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ABSTRACT

This paper presents a new computational method for solv-

ing Abel integral equation (both first kind and second

kind). The numerical scheme is based on approximations

in Daubechies wavelet basis. The properties of Daubechies

scale functions are employed to reduce an integral equation

to the solution of a system of algebraic equations. The error

analysis associated with the method is given. The method

is illustrated with some examples and the present method

works nicely for low resolution.

RESUMEN

Este art́ıculo presenta un nuevo método computacional para

resolver la ecuación integral de Abel (tanto de primer como

de segundo tipo). El esquema numérico está basado en

aproximaciones en la base de ondeletas de Daubechies.

Se emplean las propiedades de las funciones de escala de

Daubechies para reducir una ecuación integral a la solución

de un sistema algebraico de ecuaciones. Se entrega el análisis

de error asociado con el método. El método es ilustrado con

algunos ejemplos donde el método presentado funciona bien

en baja resolución.
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1 Introduction

The theory of integral equations is a very important tool to deal with problems arising in math-

ematical physics. Abel integral equation appears in many physical problems of water waves,

astrophysics, solid mechanics and in many applied sciences (see [1, 2, 3, 4]). In the year 1823, Abel

integral equation was derived directly from the tautochorone problem in physics. In fact this gave

birth to the topic known as integral equation.

Before 1930, the branch of mathematics which is related to wavelet began with Joseph Fourier with

his theories of frequency analysis, now often referred to Fourier synthesis (see [5]). The concept of

wavelet was first mentioned in an appendix of the thesis of A. Haar (see [6]), but the formulation of

problems involving wavelets has been developed mostly over last 30 years. Grossman and Morelet

[7] developed the continuous wavelet transform and the orthogonal one was developed by Lamarie

and Meyer [8]. Daubechies (see [9, 10]) constructed a compactly supported orthogonal wavelet basis

that can be generated from a single function with the aim to serve the multiresolution analysis

(MRA of L2 (R)). Wavelets allow to represent variety of functions and operators very accurately.

Furthermore, wavelets setup a connections with fast numerical algorithms [11]. Hence wavelets are

used as an efficient tool to solve integral equations.

In this paper we consider the Abel integral equations in the form

First kind :

∫ x

0

y (t) dt

(x − t)µ
= f (x) , (1.1)

Second kind : y(x) + λ

∫ x

0

y (t) dt

(x − t)µ
= f (x) . (1.2)

Here 0<µ<1, 0 ≤ x ≤ 1 and the forcing term f(x) ∈ C[0, 1] in order to confirm the existence and

uniqueness of the solution y(x) ∈ C[0, 1], the space of all continuous function defined on [0, 1].

The Abel integral equation has been solved earlier analytically and numerically by various methods

in the literature. For instance, Yousefi [12] constructed a numerical scheme based on Legendre

multiwavelets to solve Abel integral equation. A system of generalized Abel integral equations

was solved using Fractional calculus by Mandal et al [13]. Liu and Tao [14] applied mechanical

quadrature methods for solving first kind Abel integral equation. Numerical solution of Abel

integral equation is obtained using orthogonal functions by Derili and Sohrabi [15]. Alipour and

Rostamy [16] used Bernstein polynomials to solve Abel integral equations. Shahsavaram [17] used

Haar wavelet as the basis function in the collocation method to solve Volterra integral equation

with weakly singular kernel.

In this paper, the unknown function in the integral equation is expanded by employing Daubechies

wavelet basis with unknown coefficients. The integral equation is converted into a system algebraic

equations utilizing the properties of Daubechies scale functions. After evaluating the unknown

coefficients, the values of the unknown function in the integral equations can be determined at any
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dyadic point in [0, 1].

2 Preliminary concept of Daubechies scale function

Here some important properties of Daubechies scale function with a compact support are presented

in a finite interval [a, b] ⊂ R , where a and b(> a) are integers.

