member of  $\Sigma$ . In fact, Srivastava *et al.* [15] have actually revived the study of analytic and bi-univalent functions in recent years, it was followed by such works as those by (see [2, 3, 9, 15, 16, 17]).

An analytic function f is subordinate to an analytic function F in  $\mathbb{U}$ , written as  $f \prec F$  ( $z \in \mathbb{U}$ ), provided there is an analytic function  $\omega$  defined on  $\mathbb{U}$  with  $\omega(0) = 0$  and  $|\omega(z)| < 1$  satisfying  $f(z) = F(\omega(z))$ . It follows from Schwarz Lemma that

$$f(z) \prec F(z) \quad \Longleftrightarrow \quad f(0) = F(0) \text{ and } f(\mathbb{U}) \subset F(\mathbb{U}), \, z \in \mathbb{U}$$

(for details see [4, 8]). We recall important subclasses of S in geometric function theory such that if  $f \in A$  and

$$\frac{zf'(z)}{f(z)} \prec p(z) \quad \text{and} \quad 1 + \frac{zf''(z)}{f'(z)} \prec p(z)$$

where  $p(z) = \frac{1+z}{1-z}$ , then we say that f is starlike and convex, respectively. These functions form known classes denoted by  $S^*$  and C, respectively. Recently, in [14], Sokół introduced the class  $S\mathcal{L}$ of shell-like functions as the set of functions  $f \in \mathcal{A}$  which is described in the following definition:

**Definition 1.1.** The function  $f \in \mathcal{A}$  belongs to the class  $\mathcal{SL}$  if it satisfies the condition that

$$\frac{zf'(z)}{f(z)} \prec \tilde{p}(z)$$

with

$$\tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2},$$

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$ .



It should be observed  $\mathcal{SL}$  is a subclass of the starlike functions  $\mathcal{S}^*$ .

The function  $\tilde{p}$  is not univalent in  $\mathbb{U}$ , but it is univalent in the disc  $|z| < (3 - \sqrt{5})/2 \approx 0.38$ . For example,  $\tilde{p}(0) = \tilde{p}(-1/2\tau) = 1$  and  $\tilde{p}(e^{\pm i \arccos(1/4)}) = \sqrt{5}/5$ , and it may also be noticed that

$$\frac{1}{|\tau|} = \frac{|\tau|}{1 - |\tau|},$$

which shows that the number  $|\tau|$  divides [0, 1] such that it fulfils the golden section. The image of the unit circle |z| = 1 under  $\tilde{p}$  is a curve described by the equation given by

$$(10x - \sqrt{5})y^2 = (\sqrt{5} - 2x)(\sqrt{5}x - 1)^2,$$

which is translated and revolved trisectrix of Maclaurin. The curve  $\tilde{p}(re^{it})$  is a closed curve without any loops for  $0 < r \leq r_0 = (3 - \sqrt{5})/2 \approx 0.38$ . For  $r_0 < r < 1$ , it has a loop, and for r = 1, it has a vertical asymptote. Since  $\tau$  satisfies the equation  $\tau^2 = 1 + \tau$ , this expression can be used to obtain higher powers  $\tau^n$  as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of  $\tau$  and 1. The resulting recurrence relationships yield Fibonacci numbers  $u_n$ :

$$\tau^n = u_n \tau + u_{n-1}$$

In [11] Raina and Sokół showed that

$$\tilde{p}(z) = \frac{1+\tau^2 z^2}{1-\tau z - \tau^2 z^2} = \left(t + \frac{1}{t}\right) \frac{t}{1-t-t^2} = \frac{1}{\sqrt{5}} \left(t + \frac{1}{t}\right) \left(\frac{1}{1-(1-\tau)t} - \frac{1}{1-\tau t}\right) = \left(t + \frac{1}{t}\right) \sum_{n=1}^{\infty} u_n t^n = 1 + \sum_{n=1}^{\infty} (u_{n-1} + u_{n+1}) \tau^n z^n,$$
(1.3)

where

$$u_n = \frac{(1-\tau)^n - \tau^n}{\sqrt{5}}, \quad \tau = \frac{1-\sqrt{5}}{2}, \quad t = \tau z \qquad (n = 1, 2, \ldots).$$
(1.4)

This shows that the relevant connection of  $\tilde{p}$  with the sequence of Fibonacci numbers  $u_n$ , such that  $u_0 = 0$ ,  $u_1 = 1$ ,  $u_{n+2} = u_n + u_{n+1}$  for  $n = 0, 1, 2, \cdots$ . And they got

$$\tilde{p}(z) = 1 + \sum_{n=1}^{\infty} \tilde{p}_n z^n$$

$$= 1 + (u_0 + u_2)\tau z + (u_1 + u_3)\tau^2 z^2 + \sum_{n=3}^{\infty} (u_{n-3} + u_{n-2} + u_{n-1} + u_n)\tau^n z^n$$

$$= 1 + \tau z + 3\tau^2 z^2 + 4\tau^3 z^3 + 7\tau^4 z^4 + 11\tau^5 z^5 + \cdots$$
(1.5)

Let  $\mathcal{P}(\beta)$ ,  $0 \leq \beta < 1$ , denote the class of analytic functions p in  $\mathbb{U}$  with p(0) = 1 and  $Re\{p(z)\} > \beta$ . Especially, we will use  $\mathcal{P}$  instead of  $\mathcal{P}(0)$ . **Theorem 1.2.** [6] The function  $\tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$  belongs to the class  $\mathcal{P}(\beta)$  with  $\beta = \sqrt{5}/10 \approx 0.2236$ .

