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ABSTRACT

In this paper, we introduce a new general class of trigono-

metric distributions based on the tangent function, called the

Tan-G class. A mathematical procedure of the Tan-G class

is carried out, including expansions for the probability den-

sity function, moments, central moments and Rényi entropy.

The estimates are acquired in a non-closed form by the max-

imum likelihood estimation method. Then, an emphasis is

put on a particular member of this class defined with the

Burr XII distribution as baseline, called the Tan-BXII dis-

tribution. The inferential properties of the Tan-BXII model

are investigated. Finally, the Tan-BXII model is applied to

a practical data set, illustrating the interest of the Tan-G

class for the practitioner.

RESUMEN

En este art́ıculo, introducimos una nueva clase general de dis-

tribuciones trigonométricas basada en la función tangente,

llamada la clase Tan-G. Se lleva a cabo un procedimiento

matemático para la clase Tan-G, incluyendo expansiones

para la función de densidad de probabilidad, momentos, mo-

mentos centrales y entroṕıa de Rényi. Las estimaciones se

obtienen en forma no-cerrada para el método de estimación

de máxima verosimilitud. Luego, se pone énfasis en un

miembro particular de esta clase definido con la distribución

Burr XII como ĺınea de base, llamada la distribución Tan-

BXII. Se investigan las propiedades inferenciales del modelo

Tan-BXII. Finalmente, el modelo Tan-BXII es aplicado para

un conjunto de datos prácticos, ilustrando el interés de la

clase Tan-G para el practicante.
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1 Introduction

The recent years of research on probabilistic distributions have been marked by the rise of general

classes of trigonometric distributions, more or less sophisticated. Modern statistical developments

can be found in, e.g., [10], [16], [18], [19], [11], [4] and [8]. In particular, among the most funda-

mental of them, [18] introduced the Sin-G class defined by the cumulative distribution function

(cdf) given by

H
(1)
G (x) = sin

(π
2
G(x)

)
, x ∈ R,

where G(x) denotes a baseline cdf of a continuous distribution and [19] proposed the Cos-G class

defined by the cdf given by

H
(2)
G (x) = 1− cos

(π
2
G(x)

)
, x ∈ R.

One can notice that the eventual parameter(s) of these classes is (are) (the one) (those) ofG(x) only,

and that the following elementary equation hold: [H
(1)
G (x)]2+[1−H(2)

G (x)]2 = 1, i.e., H
(2)
G (x) = 1−√

1− [H
(1)
G (x)]2 (showing that H

(2)
G (x) belongs to the so-called Kum-G class with the parameters

1/2 and 2 and the baseline cdf H
(1)
G (x), see [5]). In addition to their simplicity, both of these two

trigonometric classes benefit from the smooth periodic oscillations of the involved trigonometric

functions to attain new levels of flexibility in statistical modeling. In [18] and [19], this fact is

illustrated by means of several practical data sets, with winning results in comparison to useful

model competitors. In this study, following the spirit of [18] and [19], we introduce a new and

simple general class of trigonometric distributions having the feature to be centered around the

tangent function. For the purpose of this paper, we call it the Tan-G class. It is defined by the

following cdf:

HG(x) = tan
(π

4
G(x)

)
, x ∈ R. (1.1)

Several existing constructions give this cdf, beginning by the integral techniques developed by [2];

we have HG(x) =
∫ (π/4)G(x)

0
sec2(t)dt, where sec(t) = 1/ cos(t). After some algebra, one can also

notice that HG(x) can be expressed in terms of the cdfs H
(1)
G (x) and H

(2)
G (x) as

HG(x) =

√
1− [1−H(2)

G (x)]2

2−H(2)
G (x)

, HG(x) =
H

(1)
G (x)

1 +

√
1− [H

(1)
G (x)]2

.

From these expressions, we immediately get the following stochastic ordering: HG(x) ≤ H
(1)
G (x),

attesting that HG(x) can provide different statistical models to those of H
(1)
G (x). In full generality,

the main qualities of the Tan-G class are to be simple: there is no additional parameter and the

related functions are very tractable, and its ability to create flexible statistical models, well-adapted

to fit with precision several kinds of data sets, beyond those related to the Sin-G or Cos-G class.