2.1 Two-scale relations

Daubechies constructed a whole new class of orthogonal wavelets that can be generated from a

single function φ(x), known as Daubechies scale function. This scale function has some interesting

features like compact support, fractal nature, and unknown structure at all resolutions. Daubechies

-K (Dau-K) scale function(K ∈ N) has 2K filter coefficients and compact support [0, 2K−1]. The

two-scale relation of scale function is given by

φ(·) =
√
2HTΦ(·), (2.1)

where

H = [h0, h1, h2, ..., h2K−1]
T
2K×1 (2.2)

and

Φ(·) = [φ(2·), φ(2 · −1), φ(2 · −2), ..., φ(2 · −2K + 1)]T2K×1 (2.3)

with the normalization condition
∫

R

φ(x)dx = 1. (2.4)

The elements hl (l = 0, 1, 2, ..., 2K − 1) are known as filter coefficients or low pass filters. These

filter coefficients satisfy the following algebraic relations

2K−1
∑

l=0

hl =
√
2 ;

2K−1
∑

l=0

hlhl−2m = δm0. (2.5)

Here we define two operators, one is the translation operator T and other is the scale trans-

formation operator D as

T kφ(x) = φk(x) = φ(x− k) (2.6)

and

Djφ(x) = 2
j

2φ(2jx). (2.7)

For a specific value of resolution j, the translate of scaling functions are orthonormal to each other

viz.
∫

R

φjk1 (x)φjk2 (x)dx = δk1k2 (2.8)
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where

φjk(x) = 2
j

2φ(2jx− k). (2.9)

It is evident that all the properties of scaling functions are applicable on R. But in the finite interval

[a, b] the translation property (2.6) does not hold good for all k ∈ Z as well as the orthogonalization

condition (2.8) cannot be applied for φjk(x). So in order to apply the machinery of Dau-K scale

function on a finite interval [a, b], we divide the translate of φ(x) for a specific resolution j into

three classes (cf. Mouley et al. [18] and Panja et al. [19])

φLjk(·) = φjk(·)χk(x) if k ∈
{

a2j − 2K + 2, ..., a2j − 1
}

,

φIjk(·) = φjk(·)χk(x) if k ∈
{

a2j, ..., b2j − 2K + 1
}

,

φRjk(·) = φjk(·)χk(x) if k ∈
{

b2j − 2K + 2, ..., b2j − 1
}

.

(2.10)

Here χk(x) is the characteristic function assuming the value 1 or 0 according as x ∈ [a, b] or

x 6∈ [a, b].

2.2 Scale function at dyadic points

A number of the form m
2n is known as a dyadic fraction or dyadic rational (m is an integer and n is

a natural number). It has extensive application in measurement, the inch is normally subdivided

in dyadic rather than decimal fraction. The ancient Egyptians also used dyadic fractions in mea-

surement, with denominators up to 64 [20]. After knowing the value of scale function at integer

points within support, it is possible to determine the scale function at any dyadic point with in the

support [21] . Using the two-scale relation (2.1) the value of Dau-K scale function φ(x) at x = m
2n

is calculated as

φ
(m

2n

)

=

2K−1
∑

l1=0

√
2hl1φ

(

m− 2n−1l1
2n−1

)

. (2.11)

Again using the two-scale relation (2.1) we get

φ
(m

2n

)

=
2K−1
∑

l1=0

2K−1
∑

l2=0

2hl1hl2φ

(

m− 2n−1l1 − 2n−2l2
2n−2

)

. (2.12)

Repeating the two-scale relation (2.1) n times, we get

φ
(m

2n

)

=

2K−1
∑

l1=0

2K−1
∑

l2=0

...

2K−1
∑

ln=0

2
m
2 hl1hl2 ...hlnφ(m− 2n−1l1 − 2n−2l2...2ln−1 − ln). (2.13)

3 Multiresolution analysis (MRA) and Daubechies wavelet

Basic concepts of MRA and Daubechies wavelet are discussed in most of the texts on wavelets

(see [9, 10, 18, 19, 21]). Why wavelet has started to dominate in different applications such as

technology, engineering and applied mathematics, one serious reason behind it is MRA. A MRA
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on R is defined as a sequence of nested subspaces Vj of function L2 on R with scaling function

φ(x) if the following properties hold,

∀j ∈ Z, Vj ⊆ Vj+1, (3.1)

ClosL2 (∪j∈ZVj) = L2 (R) , (3.2)

∩j∈Z Vj = {0} , (3.3)

φ(x) ∈ Vj ⇔ φ(2x) ∈ Vj+1, ∀j ∈ Z. (3.4)

Here Vj ’s are called approximation spaces. The scale function φ(x) belongs to V0 and the set

{φ(x − k) : k ∈ Z} is a Riesz basis of V0. The scale function φ(x) satisfies the two-scale relation

(2.1). Also the set {φjk(x) : k ∈ Z} given by (2.9) is a Riesz basis of Vj . From the property (3.1), it

is evident that each element of Vj+1 can be uniquely written as the orthogonal sum of an element

in Vj and an element in Wj that contains the complementary details i.e.