Now we give the following lemma which will use in proving.

**Lemma 1.3.** [10] Let  $p \in \mathcal{P}$  with  $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ , then

$$|c_n| \le 2, \qquad for \qquad n \ge 1. \tag{1.6}$$

## **2** Bi-Univalent function class $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$

In this section, we introduce a new subclass of  $\Sigma$  associated with shell-like functions connected with Fibonacci numbers and obtain the initial Taylor coefficients  $|a_2|$  and  $|a_3|$  for the function class by subordination.

Firstly, let  $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ , and  $p \prec \tilde{p}$ . Then there exists an analytic function u such that |u(z)| < 1 in  $\mathbb{U}$  and  $p(z) = \tilde{p}(u(z))$ . Therefore, the function

$$h(z) = \frac{1+u(z)}{1-u(z)} = 1 + c_1 z + c_2 z^2 + \cdots$$
(2.1)

is in the class  $\mathcal{P}$ . It follows that

$$u(z) = \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2}\right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4}\right) \frac{z^3}{2} + \cdots$$
(2.2)

and

$$\tilde{p}(u(z)) = 1 + \frac{\tilde{p}_1 c_1 z}{2} + \left\{ \frac{1}{2} \left( c_2 - \frac{c_1^2}{2} \right) \tilde{p}_1 + \frac{c_1^2}{4} \tilde{p}_2 \right\} z^2 \\ + \left\{ \frac{1}{2} \left( c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \tilde{p}_1 + \frac{1}{2} c_1 \left( c_2 - \frac{c_1^2}{2} \right) \tilde{p}_2 + \frac{c_1^3}{8} \tilde{p}_3 \right\} z^3 + \cdots \right\}$$
(2.3)

And similarly, there exists an analytic function v such that |v(w)| < 1 in  $\mathbb{U}$  and  $p(w) = \tilde{p}(v(w))$ . Therefore, the function

$$k(w) = \frac{1+v(w)}{1-v(w)} = 1 + d_1w + d_2w^2 + \cdots$$
(2.4)

is in the class  $\mathcal{P}(0)$ . It follows that

$$v(w) = \frac{d_1w}{2} + \left(d_2 - \frac{d_1^2}{2}\right)\frac{w^2}{2} + \left(d_3 - d_1d_2 + \frac{d_1^3}{4}\right)\frac{w^3}{2} + \cdots$$
(2.5)

and

$$\tilde{p}(v(w)) = 1 + \frac{\tilde{p}_1 d_1 w}{2} + \left\{ \frac{1}{2} \left( d_2 - \frac{d_1^2}{2} \right) \tilde{p}_1 + \frac{d_1^2}{4} \tilde{p}_2 \right\} w^2 \\ + \left\{ \frac{1}{2} \left( d_3 - d_1 d_2 + \frac{d_1^3}{4} \right) \tilde{p}_1 + \frac{1}{2} d_1 \left( d_2 - \frac{d_1^2}{2} \right) \tilde{p}_2 + \frac{d_1^3}{8} \tilde{p}_3 \right\} w^3 + \cdots$$
(2.6)



The class  $\mathcal{L}_{\lambda}(\alpha)$  of  $\lambda$ -pseudo-starlike functions of order  $\alpha$  ( $0 \leq \alpha < 1$ ) were introduced and investigated by Babalola [1] whose geometric conditions satisfy

$$\Re\left(\frac{z(f'(z))^{\lambda}}{f(z)}\right) > \alpha, \quad \lambda > 0.$$

He showed that all pseudo-starlike functions are Bazilevič of type  $(1 - \frac{1}{\lambda})$  order  $\alpha^{\frac{1}{\lambda}}$  and univalent in open unit disk U. If  $\lambda = 1$ , we have the class of starlike functions of order  $\alpha$ , which in this context, are 1-pseudo-starlike functions of order  $\alpha$ . A function  $f \in \mathcal{A}$  is starlike with respect to symmetric points in U if for every r close to 1, r < 1 and every  $z_0$  on |z| = r the angular velocity of f(z) about  $f(-z_0)$  is positive at  $z = z_0$  as z traverses the circle |z| = r in the positive direction. This class was introduced and studied by Sakaguchi [13] presented the class  $\mathcal{S}_s^*$  of functions starlike with respect to symmetric points. This class consists of functions  $f(z) \in \mathcal{S}$  satisfying the condition

$$\Re\left(\frac{2zf'(z)}{f(z)-f(-z)}\right) > 0, \quad z \in \mathbb{U}.$$

Motivated by  $S_s^*$ , Wang *et al.* [18] introduced the class  $\mathcal{K}_s$  of functions convex with respect to symmetric points, which consists of functions  $f(z) \in S$  satisfying the condition

$$\Re\left(\frac{2(zf'(z))'}{(f(z)-f(-z))'}\right) > 0, \quad z \in \mathbb{U}.$$