CUBO
23, 1 (2021)

Tan-G class of trigonometric distributions and its applications 3

All these aspects are developed in this paper according to the following plan. In Section 2,

the main theoretical features of the Tan-G class are presented. Section 3 is devoted to a special

member of the class defined with the Burr XII distribution as baseline. Concluding remarks are

given in Section 4.

2 Main theoretical features of the Tan-G class

A theoretical treatment of the Tan-G class is performed in this section, investigating the related

distributional functions, asymptotic and critical points, useful expansion, moments and central

moments, expansion for the general coefficient, entropy and the mathematics of the maximum

likelihood estimation.

2.1 Distributional functions

We recall that the Tan-G class of distributions is defined by the cdf given by (1.1). Upon differen-

tiation, the corresponding pdf is given by

hG(x) =
π

4
g(x) sec2

(π
4
G(x)

)
, x ∈ R, (2.1)

where g(x) denotes the pdf corresponding to G(x). The hazard function (hf) of the Tan-G class is

given by

RG(x) =

π

4
g(x) sec2

(π
4
G(x)

)
1− tan

(π
4
G(x)

) , x ∈ R. (2.2)

The curvatures properties of hG(x) and RG(x) are crucial to define an appropriate statistical

model for a given data set. Further elements on these curvature properties will be presented in

the subsection below. Another important function is the quantile function (qf) given by

Q(u) = H−1G (u) = G−1
[

4

π
arctan(u)

]
, u ∈ (0, 1).

That is, the median of the Tan-G class is given by

M = Q(0.5) ≈ G−1 (0.5903345) .

Other properties of the Tan-G class can be studied through this qf. For instance, the main steps

to generate random numbers from the Tan-G class via the qf are described in Table 1.
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Table 1: Generated numbers from the Tan-G class by the use of the qf

Algorithm

1. Generate n values from u ∼ U(0, 1)

2. Specify G−1(x)

3. Obtain an outcome of X with cdf (1.1) by X = Q(u)

2.2 Asymptotic and critical points

Let us now investigate the asymptotic and critical points for hG(x) and RG(x). Owing to (2.1)

and (2.2), when G(x)→ 0, we have

HG(x) ∼ π

4
G(x), hG(x) ∼ π

4
g(x), RG(x) ∼ π

4
g(x).

Also, when G(x)→ 1, we have

HG(x) ∼ 1− π

2
(1−G(x)), hG(x) ∼ π

2
g(x), RG(x) ∼ g(x)

1−G(x)
.

If x∗ denotes a critical point for hG(x), then it satisfies the following equation: {ln[hG(x)]}′ |x=x∗=

0, i.e.,

g(x)′ |x=x∗ +
π

2
g(x∗)

2 tan
(π

4
G(x∗)

)
= 0.

With similar arguments, if x∗∗ denotes a critical point for RG(x), then it satisfies the following

equation: {ln[RG(x)]}′ |x=x∗∗= 0, i.e.,[
g(x)′ |x=x∗∗ +

π

2
g(x∗∗)

2 tan
(π

4
G(x∗∗)

)] [
1− tan

(π
4
G(x∗∗)

)]
+
π

4
g(x∗∗)

2 sec2
(π

4
G(x∗∗)

)
= 0.

None of these non-linear equations has solution(s) with closed form. That is, for a specific G(x),

we can determine x∗ and x∗∗ numerically by the use of any scientific software as R, Matlab,

Mathematica. . .

2.3 Useful expansion

The following result presents an useful expansion of the pdf of the Tan-G class involving functions

of the exponentiated-G class (see [7]).

Theorem 2.1. The pdf of the Tan-G class given by (2.1) can be expressed as a linear combination

of pdfs of the exponentiated-G class as

hG(x) =

+∞∑
k=1

ωkg(2k−1)(x),
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where

ωk =
(π

4

)2k−1 B2k(−4)k(1− 4k)

(2k)!
, (2.3)

B2k is the so-called 2kth Bernoulli number and g(2k−1)(x) = (2k − 1)g(x)G2k−2(x) is the pdf of

the exponentiated-G class with parameter 2k − 1.

Proof. Using the Taylor series for the tangent function, since (π/4)G(x) ∈ (0, π/2), we have

tan
(π

4
G(x)

)
=

+∞∑
k=1

B2k(−4)k(1− 4k)

(2k)!

(π
4
G(x)

)2k−1
.