Vj+1 = Vj ⊕Wj = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ ...⊕Wj . (3.5)

Let Wj be the span of ψjk(x) = 2
j

2ψ(2jx − k), which is called wavelet function. The wavelet

function ψ(x) satisfies the relation

ψ(·) =
√
2GTΦ(·) (3.6)

where

G = [g0, g1, g2, ..., g2K−1]
T
2K×1. (3.7)

Here Φ(·) is given by (2.3) and gl (l = 0, 1, 2, ..., 2K − 1) are known as high pass filter coefficients

and are given by

gl = (−1)lh2K−1−l. (3.8)

4 Method of approximation

We approximate the unknown function of the integral equations (1.1) and (1.2) in the approxima-

tion space Vj as

y(x) ≈ yMS
j (x)

=
2j−1
∑

k=0

cjkφjk(x)

=

2j−2K+1
∑

k=0

cIjkφ
I
jk(x) +

2j−1
∑

k=2j−2K+2

cRjkφ
R
jk(x)

= C
T ~Φ(x).

(4.1)
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As the support of φ(x) is [0, 2K − 1], so yMS
j (x) always vanishes at x = 0. The value of y(x) at

x = 0 for second kind Abel integral equation is obviously f(0) but for the first kind Abel integral

equation y(x) cannot be evaluated at x = 0 but as y(x) can be evaluated at any dyadic point in

(0, 1], it can be evaluated very close to x = 0 by making the resolution fairly large. Here C and

~Φ(x) both are 2j × 1 vectors, given by

C =
[

cIj0, c
I
j1, ..., c

I
j2j−2K+1, c

R
j2j−2K+2, ..., c

R
j2j−1

]T

(4.2)

and

~Φ(x) =
[

φIj0(x), φ
I
j1(x), ..., φ

I
j2j−2K+1(x), φ

R
j2j−2K+2(x), ..., φ

R
j2j−1(x)

]T

. (4.3)

Using the approximate form of y(x) in (4.1) in both the first and second kind integral equations

(1.1) and (1.2) we get,

C
T

∫ x

0

~Φ(t)dt

(x− t)µ
= f (x) (4.4)

and

C
T

[

~Φ(x) + λ

∫ x

0

~Φ(t)dt

(x− t)µ

]

= f (x) . (4.5)

We choose total 2j number of points by xjk′ = k
′

2j (k
′

= 1, 2, 3, ..., 2j) and substituting these points

in both the equations (4.4) and (4.5) we get,

C
T
B

(k
′

) = f

(

k
′

2j

)

(4.6)

and

C
T
[

A
(k

′

) + λB(k
′

)
]

= f

(

k
′

2j

)

(4.7)

where

A
(k

′

) = ~Φ

(

k
′

2j

)

=

[

φIj0

(

k
′

2j

)

, φIj1

(

k
′

2j

)

, ..., φIj2j−2K+1

(

k
′

2j

)

, φRj2j−2K+2

(

k
′

2j

)

, ..., φRj2j−1

(

k
′

2j

)]T

(4.8)

and

B
(k

′

) =




∫ k
′

2j

0

φIj0 (t) dt

(k
′

2j − t)µ
, ...,

∫ k
′

2j

0

φI
j2j−2K+1 (t) dt

(k
′

2j − t)µ
,

∫ k
′

2j

0

φR
j2j−2K+2 (t) dt

(k
′

2j − t)µ
, ...,

∫ k
′

2j

0

φR
j2j−1 (t) dt

(k
′

2j − t)µ





T

.
(4.9)

As k = 0, 1, 2, ..., 2j − 1 and k
′

= 1, 2, 3, ...., 2j, each of the equation (4.6) and (4.7) represents a

system of 2j equations in 2j variables cIjk and cRjk. Solving these systems the unknown coefficients

cIjk and cRjk are obtained.
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In the last part of this section, we explain the procedure for calculating the matrix elements of the

matrix B
(k

′

). We use the notation

Iµ j(k
′

, k) =

∫ k
′

2j

0

φjk (t) dt

(k
′

2j − t)µ
. (4.10)

In the relation (4.10), for 0 ≤ k ≤ 2j−2K+1, φjk (t) means φIjk (t) and for 2j−2K+2 ≤ k ≤ 2j−1,

φjk (t) means φRjk (t) . Using (2.9) we find

Iµ j(k
′

, k) = 2

(

µ−
1

2

)

j

Lµ(k
′ − k), (4.11)

where

Lµ(k) =

∫ k

0

φ (t) dt

(k − t)µ
. (4.12)

As the support of Dau-K scale function φ(t) is [0, 2K−1], so if k ≤ 0 the range of the integration in

(4.12) is completely outside of the support. In this case Lµ(k) vanishes. Again if k ≥ 2K,Lµ(k) has

no singularity within the support [0, 2K − 1]. Using Gauss-Daubechies quadrature rule involving

Daubechies scale function [22], Lµ(k) is evaluated as

Lµ(k) =
M
∑

i=1

wi

(k − ti)µ
, (k ≥ 2K). (4.13)

Here wi , ti are weights are nodes of Gauss-Daubechies quadrature rule involving Daubechies scale

function [22].