It is clear that, if  $f(z) \in \mathcal{K}_s$ , then  $zf'(z) \in \mathcal{S}_s^*$ . For such a function  $\phi$ , Ravichandran [12] presented the following subclasses: A function  $f \in A$  is in the class  $\mathcal{S}_s^*(\phi)$  if

$$\frac{2zf'(z)}{f(z) - f(-z)} \prec \phi(z), \quad z \in \mathbb{U},$$

and in the class  $\mathcal{K}_s(\phi)$  if

$$\frac{2(zf'(z))'}{(f(z) - f(-z))'} \prec \phi(z) \quad z \in \mathbb{U}.$$

Motivated by aforementioned works [1, 13, 12, 18] and recent study of Sokól [14] (also see [11]), in this paper we define the following new subclass  $f \in \mathcal{PSL}_{s,\Sigma}^{\lambda}(\tilde{p}(z))$  of  $\Sigma$  named as  $\lambda$ -bi-pseudostarlike functions with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers, and determine the initial Taylor-Maclaurin coefficients  $|a_2|$  and  $|a_3|$ . Further we determine the Fekete-Szegö result for the function class  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\tilde{p}(z))$  and the special cases are stated as corollaries which are new and have not been studied so far.

**Definition 2.1.** For  $0 \le \alpha \le 1$ ;  $\lambda > 0$ ;  $\lambda \ne \frac{1}{3}$ , a function  $f \in \Sigma$  of the form (1.1) is said to be in the class  $\mathcal{PSL}^{\lambda}_{s,\Sigma}(\alpha, \tilde{p}(z))$  if the following subordination hold:

$$\left(\frac{2z(f'(z))^{\lambda}}{f(z) - f(-z)}\right)^{\alpha} \left(\frac{2[(z(f'(z)))']^{\lambda}}{[f(z) - f(-z)]'}\right)^{1 - \alpha} \prec \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$
(2.7)

and

$$\left(\frac{2w(g'(w))^{\lambda}}{g(w) - g(-w)}\right)^{\alpha} \left(\frac{2[(w(g'(w)))']^{\lambda}}{[g(w) - g(-w)]'}\right)^{1 - \alpha} \prec \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}$$
(2.8)

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2).

j



Specializing the parameter  $\lambda = 1$  we have the following definitions, respectively:

**Definition 2.2.** For  $0 \le \alpha \le 1$ , a function  $f \in \Sigma$  of the form (1.1) is said to be in the class  $\mathcal{PSL}^1_{s,\Sigma}(\alpha, \tilde{p}(z)) \equiv \mathcal{MSL}_{s,\Sigma}(\alpha, \tilde{p}(z))$  if the following subordination hold:

$$\left(\frac{2zf'(z)}{f(z) - f(-z)}\right)^{\alpha} \left(\frac{2(z(f'(z)))'}{[f(z) - f(-z)]'}\right)^{1-\alpha} \prec \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$
(2.9)

and

$$\left(\frac{2wg'(w)}{g(w) - g(-w)}\right)^{\alpha} \left(\frac{2(w(g'(w)))'}{[g(w) - g(-w)]'}\right)^{1-\alpha} \prec \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}$$
(2.10)

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2).

Further by specializing the parameter  $\alpha = 1$  and  $\alpha = 0$  we state the following new classes  $\mathcal{SL}_{s,\Sigma}^*(\tilde{p}(z))$  and  $\mathcal{KL}_{s,\Sigma}(\tilde{p}(z))$  respectively.

**Definition 2.3.** A function  $f \in \Sigma$  of the form (1.1) is said to be in the class  $\mathcal{PSL}^1_{s,\Sigma}(1, \tilde{p}(z)) \equiv \mathcal{SL}^*_{s,\Sigma}(\tilde{p}(z))$  if the following subordination hold:

$$\frac{2zf'(z)}{f(z) - f(-z)} \prec \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$
(2.11)

and

$$\frac{2wg'(w)}{g(w) - g(-w)} \prec \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}$$
(2.12)

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2).

