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ABSTRACT

Inequalities and sufficient conditions that lead to exponential

stability of the zero solution of the variable delay nonlinear

Volterra difference equation

x(n + 1) = a(n)h(x(n)) +

n−1∑
s=n−g(n)

b(n, s)h(x(s))

are obtained. Lyapunov functionals are constructed and em-

ployed in obtaining the main results. A criterion for the in-

stability of the zero solution is also provided. The results

generalizes some results in the literature.

RESUMEN

Se obtienen desigualdades y condiciones suficientes que im-

plican la estabilidad exponencial de la solución cero de la

ecuación en diferencias no lineal de Volterra con retardo va-

riable

x(n + 1) = a(n)h(x(n)) +

n−1∑
s=n−g(n)

b(n, s)h(x(s)).

Se construyen funcionales de Lyapunov y se utilizan para

obtener los resultados principales. Se entrega también un cri-

terio para la inestabilidad de la solución cero. Los resultados

generalizan algunos resultados en la literatura.
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1 Introduction

Let R and Z+ denote the set of real numbers and the set of positive integers respectively. In recent

times, research into the stability properties of solutions of difference equations have gained the

attention of many Mathematicians, see [1], [2], [4], [6], [7], [8] and the references cited therein.

We are mainly motivated by the work of Kublik and Raffoul in [6] in which the authors obtained

inequalities that lead to the exponential stability of the zero solution of the linear Volterra difference

equation with finite delay

x(n+ 1) = a(n)x(n) +

n−1∑
s=n−r

b(n, s)x(s), (1.1)

for some positive constant r.

In this paper we consider the scalar nonlinear Volterra difference equation with variable delay

x(n+ 1) = a(n)h(x(n)) +

n−1∑
s=n−g(n)

b(n, s)h(x(s)), (1.2)

where a : Z+ → R, b : Z+ × [−g0,∞)→ R, h : R→ R and 0 < g(n) ≤ g0, for all n ∈ Z+ for some

positive constant g0. We will obtain some inequalities regarding the solutions of (1.2) by employing

Lyapunov functionals. These inequalities can be used to deduce exponential stability of the zero

solution. Also, by means of a Lyapunov functional an instability criterion of the zero solution of

equation (1.2) will be provided.

Let ψ : [−g0, 0]→ (−∞,∞) be a given bounded initial function with

||ψ|| = max
−g0≤s≤0

|ψ(s)|.

We further denote the norm of a function ϕ : [−g0,∞)→ (−∞,∞) by

||ϕ|| = sup
−g0≤s≤∞

|ϕ(s)|.

Throughout this paper we let

h(x) = xh1(x).

The notation xn means that xn(τ) = x(n + τ), τ ∈ [−g0, 0] as long as x(n + τ) is defined. Thus,

xn is a function mapping an interval [−g0, 0] into R. We say that x(n) ≡ x(n, n0, ψ) is a solution

of (1.2) if x(n) satisfies (1.2) for n ≥ n0 and xn0
= x(n0 + s) = ψ(s), s ∈ [−g0, 0].

In this paper we use the convention that
∑b
s=a h(s) = 0 if a > b. The following notation is

introduced.

Let

A(n, s) =

γ∑
u=n−s

b(u+ s, s), where 0 < γ ≤ g(n− 1) for all n ∈ Z+. (1.3)
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It follows from (1.3) that

A(n, n− g(n− 1)− 1) = 0. (1.4)

We assume throughout the paper that

∆nA
2(n, z) ≤ 0, for all n+ s+ 1 ≤ z ≤ n− 1. (1.5)

Due to (1.3) we can express (1.2) in the equivalent form

∆x(n) =
(
a(n)h1(x(n)) +A(n+ 1, n)h1(x(n))− 1

)
x(n)

− ∆n

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s)). (1.6)

Definition 1.1. The zero solution of (1.2) is said to be exponentially stable if any solution

x(n, n0, ψ) of (1.2) satisfies

|x(n, n0, ψ)| ≤ C(||ψ||, n0)ζγ(n−n0), for all n ≥ n0,

where ζ is a constant with 0 < ζ < 1, C : R+ × Z+ → R+, and γ is a positive constant. The zero

solution of (1.2) is said to be uniformly exponentially stable if C is independent of n0.