For 0 < k ≤ 2K − 1, Lµ(k) has integrable singularity at the upper limit so that evaluation of such

integrals by using the quadrature rule may not provide their approximate value with desired order

of accuracy within less computational time. The two-scale relation (2.1) for φ(t), may be used to

obtain a recurrence relation for Lµ(k) as

Lµ(k) = 2µ−
1
2

2K−1
∑

l=0

hlLµ(2k − l). (4.14)

Using the symbols

HK =





















h1 h0 0 0 · · · 0 0

h3 h2 h1 h0 · · · 0 0
...

...
...

... · · ·
...

...

0 0 0 0 · · · h2K−2 h2K−3

0 0 0 0 · · · 0 h2K−1





















(4.15)

and

bµ K =





















0

0
...

∑2K−4
l=0 hlLµ(4K − 4− l)

∑2K−2
l=0 hlLµ(4K − 2− l)





















(4.16)
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the relation (4.14) can be put in the form

(

I − 2µ−
1
2HK

)

Lµ = bµ K . (4.17)

So, the singular integrals in Lµ are found as

Lµ =
(

I − 2µ−
1
2HK

)−1

bµ K . (4.18)

Thus, evaluation of Lµ(k) is summarized as

L(k) =























0 k ≤ 0,

solution obtained by (4.18) 1 ≤ k ≤ 2K − 1,

∑M

i=0

wi

(k − ti)µ
k ≥ 2K.

(4.19)

Table 1: Values of L(k)

k µ = 1
4 µ = 1

3 µ = 1
2

1 0.925995 1.098666 1.643812

2 1.064183 1.042183 0.954199

3 0.808341 0.759600 0.682604

4 0.748236 0.679445 0.560703

5 0.699178 0.620553 0.488824

In Table 1 the values of L(k) for k = 1, 2, ..., 5 are given taking Dau-3 scale function for µ =
1

4
,
1

3
,
1

2
.

For other values of µ (0 < µ < 1) these can be easily calculated.

Table 2: Accuracy of L(2K) for Dau-3 scale function

µ Detemined by (4.13) Detemined by (4.18)

1/4 0.662722 0.662722

1/3 0.577792 0.577792

1/2 0.439182 0.439182

In Table 2 the values of L(2K) for Dau-3 scale function are presented for µ =
1

4
,
1

3
,
1

2
using the

relations (4.13) and (4.18) separately. For the two methods the values of L(2K) are found to be

same. The values of L(2K) establish the efficiency of the relation (4.18) in the determination of

L(k) (k = 0, 1, 2, ..., 2K − 1).
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5 Error estimation

In this section, the error of the proposed method is estimated in detail. For this we need the

following definitions and theorems.

Definition 5.1 ([23]). In a σ-finite measure space (X,F , µ∗) (X denotes underlying space, F is

the σ-algebra of measurable sets and µ∗ is the measure) the Lp-norm (1 ≤ p <∞) of a function f

is defined by

‖f‖Lp(X, F , µ∗) =

(∫

X

|f(x)|pdµ∗(x)

)

1

p
.

The abbreviations ‖f‖Lp(X) , ‖f‖Lp , ‖f‖p are also used to mean Lp- norm.

Definition 5.2 ([24]). The inner product of two functions f and g on a measure space X is defined

by

< f, g >=

∫

X

f ḡdµ.

Theorem 5.3 (Minkowski [23]). If 1 ≤ p < ∞ and f, g ∈ Lp then f + g ∈ Lp and ‖f + g‖Lp ≤
‖f‖Lp + ‖g‖Lp.

Theorem 5.4. Let {φjk(x) : k ∈ Z} and {ψjk(x) : k ∈ Z} be the Riesz bases of approximation

space Vj and detail space Wj. If NB
j:k,k′ =

∫ b

a
φBjk(x)φ

B
jk′ (x)dx and TB

j:k,k′ =
∫ b

a
ψB
jk(x)ψ

B
jk′ (x)dx (B

stands for L or R) then

TB
j:k,k′ =

2K−1
∑

l1=0

2K−1
∑

l2=0

gl1gl2N
B
j+1:2k+l1,2k′+l2

.