**Definition 2.4.** A function  $f \in \Sigma$  of the form (1.1) is said to be in the class  $\mathcal{PSL}^1_{s,\Sigma}(0, \tilde{p}(z)) \equiv \mathcal{KL}_{s,\Sigma}(\tilde{p}(z))$  if the following subordination hold:

$$\frac{2(z(f'(z)))'}{[f(z) - f(-z)]'} \prec \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$
(2.13)

and

$$\frac{2(w(g'(w)))'}{[g(w) - g(-w)]'} \prec \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}$$
(2.14)

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2).

**Definition 2.5.** For  $\lambda > 0$ ;  $\lambda \neq \frac{1}{3}$ , a function  $f \in \Sigma$  of the form (1.1) is said to be in the class  $\mathcal{PSL}^{\lambda}_{s,\Sigma}(\tilde{p}(z))$  if the following subordination hold:

$$\left(\frac{2z(f'(z))^{\lambda}}{f(z) - f(-z)}\right) \prec \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$
(2.15)

and

$$\left(\frac{2w(g'(w))^{\lambda}}{g(w) - g(-w)}\right) \prec \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}$$
(2.16)

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2).



**Definition 2.6.** For  $\lambda > 0$ ;  $\lambda \neq \frac{1}{3}$ , a function  $f \in \Sigma$  of the form (1.1) is said to be in the class  $\mathcal{GSL}^{\lambda}_{s,\Sigma}(\tilde{p}(z))$  if the following subordination hold:

$$\left(\frac{2[(z(f'(z)))']^{\lambda}}{[f(z) - f(-z)]'}\right) \prec \tilde{p}(z) = \frac{1 + \tau^2 z^2}{1 - \tau z - \tau^2 z^2}$$
(2.17)

and

$$\left(\frac{2[(w(g'(w)))']^{\lambda}}{[g(w) - g(-w)]'}\right) \prec \tilde{p}(w) = \frac{1 + \tau^2 w^2}{1 - \tau w - \tau^2 w^2}$$
(2.18)

where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2).

In the following theorem we determine the initial Taylor coefficients  $|a_2|$  and  $|a_3|$  for the function class  $\mathcal{PSL}^{\lambda}_{s,\Sigma}(\alpha, \tilde{p}(z))$ . Later we will reduce these bounds to other classes for special cases.

**Theorem 2.7.** Let f given by (1.1) be in the class  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$ . Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau}}.$$
(2.19)

and

$$|a_3| \le \frac{2\lambda |\tau| \left[ 2\lambda (\alpha - 2)^2 - \{ 5\lambda (\alpha - 2)^2 + 4 - 3\alpha \} \tau \right]}{(3\lambda - 1)(3 - 2\alpha) \left[ 4\lambda^2 (\alpha - 2)^2 - \{ 10\lambda^2 (\alpha - 2)^2 - \lambda - 2\alpha + 3 \} \tau \right]}$$
(2.20)

where  $0 \le \alpha \le 1; \lambda > 0$  and  $\lambda \ne \frac{1}{3}$ .

*Proof.* Let  $f \in \mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$  and  $g = f^{-1}$ . Considering (2.7) and (2.8), we have

$$\left(\frac{2z(f'(z))^{\lambda}}{f(z) - f(-z)}\right)^{\alpha} \left(\frac{2[(z(f'(z)))']^{\lambda}}{[f(z) - f(-z)]'}\right)^{1 - \alpha} = \tilde{p}(u(z))$$
(2.21)

and

$$\left(\frac{2w(g'(w))^{\lambda}}{g(w) - g(-w)}\right)^{\alpha} \left(\frac{2[(w(g'(w)))']^{\lambda}}{[g(w) - g(-w)]'}\right)^{1-\alpha} = \tilde{p}(v(w))$$
(2.22)

for some Schwarz functions u and v where  $\tau = (1 - \sqrt{5})/2 \approx -0.618$  where  $z, w \in \mathbb{U}$  and g is given by (1.2). Since

$$\left(\frac{2z[f'(z)]^{\lambda}}{f(z) - f(-z)}\right)^{\alpha} \left(\frac{2[(z(f'(z)))']^{\lambda}}{[f(z) - f(-z)]'}\right)^{1 - \alpha} = 1 - 2\lambda(\alpha - 2)a_2z + \{[2\lambda^2(\alpha - 2)^2 + 2\lambda(3\alpha - 4)]a_2^2 + (3\lambda - 1)(3 - 2\alpha)a_3\}z^2 + \cdots$$

and

$$\left(\frac{2w(g'(w))^{\lambda}}{g(w) - g(-w)}\right)^{\alpha} \left(\frac{2[(w(g'(w)))']^{\lambda}}{[g(w) - g(-w)]'}\right)^{1-\alpha}$$
  
= 1 + 2\lambda(\alpha - 2)a\_2w + {[2\lambda^2(\alpha - 2)^2 + 2\lambda(5 - 3\alpha) + 2(2\alpha - 3)]a\_2^2 + (3\lambda - 1)(2\alpha - 3)a\_3}w^2 + \cdots .