We end this section by stating a fact which will be used in the proof of Lemma 2.1, that is, if

u(n) is a sequence, then

∆u2(n) = u(n+ 1)∆u(n) + u(n)∆u(n).

For more on the calculus of difference equations we refer to [3] and [5].

2 Exponential Stability

In this section we obtain inequalities that can be used to deduce the exponential stability of (1.2).

To simplify notation we let

Q(n, x) =
(
a(n) +A(n+ 1, n)

)
h1(x(n))− 1,

and

Q1(n) =
(
a(n) +A(n+ 1, n)

)
− 1.

Lemma 2.1. Suppose that (1.3), (1.5) and for δ > 0,

− δ

δg0 + g(n)
≤ Q(n, x) ≤ −δg0A2(n+ 1, n)h21(x(n))−Q2(n, x), (2.1)
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holds. If 1 ≤ h1(x), and

V (n) =

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

+ δ

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)), (2.2)

then based on the solutions of (1.2) we have

∆V (n) ≤ Q1(n)V (n). (2.3)

Proof. Let x(n, n0, ψ) be a solution of (1.2) and let V (n) be defined by (2.2). It must also be

noted that in view of condition (2.1), Q(n, x) < 0 for all n ≥ 0. This together with the fact that

1 ≤ h1(x) also implies that Q(n, x) ≤ Q1(n) < 0. Then based on the solutions of (1.2) we have

∆V (n) =

x(n+ 1) +

n∑
s=n−g(n)

A(n+ 1, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


+

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


+ δ∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)). (2.4)

But

x(n+ 1) +

n∑
s=n−g(n)

A(n+ 1, s)h(x(s))

=
(
Q(n, x) + 1

)
x(n)−∆n

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s)) +

n∑
s=n−g(n)

A(n+ 1, s)h(x(s))

=
(
Q(n, x) + 1

)
x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

=
(
Q(n, x) + 1

)
x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s)) (2.5)
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where we have used the fact that A(n, n− g(n− 1)− 1) = 0. Using (2.5) in (2.4) we obtain

∆V (n) =

(Q(n, x) + 1)x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

+

x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

+ δ∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

= Q(n, x)V (n) + (Q2(n, x) +Q(n, x))x2(n) + δ∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

− Q(n, x)

 n−1∑
s=n−g(n)

A(n, s)h(x(s))

2

− δQ(n, x)

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) (2.6)

Considering the third term on the right hand side of (2.6) we obtain

∆n

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

=

−1∑
s=−g0

n∑
z=n+s+1

A2(n+ 1, z)h2(x(z))−
−1∑

s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z))

=

−1∑
s=−g0

[
A2(n+ 1, n)h(x2(n)) +

n−1∑
z=n+s+1

A2(n+ 1, z)h2(x(z))

−
n−1∑

z=n+s+1

A2(n, z)h2(x(z))−A2(n, n+ s)h2(x(n+ s))

]

=

−1∑
s=−g0

(
A2(n+ 1, n)h21(x(n))x2(n)−A2(n, n+ s)h2(x(n+ s))

)

+

−2∑
s=−g0

n−1∑
z=n+s+1

∆nA
2(n, z)h2(x(z))

= g0A
2(n+ 1, n)h21(x(n))x2(n)−

−1∑
s=−g0

A2(n, n+ s)h2(x(n+ s))

+

−2∑
s=−g0

n−1∑
z=n+s+1

∆nA
2(n, z)h2(x(z))

≤ g0A
2(n+ 1, n)h21(x(n))x2(n)−

−1∑
s=−g0

A2(n, n+ s)h2(x(n+ s)).