Thus, we obtain the following expansion for HG(x):

HG(x) =

+∞∑
k=1

(π
4

)2k−1 B2k(−4)k(1− 4k)

(2k)!
G2k−1(x)·

The desired expansion for hG(x) is deduced by differentiation. This ends the proof of Theorem

2.1.

2.4 Moments and central moments

An expansion for the moment of order m of the Tan-G class is studied in the following result.

Theorem 2.2. Let µm be the moment of order m of the Tan-G class and µ
(2k−1)
m be the moment

of order m of the exponentiated-G class with parameter 2k − 1. Then, we have

µm =

+∞∑
k=1

ωkµ
(2k−1)
m ,

where ωk is given by (2.3).

Proof. The moment of order m of the Tan-G class is defined by

µm =

∫ +∞

−∞
xmdHG(x).

It follows from Theorem 2.1 that

µm =

∫ +∞

−∞
xm

+∞∑
k=1

ωkg(2k−1)(x)dx =

+∞∑
k=1

ωk

∫ +∞

−∞
xmg(2k−1)(x)dx =

+∞∑
k=1

ωkµ
(2k−1)
m .

This ends the proof of Theorem 2.2.

The mean is given by µ = µ1.

Remark 2.3. By applying the change of variable u = G(x), we can express µ
(2k−1)
m as

µ(2k−1)
m = (2k − 1)

∫ +∞

−∞
xmg(x)G2k−2(x)dx = (2k − 1)

∫ 1

0

[
G−1(u)

]m
u2k−2du.
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Similarly, we can obtain an expansion of the central moments of order m by using Theorem

2.2.

Corollary 2.4. Let µ′m be the central moment of order m of the Tan-G class and µ
(2k−1)
m be the

moment of order m of the exponentiated-G class with parameter 2k − 1. Then, we have

µ′m =

+∞∑
k=1

m∑
r=0

γk,m,rµ
(2k−1)
m−r ,

where

γk,m,r = ωk

(
m

r

)
(−1)rµr

and ωk is defined by (2.3).

Proof. The central moment of order m of the Tan-G class is defined by

µ′m =

∫ +∞

−∞
(x− µ)mdHG(x).

By using the binomial theorem and Theorem 2.2, we have

µ′m =

m∑
r=0

(
m

r

)
(−1)rµr

∫ +∞

−∞
xm−rdHG(x) =

m∑
r=0

(
m

r

)
(−1)rµrµm−r

=

m∑
r=0

(
m

r

)
(−1)rµr

+∞∑
k=1

ωkµ
(2k−1)
m−r =

+∞∑
k=1

m∑
r=0

γk,m,rµ
(2k−1)
m−r .

The proof of Corollary 2.4 is ended.

By considering m = 2, the variance is given by

σ2 = µ′2 =

+∞∑
k=1

2∑
r=0

γk,2,rµ
(2k−1)
2−r .

By using similar summation techniques, one can set expansions of the incomplete moments, the

moment generating function and the characteristic function, among others.

2.5 Expansion to the general coefficient

The general coefficient of the Tan-G class is defined by

Cm =
µ′m
σm

.

By applying Corollary 2.4, it can be written as

Cm =

∑+∞
k=1

∑m
r=0 γk,m,rµ

(2k−1)
m−r[∑+∞

k=1

∑2
r=0 γk,2,rµ

(2k−1)
2−r

]m
2
.
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So, the asymmetry and kurtosis of the Tan-G class can be respectively expressed by

C3 =

∑+∞
k=1

∑3
r=0 γk,3,rµ

(2k−1)
3−r[∑+∞

k=1

∑2
r=0 γk,2,rµ

(2k−1)
2−r

] 3
2

, C4 =

∑+∞
k=1

∑4
r=0 γk,4,rµ

(2k−1)
4−r[∑+∞

k=1

∑2
r=0 γk,2,rµ

(2k−1)
2−r

]2 .

2.6 Entropy

Entropy measures the uncertainty; the greater the entropy, the higher the disorder and the less

likely it will be to observe a phenomenon; the lower the entropy, the lower its disorder and the

higher the probability of observing a particular event. Among the most useful entropy, there is

the Rényi entropy introduced by [13]. In the context of the Tan-G class, it is defined by

LG(γ) =
1

1− γ
ln

[∫ +∞

−∞
hγG(x)

]
dx,

where γ > 0 with γ 6= 1 and

hγG(x) =
(π

4

)γ
gγ(x) sec2γ

(π
4
G(x)

)
.