Thus we have

$$1 - 2\lambda(\alpha - 2)a_{2}z + \{[2\lambda^{2}(\alpha - 2)^{2} + 2\lambda(3\alpha - 4)]a_{2}^{2} + (3\lambda - 1)(3 - 2\alpha)a_{3}\}z^{2} + \cdots$$

$$= 1 + \frac{\tilde{p}_{1}c_{1}z}{2} + \left[\frac{1}{2}\left(c_{2} - \frac{c_{1}^{2}}{2}\right)\tilde{p}_{1} + \frac{c_{1}^{2}}{4}\tilde{p}_{2}\right]z^{2} + \left[\frac{1}{2}\left(c_{3} - c_{1}c_{2} + \frac{c_{1}^{3}}{4}\right)\tilde{p}_{1} + \frac{1}{2}c_{1}\left(c_{2} - \frac{c_{1}^{2}}{2}\right)\tilde{p}_{2} + \frac{c_{1}^{3}}{8}\tilde{p}_{3}\right]z^{3} + \cdots$$

$$(2.23)$$

 $\quad \text{and} \quad$ 

$$1 + 2\lambda(\alpha - 2)a_{2}w + \left\{ [2\lambda^{2}(\alpha - 2)^{2} + 2\lambda(5 - 3\alpha) + 2(2\alpha - 3)]a_{2}^{2} + (3\lambda - 1)(2\alpha - 3)a_{3}\right\}w^{2}$$

$$= 1 + \frac{\tilde{p}_{1}d_{1}w}{2} + \left[ \frac{1}{2} \left( d_{2} - \frac{d_{1}^{2}}{2} \right) \tilde{p}_{1} + \frac{d_{1}^{2}}{4} \tilde{p}_{2} \right]w^{2}$$

$$+ \left[ \frac{1}{2} \left( d_{3} - d_{1}d_{2} + \frac{d_{1}^{3}}{4} \right) \tilde{p}_{1} + \frac{1}{2}d_{1} \left( d_{2} - \frac{d_{1}^{2}}{2} \right) \tilde{p}_{2} + \frac{d_{1}^{3}}{8} \tilde{p}_{3} \right]w^{3} + \cdots$$

$$(2.24)$$

It follows from (1.5), (2.23) and (2.24) that

$$-2\lambda(\alpha-2)a_2 = \frac{c_1\tau}{2},$$
(2.25)

$$[2\lambda^2(\alpha-2)^2 + 2\lambda(3\alpha-4)]a_2^2 + (3\lambda-1)(3-2\alpha)a_3 = \frac{1}{2}\left(c_2 - \frac{c_1^2}{2}\right)\tau + \frac{3}{4}c_1^2\tau^2,$$
(2.26)

and

$$2\lambda(\alpha - 2)a_2 = \frac{d_1\tau}{2},\tag{2.27}$$

$$[2\lambda^2(\alpha-2)^2 + 2\lambda(5-3\alpha) + 2(2\alpha-3)]a_2^2 + (3\lambda-1)(2\alpha-3)a_3 = \frac{1}{2}\left(d_2 - \frac{d_1^2}{2}\right)\tau + \frac{3}{4}d_1^2\tau^2.$$
(2.28)

From (2.25) and (2.27), we have

$$c_1 = -d_1,$$
 (2.29)

and

$$a_2^2 = \frac{(c_1^2 + d_1^2)}{32\lambda^2(\alpha - 2)^2}\tau^2.$$
(2.30)

Now, by summing (2.26) and (2.28), we obtain

$$\left[4\lambda^{2}(\alpha-2)^{2}+2(\lambda+2\alpha-3)\right]a_{2}^{2} = \frac{1}{2}(c_{2}+d_{2})\tau - \frac{1}{4}(c_{1}^{2}+d_{1}^{2})\tau + \frac{3}{4}(c_{1}^{2}+d_{1}^{2})\tau^{2}.$$
 (2.31)

By putting (2.30) in (2.31), we have

$$2\left[8\lambda^{2}(\alpha-2)^{2} - \{20\lambda^{2}(\alpha-2)^{2} - 2(\lambda+2\alpha-3)\}\tau\right]a_{2}^{2} = (c_{2}+d_{2})\tau^{2}.$$
(2.32)

Therefore, using Lemma 1.3 we obtain

$$|a_2| \le \frac{|\tau|}{\sqrt{4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau}}.$$
(2.33)

Now, so as to find the bound on  $|a_3|$ , let's subtract from (2.26) and (2.28). So, we find

$$2(3\lambda - 1)(3 - 2\alpha)a_3 - 2(3\lambda - 1)(3 - 2\alpha)a_2^2 = \frac{1}{2}(c_2 - d_2)\tau.$$
(2.34)



Hence, we get

$$2(3\lambda - 1)(3 - 2\alpha)|a_3| \le 2|\tau| + 2(3\lambda - 1)(3 - 2\alpha)|a_2|^2.$$
(2.35)

Then, in view of (2.33), we obtain

$$|a_{3}| \leq \frac{2\lambda|\tau| \left[2\lambda(\alpha-2)^{2} - \{5\lambda(\alpha-2)^{2} + 4 - 3\alpha\}\tau\right]}{(3\lambda-1)(3-2\alpha) \left[4\lambda^{2}(\alpha-2)^{2} - \{10\lambda^{2}(\alpha-2)^{2} - \lambda - 2\alpha + 3\}\tau\right]}.$$
(2.36)

If we can take the parameter  $\lambda = 1$  in the above theorem, we have the following the initial Taylor coefficients  $|a_2|$  and  $|a_3|$  for the function classes  $\mathcal{MSL}_{s,\Sigma}(\alpha, \tilde{p}(z))$ .