Proof. Here

NB
j:k,k′ =

∫ b

a

φBjk(x)φ
B
jk′ (x)dx.

Now

TB
j:k,k′ =

∫ b

a

ψB
jk(x)ψ

B
jk′ (x)dx

= 2j
∫ b

a

ψB(2jx− k)ψB(2jx− k′)dx (using expression of ψj,k(x))

=

∫ b2j

a2j
ψB(z − k)ψB(z − k′)dz

=
2K−1
∑

l1=0

2K−1
∑

l2=0

gl1gl2

∫ b2j+1

a2j+1

φB(z − 2k − l1)φ
B(z − 2k′ − l2)dz (using equation (3.6))

=

2K−1
∑

l1=0

2K−1
∑

l2=0

gl1gl2N
B
j+1:2k+l1,2k′+l2

.

This completes the proof.
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So to evaluate TB
j:k,k′ , we need to evaluate NB

j+1:2k+l1,2k′+l2
(l1, l2 = 0, 1, 2, ..., 2K− 1). The values

of NB
j:k,k′ are tabulated in Table 3 and Table 4 in [25].

In section 3 to find the approximate solution, the projection of the unknown function yMS
j (x) is

used in the approximation space (the linear span of φjk(x), k = 0, 1, 2, ....2j − 1). To estimate the

error of the unknown function y(x) ∈ L2([0, 1]) satisfying both the integral equations (1.1) and

(1.2), we employ the fact that the multiscale expansion of y(x) (the projection of y(x) into the

approximation space Vj and detail space Wj) is

y(x) =

2j−1
∑

k=0

cjkφjk(x) +

∞
∑

j′=j

2j
′

−1
∑

k=0

dj′kψj′k(x) (5.1)

where

cjk ≈
∫ 1

0

φjk(x)y(x)dx, (5.2)

and

djk ≈
∫ 1

0

ψjk(x)y(x)dx. (5.3)

Using the two-scale relation (2.1) and the equation (3.6), (5.2) and (5.3) are reduced to

cjk =

2K−1
∑

l=0

hlcj+1,2k+l , (5.4)

djk =

2K−1
∑

l=0

glcj+1,2k+l. (5.5)

To evaluate cjk and djk, (k = 0, 1, 2, ..., 2j − 1) at level j, we need the values of cj+1,2k+l and

dj+1,2k+l at level j+1. If 0 ≤ k ≤ 2j−2K+1, cjk and djk are denoted by cIjk and dIjk respectively.

Again if 2j − 2K + 2 ≤ k ≤ 2j − 1, cjk and djk are denoted by cRjk and dRjk respectively.

Now using the expression for yMS
j (x) given by (4.1), (5.1) is reduced to

y(x) = yMS
j (x) +

∞
∑

j′=j

δyj′ (5.6)

where δyj′ is given by

δyj′ =
2j

′

−1
∑

k=0

dj′kψj′k(x)

=

2j
′

−2K+1
∑

k=0

dIj′kψ
I
j′k(x) +

2j
′

−1
∑

k=2j′−2K+2

dRj′kψ
R
j′k(x).

(5.7)

The error in the multiscale approximation is given by

e(x) = y(x) − yMS
j (x)

=
∞
∑

j′=j

δyj′ .
(5.8)
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Now

‖e(x)‖2L2[0,1] =

∥

∥

∥

∥

∥

∥

∞
∑

j′=j

δyj′

∥

∥

∥

∥

∥

∥

2

L2[0,1]

≤
∞
∑

j′=j

‖δyj′‖2L2[0,1]

= ‖δyj‖2L2[0,1]

[

1 +
‖δyj+1‖2L2[0,1]

‖δyj‖2L2[0,1]

+
‖δyj+2‖2L2[0,1]

‖δyj‖2L2[0,1]

+ ....

]

(5.9)

We choose max
η

‖δyj+η‖2L2[0,1]

‖δyj+η−1‖2L2[0,1]

= τ for η = 1, 2, 3, ... and τ is found to satisfy the condition

0 < τ < 1, which is verified by taking a few examples of Abel first kind and second kind integral

equations. The values of τ are different for different examples. Then the expression in (5.9)

becomes

‖δyj‖2L2[0,1]

[

1 +
‖δyj+1‖2L2[0,1]

‖δyj‖2L2[0,1]

+
‖δyj+2‖2L2[0,1]

‖δyj‖2L2[0,1]

+ ....