Let us now consider the function W (s) = sec2γ [(π/4)s], s ∈ (0, 1). By applying the Taylor

series formula to W (s) at a fixed point s0 ∈ (0, 1) (say s0 = 0.5), we get

sec2γ
[π

4
s
]

=

+∞∑
k=0

ak(s− s0)k =

+∞∑
k=0

k∑
r=0

(
k

r

)
aks

r(−1)k−rsk−r0 ,

where ak = W (k)(s) |s=s0 /k!. We are now able to derive an expansion of the Rényi entropy of the

Tan-G class. After some algebra, we obtain

LG(γ) =
1

1− γ

{
γ ln

(π
4

)
+ ln

[
+∞∑
k=0

k∑
r=0

aks
r(−1)k−rsk−r0 Ir

]}
, (2.4)

where

Ir =

∫ +∞

−∞
Gr(x)gγ(x)dx.

Even if it has no closed form, the integral Ir can be computed numerically. The Shannon entropy,

pioneered by [15], is given by

SG = −
∫ +∞

−∞
ln[hG(x)]hG(x)dx.

It can deduced from LG(γ) via the relation limγ→1 LG(γ) = SG.
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2.7 Maximum likelihood estimation and scores

Here, we consider the estimation of the parameters of the Tan-G class by the method of maximum

likelihood. Let x̃ = (x1, . . . , xn)> be a random sample observations from the Tan-G class with

vector parameter θ̃ = (θ1, . . . , θp) (thus, p is the number of parameters of the distribution). Then,

the log-likelihood (LL) function for the Tan-G class is given by

`(θ̃) = n ln
(π

4

)
+

n∑
i=1

ln
(
g(xi|θ̃)

)
+ 2

n∑
i=1

ln
[
sec
(π

4
G(xi|θ̃)

)]
·

The maximum likelihood estimators (MLEs) are obtained by maximizing this function according

to θ̃. In this regards, if G(x|θ̃) is differentiable according to θ̃, one can consider the jth score given

by

U(θj) =
∂`(θ̃)

∂θj
=

n∑
i=1

1

g(xi|θ̃)
∂g(xi|θ̃)
∂θj

+
π

2

n∑
i=1

tan
(π

4
G(xi|θ̃)

) ∂G(xi|θ̃)
∂θj

and consider the following equations: U(θ1) = 0, . . . , U(θp) = 0. Thus, the MLEs are defined as

the simultaneous solutions of these equations.

3 The Tan-BXII distribution

We now focus on a special distribution of the Tan-G class, called the Tan-BXII distribution.

3.1 Definition

Tan-BXII distribution is defined by the cdf given by (1.1) with the cdf G(x) of the Burr XII distri-

bution, i.e., G(x) = 1−
[
1 +

(x
s

)c]−κ
, x, s, c, κ > 0. Hence, the cdf of the Tan-BXII distribution

is given by

HG(x) = tan

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)}
, x > 0.

The corresponding pdf is given by

hG(x) =
π

4

{
xc−1cκs−c

[
1 +

(x
s

)c]−κ−1}
sec2

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)}
, x > 0.

Finally, the corresponding hf is given by

RG(x) =

π

4

{
xc−1cκs−c

[
1 +

(x
s

)c]−κ−1}
sec2

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)}
1− tan

{
π

4

(
1−

[
1 +

(x
s

)c]−κ)} , x > 0.

It is expected that the hf is unimodal or decreasing, as it can be seen in Figures 3 and 4, respectively,

but an analytic verification of this fact using all three parameters is an unnecessarily complicated

computation. One can check for given parameters that it is indeed the case using computing

software.
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3.2 Shape characteristics of probability density and hazard functions

The asymptotic and critical points for hG(x) and RG(x) can be obtained in non-closed form by

applying Subsection 2.2. Also, some possible shapes of hG(x) for some parameter values are

displayed in Figure 1. Some plots of HG(x) are given in Figure 2.
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Figures 3 and 4 present plots of RG(x) for some parameter values. We observe that the hf

can be unimodal or only be decreasing.
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3.3 Expansion of the probability density function

Here, we use the general results proved for the Tan-G class of distributions to reveal properties for

the Tan-BXII distribution. An useful expansion of the pdf is presented below.