**Corollary 2.8.** Let f given by (1.1) be in the class  $\mathcal{MSL}_{s,\Sigma}(\alpha, \tilde{p}(z))$ . Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4(\alpha-2)^2 - 2(5\alpha^2 - 21\alpha + 21)\tau}}$$
(2.37)

and

$$|a_3| \le \frac{|\tau| \left[2(\alpha-2)^2 - \{5\alpha^2 - 23\alpha + 24\}\tau\right]}{(3-2\alpha) \left[4(\alpha-2)^2 - \{10\alpha^2 - 42\alpha + 42\}\tau\right]}.$$
(2.38)

Further by taking  $\alpha = 1$  and  $\alpha = 0$  and  $\tau = -0.618$  in Corollary 2.8, we have the following improved initial Taylor coefficients  $|a_2|$  and  $|a_3|$  for the function classes  $\mathcal{SL}^*_{s,\Sigma}(\tilde{p}(z))$  and  $\mathcal{KL}_{s,\Sigma}(\tilde{p}(z))$  respectively.

**Corollary 2.9.** Let f given by (1.1) be in the class  $SL^*_{s,\Sigma}(\tilde{p}(z))$ . Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4 - 10\tau}} \simeq 0.19369 \tag{2.39}$$

and

$$|a_3| \le \frac{|\tau|(1-3\tau)}{2-5\tau} \simeq 0.3465.$$
(2.40)

**Corollary 2.10.** Let f given by (1.1) be in the class  $\mathcal{KL}_{s,\Sigma}(\tilde{p}(z))$ . Then

$$|a_2| \le \frac{|\tau|}{\sqrt{16 - 42\tau}} \simeq 0.0954 \tag{2.41}$$

and

$$|a_3| \le \frac{4|\tau|(1-3\tau)}{3(8-21\tau)} \simeq 0.17647.$$
(2.42)

**Corollary 2.11.** Let f given by (1.1) be in the class  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\tilde{p}(z))$ . Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4\lambda^2 - \{10\lambda^2 - \lambda + 1\}\tau}}$$
 (2.43)

and

$$|a_{3}| \leq \frac{2\lambda |\tau| \left[2\lambda - \{5\lambda + 1\}\tau\right]}{(3\lambda - 1) \left[4\lambda^{2} - \{10\lambda^{2} - \lambda + 1\}\tau\right]}$$
(2.44)

where  $\lambda > 0$  and  $\lambda \neq \frac{1}{3}$ .

 $\underset{_{23,\ 2}\ (2021)}{\text{CUBO}}$ 

**Corollary 2.12.** Let f given by (1.1) be in the class  $\mathcal{GSL}_{s,\Sigma}^{\lambda}(\tilde{p}(z))$ . Then

$$|a_2| \le \frac{|\tau|}{\sqrt{16\lambda^2 - \{40\lambda^2 - \lambda + 3\}\tau}}$$
(2.45)

and

$$|a_{3}| \leq \frac{2\lambda |\tau| [8\lambda - \{20\lambda + 4\}\tau]}{3(3\lambda - 1) [16\lambda^{2} - \{40\lambda^{2} - \lambda + 3\}\tau]}$$
(2.46)

where  $\lambda > 0$  and  $\lambda \neq \frac{1}{3}$ .

# 3 Fekete-Szegö inequality for the function class $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$

Fekete and Szegö [7] introduced the generalized functional  $|a_3 - \mu a_2^2|$ , where  $\mu$  is some real number. Due to Zaprawa [19], in the following theorem we determine the Fekete-Szegö functional for  $f \in \mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$ .