]

≤ ‖δyj‖2L2[0,1]

[

1 + τ + τ2 + τ3 + ...
]

= ‖δyj‖2L2[0,1]

1

1− τ
.

(5.10)

The expression for ‖δyj‖2L2[0,1] is obtained by using orthonormality property of ψjk(x) within its

support and Theorem 5.4 for the partial support of ψjk(x). This is given by

‖δyj‖2L2[0,1] =

〈

2j−1
∑

k=0

djkψjk(x),

2j−1
∑

k=0

djkψjk(x)

〉

=

2j−2K+1
∑

k=0

2j−2K+1
∑

k′=0

dIjkd
I
jk′δkk′ +

2j−1
∑

k=2j−2K+2

2j−1
∑

k′=2j−2K+2

dRjkd
R
jk′TR

j:kk′ .

(5.11)

As
∫ 1

0
ψR
jk(x)ψ

I
jk′ (x)dx and

∫ 1

0
ψI
jk(x)ψ

R
jk′ (x)dx vanish, so we neglect those terms in the expression

(5.11) which contain these specific integrals.

The bound of L2- norm of error ‖e(x)‖L2[0,1] can be estimated from the inequality (5.10).

6 Illustrative examples

Example 1

Consider the first kind Abel integral equation
∫ x

0

y(t)dt

(x− t)µ
= B (1− µ, 1 + ν)x1+ν−µ, 0 < µ < 1, ν > 0

which has the exact solution y(x) = xν . Here B(m,n) is the beta function and defined by

B(m,n) =
∫ 1

0
xm−1(1 − x)n−1dx, m > 0, n > 0.
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Table 3 shows the exact and approximate solutions of the example 1 at the points x = i
8 for

i = 1, 2, ..., 7 taking Dau-3 scale function and M = 5. In this table, four sets of values of µ and ν

are considered taking both fraction and integer values of ν.

Table 3: Comparison of exact and approximate solutions of Example 1

x Exact Solution Approximate solution

j = 4 j = 6 j = 8

µ = 1
4 , ν = 1

2

1/8 0.353553 0.309319 0.352867 0.353554

2/8 0.500000 0.486212 0.499995 0.500000

3/8 0.612372 0.608044 0.612374 0.612373

4/8 0.707107 0.705733 0.707108 0.707107

5/8 0.790569 0.790135 0.790570 0.790569

6/8 0.866025 0.865890 0.866026 0.866025

7/8 0.935414 0.935375 0.935415 0.935414

µ = 1
4 , ν = 3

1/8 0.001953 0.001805 0.001951 0.001953

2/8 0.015625 0.015478 0.015623 0.015625

3/8 0.052734 0.052588 0.052732 0.052734

4/8 0.125000 0.124854 0.124998 0.125000

5/8 0.244141 0.243995 0.244138 0.244141

6/8 0.421875 0.421730 0.421873 0.421875

7/8 0.669922 0.669776 0.669920 0.669922

µ = 3
4 , ν = 1

2

1/8 0.353553 0.358049 0.353775 0.353575

2/8 0.500000 0.500476 0.500099 0.500009

3/8 0.612372 0.613000 0.612433 0.612378

4/8 0.707107 0.707550 0.707149 0.707111

5/8 0.790569 0.790915 0.790602 0.790572

6/8 0.866025 0.866305 0.866051 0.866028

7/8 0.935414 0.935647 0.935436 0.935416

µ = 3
4 , ν = 3

1/8 0.001953 0.001870 0.001951 0.001953

2/8 0.015625 0.015525 0.015623 0.015625

3/8 0.052734 0.052630 0.052732 0.052734

4/8 0.125000 0.124892 0.124998 0.125000

5/8 0.244141 0.244030 0.244139 0.244141

6/8 0.421875 0.421763 0.421873 0.421875

7/8 0.669922 0.669809 0.669920 0.669922
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Table 4: Values of ‖δyj‖2L2[0,1] for different resolution j