Theorem 3.1. The pdf of the Tan-G class can be expanded as a mixture of pdfs of the Burr XII

distribution, i.e.,

hG(x) =

+∞∑
k=1

2k−2∑
j=0

ωj,kgBurrXII(x; s, c, κ(j + 1)),

where

ωj,k = ωk(2k − 1)

(
2k − 2

j

)
(−1)j

1

j + 1
, (3.1)

ωk is given by (2.3) and gBurrXII(x; s, c, κ(j + 1)) is the pdf of the Burr XII distribution with pa-

rameters s, c and κ(j+1), i.e., gBurrXII(x; s, c, κ(j+1)) = xc−1cκ(j+1)s−c [1 + (x/s)
c
]
−κ(j+1)−1

,

x > 0.

Proof. Owing to Theorem 2.1, we can write

hG(x) =

+∞∑
k=1

ωkg(2k−1)(x),

where ωk is given by (2.3) and

g(2k−1)(x) = (2k − 1)g(x)G2k−2(x)

= (2k − 1)xc−1cκs−c
[
1 +

(x
s

)c]−κ−1{
1−

[
1 +

(x
s

)c]−κ}2k−2

.

The standard binomial theorem gives

g(2k−1)(x) = (2k − 1)xc−1cκs−c
2k−2∑
j=0

(
2k − 2

j

)
(−1)j

[
1 +

(x
s

)c]−κ(j+1)−1

= (2k − 1)

2k−2∑
j=0

(
2k − 2

j

)
(−1)j

1

j + 1
gBurrXII(x; s, c, κ(j + 1)).

The proof ends by putting the above equalities together.

3.4 Moments and central moments

By using identical manipulations to those used in Theorem 2.2, we introduce the moment expansion

of the Tan-BXII distribution in the following result.
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Theorem 3.2. First of all, the moment of order m of the Tan-BXII distribution exists if and only

if cκ > m. In this case, the moment of order m of the Tan-BXII distribution is given by

µm =

+∞∑
k=1

2k−2∑
j=0

ωj,ks
mκ(j + 1)B

(
κ(j + 1)−mc−1, 1 +mc−1

)
,

where ωj,k is given by (3.1) and B(a, b) =
∫ 1

0
ta−1(1−t)b−1dt, a, b > 0 (the standard beta function).

Proof. It follows from Theorem 3.1 that

µm =

+∞∑
k=1

2k−2∑
j=0

ωj,kJj,k,m,

where

Jj,k,m =

∫ +∞

0

xmgBurrXII(x; s, c, κ(j + 1))dx =

∫ +∞

0

xmxc−1cκ(j + 1)s−c
[
1 +

(x
s

)c]−κ(j+1)−1
dx.

By applying the changes of variables u =
(x
s

)c
and ν = (1 + u)−1, in turn, we get

Jj,k,m = smκ(j + 1)

∫ +∞

0

u
m
c (1 + u)−κ(j+1)−1du

= smκ(j + 1)

∫ 1

0

νκ(j+1)−m
c −1(1− ν)

m
c dν

= smκ(j + 1)B
(
κ(j + 1)−mc−1, 1 +mc−1

)
.

By combining the above equalities together, we end the proof of Theorem 3.2.

The mean is given by µ = µ1.

Remark 3.3. By adopting the notations introduced in Section 2, following the lines of the proof

of Theorem 3.2, one can show that

µ(2k−1)
m = (2k − 1)smκ

2k−2∑
j=0

(
2k − 2

j

)
(−1)jB

(
κ(j + 1)−mc−1, 1 +mc−1

)
.

Similarly to Corollary 2.4, the central moment of order m of the Tan-BXII distribution is

given

µ′m =

m∑
r=0

(
m

r

)
(−1)rµrµm−r =

+∞∑
k=1

2k−2∑
j=0

m∑
r=0

ρj,k,m,rB
(
κ(j + 1)− (m− r)c−1, 1 + (m− r)c−1

)
,

where

ρj,k,m,r = ωj,ks
m−rκ(j + 1)

(
m

r

)
(−1)rµr.