**Theorem 3.1.** Let  $\lambda \in \mathbb{R}$  with  $\lambda > \frac{1}{3}$  and let f given by (1.1) be in the class  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$  and  $\mu \in \mathbb{R}$ . Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)}, & 0 \le |h(\mu)| \le \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)}\\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)} \end{cases}$$

where

$$h(\mu) = \frac{(1-\mu)\tau^2}{4\left[4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau\right]}.$$
(3.1)

*Proof.* From (2.32) and (2.34) we obtain

$$\begin{aligned} a_3 - \mu a_2^2 &= \frac{(1-\mu)(c_2+d_2)\tau^2}{4\left[4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau\right]} + \frac{\tau(c_2-d_2)}{4(3\lambda-1)(3-2\alpha)} \\ &= \left(\frac{(1-\mu)\tau^2}{4\left[4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau\right]} + \frac{\tau}{4(3\lambda-1)(3-2\alpha)}\right)c_2 \\ &+ \left(\frac{(1-\mu)\tau^2}{4\left[4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau\right]} - \frac{\tau}{4(3\lambda-1)(3-2\alpha)}\right)d_2. \end{aligned}$$

So we have

$$a_3 - \mu a_2^2 = \left(h(\mu) + \frac{\tau}{4(3\lambda - 1)(3 - 2\alpha)}\right)c_2 + \left(h(\mu) - \frac{\tau}{4(3\lambda - 1)(3 - 2\alpha)}\right)d_2 \tag{3.2}$$

where

$$h(\mu) = \frac{(1-\mu)\tau^2}{4\left[4\lambda^2(\alpha-2)^2 - \{10\lambda^2(\alpha-2)^2 - \lambda - 2\alpha + 3\}\tau\right]}$$

Then, by taking modulus of (3.2), we conclude that



$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)}, & 0 \le |h(\mu)| \le \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)} \\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)}. \end{cases} \square$$

Taking  $\mu = 1$ , we have the following corollary.

**Corollary 3.2.** If  $f \in \mathcal{PSL}_{s,\Sigma}^{\lambda}(\alpha, \tilde{p}(z))$ , then

$$|a_3 - a_2^2| \le \frac{|\tau|}{4(3\lambda - 1)(3 - 2\alpha)}.$$
(3.3)

If we can take the parameter  $\lambda = 1$  in Theorem 3.1, we can state the following:

**Corollary 3.3.** Let f given by (1.1) be in the class  $\mathcal{MSL}_{s,\Sigma}(\alpha, \tilde{p}(z))$  and  $\mu \in \mathbb{R}$ . Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{8(3 - 2\alpha)}, & 0 \le |h(\mu)| \le \frac{|\tau|}{8(3 - 2\alpha)} \\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{8(3 - 2\alpha)} \end{cases}$$

where

$$h(\mu) = \frac{(1-\mu)\tau^2}{4\left[4(\alpha-2)^2 - \{10(\alpha-2)^2 - 2\alpha + 2\}\tau\right]}$$

Further by fixing  $\lambda = 1$  taking  $\alpha = 1$  and  $\alpha = 0$  in the above corollary, we have the following the Fekete-Szegö inequalities for the function classes  $\mathcal{SL}^*_{s,\Sigma}(\tilde{p}(z))$  and  $\mathcal{KL}_{s,\Sigma}(\tilde{p}(z))$ , respectively.

**Corollary 3.4.** Let f given by (1.1) be in the class  $\mathcal{SL}^*_{s,\Sigma}(\tilde{p}(z))$  and  $\mu \in \mathbb{R}$ . Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{24}, & 0 \le |h(\mu)| \le \frac{|\tau|}{24}\\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{24} \end{cases}$$

where  $h(\mu) = \frac{(1-\mu)\tau^2}{8[2-5\tau]}$ .

**Corollary 3.5.** Let f given by (1.1) be in the class  $\mathcal{KL}_{s,\Sigma}(\tilde{p}(z))$  and  $\mu \in \mathbb{R}$ . Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{8}, & 0 \le |h(\mu)| \le \frac{|\tau|}{8}\\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{8} \end{cases}$$

where  $h(\mu) = \frac{(1-\mu)\tau^2}{8[8-21\tau]}$ .

By assuming  $\lambda \in \mathbb{R}; \lambda > \frac{1}{3}$  and taking  $\alpha = 1$  and  $\alpha = 0$  we have the following the Fekete-Szegö inequalities for the function classes  $\mathcal{PSL}^{\lambda}_{s,\Sigma}(\tilde{p}(z))$  and  $\mathcal{GSL}^{\lambda}_{s,\Sigma}(\tilde{p}(z))$ , respectively.

 $\underset{^{23, 2}(2021)}{\text{CUBO}}$ 

**Corollary 3.6.** Let  $\lambda \in \mathbb{R}$  with  $\lambda > \frac{1}{3}$  and let f given by (1.1) be in the class  $\mathcal{PSL}_{s,\Sigma}^{\lambda}(\tilde{p}(z))$  and  $\mu \in \mathbb{R}$ . Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{4(3\lambda - 1)}, & 0 \le |h(\mu)| \le \frac{|\tau|}{4(3\lambda - 1)} \\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{4(3\lambda - 1)} \end{cases}$$

where

$$h(\mu) = \frac{(1-\mu)\tau^2}{4 \left[ 4\lambda^2 - \{10\lambda^2 - \lambda + 1\}\tau \right]}$$