= g0A
2(n+ 1, n)h21(x(n))x2(n)−

n−1∑
z=n−g0

A2(n, z)h2(x(z)) (2.7)
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Applying the Holder’s inequality to the squared term in the fourth term on the right hand side of

(2.6) gives

 n−1∑
s=n−g(n)

A(n, s)h(x(s))

2

≤ g(n)

n−1∑
s=n−g(n)

A2(n, s)h2(x(s))

≤ g(n)

n−1∑
s=n−g0

A2(n, s)h2(x(s)). (2.8)

Considering the last term on the right hand side of (2.6) we obtain

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) ≤ g0

n−1∑
s=n−g0

A2(n, s)h2(x(s)) (2.9)

Substituting (2.7), (2.8) and (2.9) in (2.6) we obtain

∆V (n) ≤ Q(n, x)V (n) + (Q2(n, x) +Q(n, x) + δg0A
2(n+ 1, n)h21(x(n)))x2(n)

+ [−(g(n) + δg0)Q(n, x)− δ]
n−1∑

s=n−g0

A2(n, s)h2(x(s))

≤ Q(n, x)V (n) + (Q2(n, x) +Q(n, x) + δg0A
2(n+ 1, n))x2(n)

+ [−(g(n) + δg0)Q(n, x)− δ]
n−1∑

s=n−g0

A2(n, s)h2(x(s))

≤ Q(n, x)V (n)

≤ Q1(n)V (n).

Theorem 2.2. Suppose the hypothesis of Lemma 2.1 hold. Then any solution x(n) = x(n, n0, ψ)

of (1.2) satisfies the exponential inequality

|x(n)| ≤

√√√√g0 + δ

δ
V (n0)

n−1∏
s=n0

(
a(n) +A(n+ 1, n)

)
(2.10)

for n ≥ n0.

Proof. Let V (n) be defined by (2.2). Changing the order of summation in the second term on the

right hand side of (2.2) we obtain

δ

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) = δ

n−1∑
z=n−g0

z−n∑
s=−g0

A2(n, z)h2(x(z))

= δ

n−1∑
z=n−g0

A2(n, z)h2(x(z))(z − n+ g0 + 1)

≥ δ

n−1∑
z=n−g0

A2(n, z)h2(x(z))

≥ δ

n−1∑
z=n−g(n)

A2(n, z)h2(x(z)),
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where we have used the fact that if n − g0 ≤ z ≤ n − 1 then 1 ≤ z − n + g0 + 1 ≤ g0 and

n− g0 ≤ n− g(n).

Also, we note that n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

≤ g0
n−1∑

z=n−g(n)

A2(n, z)h2(x(z)).

Hence,

δ

−1∑
s=−g0

n−1∑
z=n+s

A2(n, z)h2(x(z)) ≥ δ

g0

 n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

Thus,

V (n) ≥

x(n) +

n−1∑
s=n−g(n)

A2(n, z)h2(x(z))

2

+
δ

g0

 n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

=
δ

g0 + δ
x2(n) +

√ g0
g0 + δ

x(n) +

√
g0 + δ

g0

n−1∑
z=n−g(n)

A(n, z)h(x(z))

2

≥ δ

g0 + δ
x2(n).

But

V (n) ≤ V (n0)

n−1∏
s=n0

(
(a(n) +A(n+ 1, n)

)
This implies that

δ

g0 + δ
x2(n) ≤ V (n0)

n−1∏
s=n0

(
(a(n) +A(n+ 1, n)

)
Hence,

|x(n)| ≤

√√√√g0 + δ

δ
V (n0)

n−1∏
s=n0

(
a(n) +A(n+ 1, n)

)
. (2.11)

This completes the proof.

Corollary 2.3. Suppose that the hypotheses of Theorem 3.2 hold. Suppose that there exists a

positive number α < 1 such that

0 < a(n) +A(n+ 1, n) ≤ α.

Then the zero solution of (1.2) is exponentially stable.
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Proof. It follows from (2.10) that

|x(n)| ≤

√√√√g0 + δ

δ
V (n0)

n−1∏
s=n0

(a(n) +A(n+ 1, n))

≤
√
g0 + δ

δ
V (n0)αn−n0

for n ≥ n0. Since α ∈ (0, 1) the proof is complete.