By considering m = 2, we get the following expansion for variance of the distribution:

σ2 = µ′2 =

+∞∑
k=1

2k−2∑
j=0

2∑
r=0

ρj,k,2,rB
(
κ(j + 1)− (2− r)c−1, 1 + (2− r)c−1

)
.
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3.5 Expansion to the general coefficient

The general coefficient of the Tan-BXII distribution can be expressed as

Cm =
µ′m
σm

=

∑+∞
k=1

∑2k−2
j=0

∑m
r=0 ρj,k,m,rB

(
κ(j + 1)− (m− r)c−1, 1 + (m− r)c−1

){∑+∞
k=1

∑2k−2
j=0

∑2
r=0 ρj,k,2,rB (κ(j + 1)− (2− r)c−1, 1 + (2− r)c−1)

}m/2 .

Thus, the asymmetry and kurtosis can be expressed by taking m = 3 and m = 4, respectively,

which is the object of the next part.

3.6 Figures of asymmetry and kurtosis

In Figures 5, 6 and 7, we present the asymmetry and kurtosis graphs for the Tan-BXII distribution.

It is possible to observe that this new distribution has a great flexibility on these aspects, showing

varying values, small and large.
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Figure 5: Plots of the skewness and kurtosis coefficients of the Tan-BXII distribution as a function

of c for selected values of κ and s



CUBO
23, 1 (2021)

Tan-G class of trigonometric distributions and its applications 13

3.0 3.5 4.0 4.5 5.0

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

κ

S
k
e
w

n
e
s
s

c = 1.5, s = 2.5

c = 3.8, s = 1.8

c = 2.6, s = 2.7

c = 2.9, s = 2.9

c = 8.1, s = 3

(a)

3.0 3.5 4.0 4.5 5.0

5
1
0

1
5

2
0

κ

K
u
rt

o
s
is

c = 1.5, s = 2.5

c = 3.8, s = 1.8

c = 2.6, s = 2.7

c = 2.9, s = 2.9

c = 8.1, s = 3

(b)

Figure 6: Plots of the skewness and kurtosis coefficients of the Tan-BXII distribution as a function

of κ for selected values of c and s
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Figure 7: Plots of the skewness and kurtosis coefficients of the Tan-BXII distribution as a function

of s for selected values of c and κ
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3.7 Entropy

By applying (2.4), the Rényi entropy is given by

LG(γ) =
1

1− γ

{
γ ln

(π
4

)
+ ln

[
+∞∑
k=0

k∑
r=0

aks
r(−1)k−rsk−r0 Ir

]}
,

where γ > 0 with γ 6= 1 and, after some algebra,

Ir =

∫ +∞

−∞
Gr(x)gγ(x)dx

=

r∑
j=0

(
r

j

)
(−1)jκγs−(γ−1)cγ−1B(κ(j + γ) + (γ − 1)c−1, (γ − 1)(c− 1)c−1 + 1),

assuming that κγ + (γ − 1)c−1 > 0 and (γ − 1)(c− 1)c−1 + 1 > 0.

Figure 8 displays this Rényi entropy for some values of the parameters.
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Figure 8: Plots of the Rényi entropy of the Tan-BXII distribution as a function of c for selected

values of κ and s

3.8 Maximum likelihood estimation

Here, we provide the mathematical background related to the MLEs of the Tan-BXII model pa-

rameters, i.e., c, κ and s. Let x = {x1, . . . , xn}> be n independent random variables from the

Tan-BXII distribution. Then, the log-likelihood function is given by

L = n ln
(π

4

)
+ n ln(c) + n ln(κ)− nc ln(s) + (c− 1)

n∑
i=1

ln(xi)

− (κ+ 1)

n∑
i=1

ln
[
1 +

(xi
s

)c]
+ 2

n∑
i=1

ln

[
sec

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}]
.
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The scores are presented below:

Uc =
n

c
− n ln(s) +

n∑
i=1

ln(xi)− (κ+ 1)

n∑
i=1

xci ln
(xi
s

)
sc + xci

+
π

2
κ

n∑
i=1

(xi
s

)c
ln
(xi
s

) [
1 +

(xi
s

)c]−κ−1
tan

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}
,

Uκ =
n

κ
−

n∑
i=1

ln
[
1 +

(xi
s

)c]
+
π

2

n∑
i=1

[
1 +

(xi
s

)c]−κ
ln
[
1 +

(xi
s

)c]
tan

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}

and

Us = −nc
s

+ c(κ+ 1)s−1
n∑
i=1

xci
sc + xci

− π

2
cκs−(c+1)

n∑
i=1

xci

[
1 +

(xi
s

)c]−κ−1
tan

{
π

4

(
1−

[
1 +

(xi
s

)c]−κ)}
.