j For dIjk For both dIjk and dRjk

4 5.75007× 10−8 1.14422× 10−3

5 1.43777× 10−8 5.71189× 10−4

µ = 1
4 , ν = 1

2 6 3.59444× 10−9 2.85378× 10−4

7 8.9861× 10−10 1.42637× 10−4

8 2.24653× 10−10 7.13055× 10−5

9 5.61631× 10−11 3.56496× 10−5

4 3.92808× 10−9 1.15222× 10−3

5 7.16154× 10−11 5.74173× 10−4

µ = 1
4 , ν = 3 6 1.19898× 10−12 2.86245× 10−4

7 1.93591× 10−14 1.42869× 10−4

8 3.07368× 10−16 7.13653× 10−5

9 4.84076× 10−18 3.56647× 10−5

4 1.28416× 10−7 1.14442× 10−3

5 3.21065× 10−8 5.71226× 10−4

µ = 3
4 , ν = 1

2 6 2.85385× 10−9 2.86245× 10−4

7 2.00666× 10−9 1.42638× 10−4

8 5.01665× 10−10 7.13058× 10−5

9 1.25416× 10−10 3.56496× 10−5

4 3.92901× 10−9 1.15223× 10−3

5 7.16226× 10−11 5.74174× 10−4

µ = 3
4 , ν = 3 6 1.9904× 10−12 2.86245× 10−4

7 1.93595× 10−14 1.42869× 10−4

8 3.07371× 10−16 7.13653× 10−5

9 4.84079× 10−18 3.56648× 10−5

Table 5: Comparison of Sup error and bound of L2-norm of error ‖e(x)‖L2[0,1]

j Sup error Bound of ‖e(x)‖L2[0,1]

taking dIjk taking dIjk and dRjk

µ = 1
4 , ν = 1

2

4 4.423400× 10−2 2.768973× 10−4 4.783764× 10−2

6 6.867130× 10−4 6.923054× 10−5 3.389050× 10−2

8 7.100990× 10−7 1.730766× 10−5 1.194198× 10−2
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µ = 1
4 , ν = 3

4 1.48274× 10−4 6.324620× 10−5 4.800458× 10−2

6 2.27344× 10−6 1.104969× 10−6 1.691878× 10−2

8 3.55446× 10−8 1.769186× 10−8 1.194201× 10−2

µ = 3
4 , ν = 1

2

4 4.49596× 10−3 4.165755× 10−4 4.784182× 10−2

6 2.21534× 10−4 1.041480× 10−4 2.389079× 10−2

8 2.13190× 10−5 2.603701× 10−5 1.194201× 10−2

µ = 3
4 , ν = 3

4 8.32861× 10−5 6.316013× 10−5 4.800479× 10−2

6 1.68850× 10−6 1.105110× 10−6 2.023927× 10−2

8 2.90795× 10−8 1.769375× 10−8 1.194699× 10−2

Example 2

Consider the second kind Abel integral equation [12]

y (x) = x2 +
16

5
x

5
2 −

∫ x

0

y(t)dt√
x− t

which has the exact solution y(x) = x2.

Table 6 shows the exact and approximate solutions of the example 2 at the points x = i
8 for

i = 0, 1, 2, ..., 7 taking Dau-3 scale function and M = 5.

Table 6: Comparison of exact and approximate solutions of example 2

x Exact Solution Approximate solution

j = 4 j = 6 j = 8

0 0 0 0 0

1/8 0.015625 0.015508 0.015624 0.015625

2/8 0.062500 0.062463 0.062499 0.062500

3/8 0.140625 0.140603 0.140625 0.140625

4/8 0.250000 0.249984 0.250000 0.250000

5/8 0.390625 0.390613 0.390625 0.390625

6/8 0.562500 0.562490 0.562500 0.562500

7/8 0.765625 0.765617 0.765625 0.765625
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Table 7: Values of ‖δyj‖2L2[0,1] for different resolution j

j For dIjk For both dIjk and dRjk

4 1.45784× 10−12 1.15094× 10−3

5 4.66357× 10−14 5.73210× 10−4

6 1.46128× 10−15 2.85926× 10−4

7 4.53812× 10−17 1.42779× 10−4

8 1.40555× 10−18 7.13417× 10−5

9 4.35409× 10−20 3.56587× 10−5

Table 8: Comparison of Sup error and bound of L2- norm of error ‖e(x)‖L2[0,1]

j Sup error Bound of ‖e(x)‖L2[0,1]

taking dIjk taking dIjk and dRjk

4 1.16723× 10−4 1.22720× 10−6 4.79779× 10−2

6 9.56852× 10−7 3.88534× 10−8 2.39134× 10−2

8 1.34341× 10−8 1.20500× 10−9 1.19450× 10−2

Example 3

Consider the second kind Abel integral equation [17]

y (x) =
1√
x+ 1

+
π

8
− 1

4
sin−1

(

1− x

1 + x

)

− 1

4

∫ x

0

y(t)dt√
x− t

which has the exact solution y(x) =
1√
x+ 1

.