3 Instability Criteria

In this section we consider the problem of finding a criteria for instability of the zero solution of

(1.2). A suitable Lyapunov functional will be used to obtain the instability criteria.

Theorem 3.1. Assume that (1.3), (1.5) hold and let ρ > g0 be a constant. Assume that Q1(n) > 0

and Q(n, x) > 0 such that

Q2(n, x) +Q(n, x)− ρA2(n+ 1, n)h21(x(n)) ≥ 0. (3.1)

If 1 ≤ h1(x) and

V (n) =

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

− ρ
n−1∑

s=n−g(n−1)−1

A2(n, s)h2(x(s)) (3.2)

then, based on the solutions of (1.2) we have

∆V (n) ≥ Q1(n)V (n).

Proof. Let x(n, n0, ψ) be a solution of (1.2) and let V (n) be defined by (3.2). Then based on the

solutions of (1.2) we have

∆V (n) =

x(n+ 1) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


+

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


× ∆

x(n) +

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))


− ρ

A2(n+ 1, n)h2(x(n)) +

n−1∑
s=n−g(n)

∆nA
2(n, s)h2(x(s))





CUBO
23, 1 (2021)

Inequalities and sufficient conditions for exponential stability . . . 117

≥

(Q(n, x) + 1)x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

+

x(n) +

n−1∑
s=n−g(n)

A(n, s)h(x(s))

Q(n, x)x(n)

− ρA2(n+ 1, n)h2(x(n))

= Q(n, x)V (n) + (Q2(n, x) +Q(n, x)− ρA2(n+ 1, n)h21(x(n)))x2(n)

− Q(n, x)

 n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

+ Q(n, x)ρ

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s))

≥ Q(n, x)V (n) + (Q2(n, x) +Q(n, x)− ρA2(n+ 1, n)h21(x(n)))x2(n)

+ Q(n, x)(ρ− g0)

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s))

≥ Q(n, x)V (n)

≥ Q1(n)V (n).

This completes the proof.

Theorem 3.2. Suppose the hypothesis of Theorem 3.1 hold. Then the zero solution of (1.2) is

unstable, provided that
∞∏
s=0

(a(n) +A(n+ 1, n)) =∞.

Proof. We have from Theorem 3.1 that

∆V (n) ≥ Q1(n)V (n),

which implies that

V (n) ≥ V (n0)

∞∏
s=n0

(a(s) +A(s+ 1, s)). (3.3)

Using the definition of V (n) in (3.2) we have that

V (n) = x2(n) + 2x(n)

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

+

 n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

− ρ
n−1∑

s=n−g(n−1)−1

A2(n, s)h2(x(s)) (3.4)

Now let β = ρ− g0, then from (√g0√
β
a−

√
β
√
g0
b
)2
≥ 0,
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we have

2ab ≤ g0
β
a2 +

β

g0
b2.

It follows from this inequality that

2x(n)

n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s)) ≤ 2|x(n)|

∣∣∣∣∣∣
n−1∑

s=n−g(n−1)−1

A(n, s)h(x(s))

∣∣∣∣∣∣
≤ g0

β
x2(n) +

β

g0

 n−1∑
s=n−g(n−1)−1

A(n, s)h(x(s))

2

≤ g0
β
x2(n) +

β

g0
g0

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s)).

(3.5)

Substituting (3.5) into (3.4) we obtain

V (n) ≤ x2(n) +
g0
β
x2(n) + (β + g0 − ρ)

n−1∑
s=n−g(n−1)−1

A2(n, s)h2(x(s))

=
β + g0
β

x2(n)

≤ ρ

ρ− g0
x2(n).

Using the last inequality and (3.3) we obtain

|x(n)|2 ≥ ρ− g0
ρ

V (n)

=
ρ− g0
ρ

V (n0)

∞∏
s=n0

[a(n) +A(n+ 1, n)].

This completes the proof.
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