The MLEs of c, κ and s are defined by the simultaneous solutions of the following non-linear

equations: Uc = 0, Uκ = 0 and Us = 0 according to c, κ and s. Under some standard regularity

conditions, the well-known theory on MLE can be applied, ensuring nice asymptotic properties

(see [3]).

3.9 Simulation

Using the TanB R package [17], we perform a simulation study using several random samples of the

Tan-BXII distribution. For each sample, we calculate the MLEs using native R language’s optim

implementation. Biases, and Mean Square Errors (MSEs) are also calculated using the MLEs

obtained.

For this simulation, we use samples with sizes 10, 20, 30, . . . , 100 and 1000 replicas for the

parameter’s configuration: c = 1, κ = 1.4 and s = 0.15. Figures 9a, 9b and 9c show the bias for c,

κ and s, respectively, in this simulation and we can see it decreasing over the sample sizes. Figures

10a, 10b and 10c show the MSE for the same parameters and also decreases over the sample sizes.

Table 2 summarizes the simulation, given the means of MLEs, biases and MSEs of the samples

with sizes of 10, 20, 30, 50 and 100. We can see in the table that all the parameters are overesti-

mated by the maximum likelihood method. The biases and MSEs decrease over the sample sizes

as we see in Figures 9a, 9b, 9c, 10a, 10b and 10c.
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Table 2: MLEs, Biases and MSEs for c = 1, κ = 1.4, s = 0.15 using 1000 replicas

Sample size(n) Parameters MLEs Biases MSEs

c 1.5102 0.5102 1.1065

10 κ 7.6587 6.2587 86.6797

s 2.5062 2.3562 15.5951

c 1.2998 0.2998 0.4181

20 κ 6.7327 5.3327 68.2502

s 2.3631 2.2131 12.9993

c 1.2444 0.2444 0.2478

30 κ 5.5806 4.1806 47.7063

s 1.8732 1.7232 8.7874

c 1.1787 0.1787 0.111

50 κ 4.7807 3.3807 32.0412

s 1.6109 1.4609 6.7689

c 1.1636 0.1636 0.066

100 κ 3.4506 2.0506 11.3414

s 0.9844 0.8344 2.0205
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Figure 9: Plots of the biases for the simulated experiment related to the Tan-BurXII model pa-

rameters
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Figure 10: Plots of the MSEs for the simulated experiment related to the Tan-BurXII model

parameters
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3.10 Application

Now, we apply the Tan-BXII model to fit a practical data set and compare it with three other mod-

els, namely Kum-BXII, BurrXII and Kum-W models. These data are on the Aircraft windshield

failures (thousands of hours) reported in Murthy [12] (see Table 3). A brief statistical description

of these data can be found in Table 4. Table 5 shows the MLEs of the parameters of the Tan-BXII,

Kum-BXII, BurrXII and Kum-W models with error in parentheses, as well as the related Akaike

Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian Informa-

tion Criterion (BIC), Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics. We refer to

[1], [6] and the book of [9] for precise definitions and use of these fundamental statistical tools.

Table 3: Data on aircraft windshield failures (thousands of hours)

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610

3.478 0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914

2.646 3.699 1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281

2.038 2.823 4.035 1.281 2.085 2.890 4.121 1.303 2.089 2.902 4.167

1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964

4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615 2.223

3.114 4.449 1.619 2.224 3.117 4.485 1.652 2.229 3.166 4.570 1.652

2.300 3.344 4.602 1.757 2.324 3.376 4.663

Table 4: Descriptive statistics of the considered data

Min. Q1 Median Mean Q3 Max. Var.