**Corollary 3.7.** Let  $\lambda \in \mathbb{R}$  with  $\lambda > \frac{1}{3}$  and let f given by (1.1) be in the class  $\mathcal{GSL}_{s,\Sigma}^{\lambda}(\tilde{p}(z))$  and  $\mu \in \mathbb{R}$ . Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{|\tau|}{12(3\lambda - 1)}, & 0 \le |h(\mu)| \le \frac{|\tau|}{12(3\lambda - 1)}\\ 4|h(\mu)|, & |h(\mu)| \ge \frac{|\tau|}{12(3\lambda - 1)} \end{cases}$$

where

$$h(\mu) = \frac{(1-\mu)\tau^2}{4\left[16\lambda^2 - \{40\lambda^2 - \lambda + 3\}\tau\right]}$$

## Conclusions

Our motivation is to get many interesting and fruitful usages of a wide variety of Fibonacci numbers in Geometric Function Theory. By defining a subclass  $\lambda$ -bi-pseudo-starlike functions with respect to symmetric points of  $\Sigma$  related to shell-like curves connected with Fibonacci numbers we were able to unify and extend the various classes of analytic bi-univalent function, and new extensions were discussed in detail. Further, by specializing  $\alpha = 0$  and  $\alpha = 1$  and  $\tau = -0.618$  we have attempted at the discretization of some of the new and well-known results. Our main results are new and better improvement to initial Taylor-Maclaurin coefficients  $|a_2|$  and  $|a_3|$ .

### Acknowledgements

The authors thank the referees of this paper for their insightful suggestions and corrections to improve the paper in present form.

## References

- [1] K. O. Babalola, "On  $\lambda$ -pseudo-starlike functions", J. Class. Anal., vol. 3, no. 2, pp. 137–147, 2013.
- [2] D. A. Brannan, J. Clunie and W. E. Kirwan, "Coefficient estimates for a class of star-like functions", Canad. J. Math., vol. 22, no. 3, pp. 476-485, 1970.
- [3] D. A. Brannan and T. S. Taha, "On some classes of bi-univalent functions", Studia Univ. Babes-Bolyai Math., vol. 31, no. 2, pp. 70-77, 1986.
- [4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
- [5] S. Joshi, S. Joshi and H. Pawar, "On some subclasses of bi-univalent functions associated with pseudo-starlike function", J. Egyptian Math. Soc., vol. 24, no. 4, pp. 522-525, 2016.
- [6] J. Dziok, R. K. Raina and J. Sokół, "On α-convex functions related to a shell-like curve connected with Fibonacci numbers", Appl. Math. Comput., vol. 218, no. 3, pp. 996–1002, 2011.
- [7] M. Fekete and G. Szegö, "Eine Bemerkung über ungerade Schlichte Funktionen", J. London Math. Soc., vol. 8, no. 2, pp. 85-89, 1933.
- [8] S. S. Miller and P. T. Mocanu Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, vol. 225, New York: Marcel Dekker, 2000.
- [9] M. Lewin, "On a coefficient problem for bi-univalent functions", Proc. Amer. Math. Soc., vol. 18, pp. 63-68, 1967.
- [10] Ch. Pommerenke, Univalent Functions, Math. Math, Lehrbucher, Vandenhoeck and Ruprecht, Göttingen, 1975.
- [11] R. K. Raina and J. Sokół, "Fekete-Szegö problem for some starlike functions related to shelllike curves", Math. Slovaca, vol. 66, no. 1, pp. 135-140, 2016.
- [12] V. Ravichandran, "Starlike and convex functions with respect to conjugate points", Acta Math. Acad. Paedagog. Nyházi. (N.S.), vol. 20, no. 1, pp. 31-37, 2004.
- [13] K. Sakaguchi, "On a certain univalent mapping", J. Math. Soc. Japan, vol. 11, no. 1, pp. 72-75, 1959.
- [14] J. Sokół, "On starlike functions connected with Fibonacci numbers", Zeszyty Nauk. Politech. Rzeszowskiej Mat, vol. 23, pp. 111-116, 1999.

- [15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, "Certain subclasses of analytic and biunivalent functions", Appl. Math. Lett., vol. 23, no. 10, pp. 1188-1192, 2010.
- [16] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, "Coefficient estimates for a certain subclass of analytic and bi-univalent functions", Appl. Math. Lett., vol. 25, no. 6, pp. 990-994, 2012.
- [17] X.-F. Li and A.-P. Wang, "Two new subclasses of bi-univalent functions", Int. Math. Forum, vol. 7, no. 30, pp. 1495-1504, 2012.
- [18] G. Wang, C. Y. Gao and S. M. Yuan, "On certain subclasses of close-to-convex and quasiconvex functions with respect to k-symmetric points", J. Math. Anal. Appl., vol. 322, no. 1, pp. 97–106, 2006.
- [19] P. Zaprawa, "On the Fekete-Szegö problem for classes of bi-univalent functions", Bull. Belg. Math. Soc. Simon Stevin, vol. 21, no. 1, pp. 169-178, 2014.