Table 9 shows the exact and approximate solutions of the example 3 at the points x = i
8 for

i = 0, 1, 2, ..., 7 taking Dau-3 scale function and M = 5.
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Table 9: Comparison of exact and approximate solutions of Example 3

x Exact Solution Approximate solution

j = 4 j = 6 j = 8

0 1 1 1 1

1/8 0.942809 0.964541 0.947179 0.943883

2/8 0.894427 0.905166 0.897201 0.895110

3/8 0.852803 0.861371 0.854894 0.853318

4/8 0.816497 0.823468 0.818192 0.816914

5/8 0.784465 0.790355 0.785898 0.784818

6/8 0.755929 0.761042 0.757173 0.756236

7/8 0.730297 0.734819 0.731398 0.730568

Table 10: Values of ‖δyj‖2L2[0,1] for different resolution j

j For dIjk For both dIjk and dRjk

4 4.60915× 10−6 5.80526× 10−4

5 2.39761× 10−6 2.88967× 10−4

6 1.22773× 10−6 1.44416× 10−4

7 6.23369× 10−7 7.20037× 10−5

8 3.14886× 10−7 3.59832× 10−5

9 1.58536× 10−7 1.79872× 10−5

Table 11: Comparison of Sup error and bound of L2- norm of error ‖e(x)‖L2[0,1]

j Sup error Bound of ‖e(x)‖L2[0,1]

taking dIjk taking dIjk and dRjk

4 2.17315× 10−2 3.09877× 10−3 3.40742× 10−2

6 4.37017× 10−3 1.59930× 10−3 1.69951× 10−2

8 1.07361× 10−3 8.09946× 10−4 8.48330× 10−3

We present in Tables 4, 7 and 10 the values of ‖δyj‖2L2[0,1] (j = 4, 5, 6, ....., 9) given by equation

(5.11) for the examples 1, 2 and 3 respectively. Second column of all tables present the values

‖δyj‖2L2[0,1] taking only dIjk i.e. taking only first term of (5.11), whereas third column presents

the values ‖δyj‖2L2[0,1] taking both dIjk and dRjk. From these tables it appears that the values of

‖δyj‖2L2[0,1] gradually decrease if the resolution j increases. The presence of a few dRjk in (5.11)

makes a lot of difference in calculating ‖δyj‖2L2[0,1] taking only dIjk and taking both dIjk and dRjk.
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In Tables 5, 8 and 11, the Sup errors are compared with the bound of L2-norm of error ‖e(x)‖L2[0,1]

taking dIjk and taking both dIjk and dRjk for examples 1, 2 and 3 respectively. To evaluate bound of

L2- norm of error ‖e(x)‖L2[0,1], τ = 0.250044, τ = 0.50; τ = 0.250044, τ = 0.50; τ = 0.250044, τ =

0.50 and τ = 0.250044, τ = 0.50 are used for the four sets of values of µ and ν taking only dIjk and

taking both dIjk and dRjk for example 1. Also to evaluate bound of L2 norm of error ‖e(x)‖L2[0,1],

τ = 0.032, τ = 0.50 and τ = 0.52, τ = 0.50 are used for Examples 2 and 3 respectively. Sup

errors are calculated taking maximum absolute difference of exact and approximate solutions from

Tables 3, 6 and 9.

Figures 1 to 6 display the exact and approximate solutions of examples 1, 2 and 3 for different

resolutions (j = 4, 6, 8). We observe from these figures that as j increases, an approximate solution

becomes closer to exact solution. This demonstrates efficiency of the proposed method.
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Figure 1: Example 1 (µ = 1
4 , ν = 1
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Figure 2: Example 1 (µ = 1
4 , ν = 3)
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Figure 3: Example 1 (µ = 3
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Figure 4: Example 1 (µ = 3
4 , ν = 3)
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Figure 5: Example 2
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Figure 6: Example 3

7 Conclusion

The purpose of the present work is to develop an efficient and accurate numerical scheme based

on Daubechies wavelet basis to solve Abel integral equation. As wavelets are orthogonal systems,

they have different resolution capabilities. The detail error estimation shows that the bound of

L2-norm of error ‖e(x)‖L2[0,1] depends on resolution j. From Tables 3, 6 and 9 it appears that the

present numerical scheme works nicely for low resolution (j = 4, 6, 8). The results can be further

improved by taking larger resolution j.
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