0.040 1.839 2.354 2.557 3.393 4.663 1.252

Table 5: MLEs of the parameters of the Tan-BXII, Kum-BXII, Kum-W and BurrXII models, with

errors in parentheses, and AIC, BIC, CAIC, W ∗ and A∗ statistics

Models Estimates AIC BIC CAIC W ∗ A∗

Tan-BXII(c, κ, s) 2.27 186.02 26.00 — — 267.76 275.09 268.06 0.06 0.58

(0.20) (659.52) (41.42) — —

Kum-BXII(a, b, c, d, k) 0.28 1.96 7.17 4.54 5.82 267.95 280.17 268.71 0.08 0.64

(0.11) (1.36) (2.38) (5.07) (1.46)

Kum-W(a, b, c, β) 0.38 8.53 5.78 0.13 — 268.82 278.59 269.32 0.06 0.56

(0.04) (6.89) (0.06) (0.04) —

BXII(a, c, k) 2.48 11.31 7.47 — — 270.24 277.57 270.54 0.06 0.63

(0.23) (8.05) (2.57) — —
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It follows from Table 5 that, when compared to other ones, the Tan-BXII model is the best.

We illustrate this claim by showing the fits of the estimated pdfs and cdfs in Figures 11 and 12,

respectively. Thus, we conclude that the Tan-BXII distribution is quite flexible in the modeling of

the proposed data.
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Figure 11: Some fitted pdfs of the data
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Figure 12: Some fitted cdfs of the data

4 Concluding remarks

In this paper, we introduced and discussed a new class of trigonometric distributions, called the

Tan-G class, with a focus on a new lifetime trigonometric distribution of the class, called the

Tan-BXII distribution. We obtain probability density function, cumulative distribution function,

hazard function and various moments. The entropy is also calculated. A complete part is devoted

to the estimation of the model parameters via the maximum likelihood method. We put the light

on the applicability of the new related models by considering a practical data set. Even though

our class of distributions does not optimally fit the data presented, it still proves to be a powerful

tool for statistical analysis. We will apply this distribution to other data sets to show its full power

and it will be reported elsewhere.

Acknowledgments

We would like to thank the reviewer and the associated editor for constructive comments on the

article, improving it on several important aspects.



CUBO
23, 1 (2021)

Tan-G class of trigonometric distributions and its applications 19

References

[1] T. W. Anderson and D. A. Darling, “A Test of Goodness-of-Fit”, Journal of the American

Statistical Association, vol. 49, pp. 765–769, 1954.

[2] C. C. R. Brito, “Método Gerador de Distribuicoes e Classes de Distribuicoes Probabilisticas”,

Tese de doutorado (Doutorado em Biometria e Estatistica Aplicada), Universidade Federal

Rural de Pernambuco, Recife, 2014.

[3] G. Casella, and R. L. Berger, Statistical Inference, Brooks/Cole Publishing Company, Cali-

fornia, 1990.

[4] C. Chesneau, H. S. Bakouch, and T. Hussain, “A new class of probability distributions via

cosine and sine functions with applications”, Communications in Statistics - Simulation and

Computation, vol. 48, no. 8, pp. 2287–2300, 2019.

[5] G. M. Cordeiro, and M. de Castro, “A new family of generalized distributions”, Journal of

Statistical Computation and Simulation, vol. 81, no. 7, pp. 883–893, 2011.

[6] A. Darling, “The Kolmogorov-Smirnov, Cramer-von Mises tests”, Annals of Mathematical

Statistics, vol. 28, no 4, pp. 823–838, 1957.

[7] R. D. Gupta, and D. Kundu, “Exponentiated exponential family: an alternative to gamma

and Weibull distributions”, Biometrical Journal, vol. 43, no. 1, pp. 117–130, 2001.

[8] F. Jamal, and C. Chesneau, “A new family of polyno-expo-trigonometric distributions with

applications”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol.

22, no. 04, 1950027, pp. 1–15, 2019.

[9] S. Konishi, and G. Kitagawa, Information Criteria and Statistical Modeling. Springer, New

York, 2007.

[10] D. Kumar, U. Singh, and S. K. Singh, “A new distribution using sine function: its application

to bladder cancer patients data”, Journal of Statistics Applications and Probability, vol. 4,

no. 3, pp. 417–427, 2015.

[11] Z. Mahmood, C. Chesneau, and M. H. Tahir, “A new sine-G family of distributions: prop-

erties and applications”, Bulletin of Computational Applied Mathematics, vol. 7, no. 1, pp.

53–81, 2019.

[12] D. N. P. Murthy, M. Xie, and R. Jiag, Weibull Models, John Wiley and Sons, Inc. Hoboken,

New Jersey, 2004.



20 L. Souza, W. Júnior, C. de Brito, C. Chesneau, R. Fernandes & T. Ferreira CUBO
23, 1 (2021)
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