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ABSTRACT

The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous sym-

metry; here we show it is generalizable to much broader classes of metrics with a

symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun

ansatz form, the conditions under which its natural complex structure is integrable, and

the conditions that produce a metric that is Kähler, scalar-flat, or extremal Kähler.

Second, toric Kähler metrics (such as the generalized Taub-NUTs) and U(2)-invariant

metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the Le-

Brun ansatz. We give general formulas for such transitions. We close the paper with

examples, and find expressions for two examples—the exceptional half-plane metric and

the Page metric—in terms of the LeBrun ansatz.

RESUMEN

El ansatz de LeBrun fue diseñado para métricas Kähler escalares-planas con una

simetŕıa continua; acá mostramos que es generalizable a clases mucho más amplias

de métricas con una simetŕıa. Establecemos las condiciones para que una métrica sea

(localmente) expresable con la forma de ansatz de LeBrun, las condiciones bajo las

cuales su estructura compleja natural es integrable, y las condiciones que producen una

métrica que es Kähler, escalar-plana, o Kähler extremal. En segundo lugar, métricas

tóricas Kähler (tales como las Taub-NUT generalizadas) y métricas U(2)-invariantes

(tales como la métrica de Fubini-Study o la de Page) son ciertamente expresables en

el ansatz de LeBrun. Damos fórmulas generales para tales transiciones. Concluimos el

art́ıculo con ejemplos, y encontramos expresiones para dos ejemplos—la métrica excep-

cional del semiplano y la métrica de Page—en términos del ansatz de LeBrun.
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1 Introduction

LeBrun [19] created an ansatz for scalar-flat Kähler metrics with a continuous symmetry. This

was an expansion of the Gibbons-Hawking ansatz for Ricci-flat Kähler metrics with a symmetry,

itself a version of the Kaluza ansatz [18] [6]. In the original construction Kaluza showed that if

a Lorentzian 5-metric is endowed with a spacelike continuous symmetry, the Einstein equations

will partially linearize, with the linear part being the Maxwell equations. The Gibbons-Hawking

construction utilized this idea except in Euclidean signature and a dimension lower, where the

Maxwell equations reduce to just the Laplace equation on a potential, and the “gravity” equations

(the Ricci-flat equations) fully linearize.

LeBrun’s ansatz, which also works for 4-dimensional Riemannian metrics with a circle sym-

metry, partially linearizes the scalar-flat Kähler (SFK) equations. These SFK equations, normally

exceedingly complicated and nonlinear, were shown to reduce to a pair of second order equations,

one linear and the other quasilinear.

We show that LeBrun’s ansatz is much more general than this original use, and is suitable

for expressing interesting 4-metrics that are not scalar-flat, Kähler, or even have an integrable

complex structure. We show the conditions under which a metric is expressible in terms of the

LeBrun ansatz, and give the explicit transformations into the LeBrun ansatz from two toric Kähler

ansätze, and from the U(2)-invariant ansatz. In the last section we use these translations to express

several common metrics in the LeBrun ansatz. Finally we indicate how the LeBrun ansatz can

be used, at least in principle, to create new metrics of special kinds, a subject we shall take up

elsewhere.

2 The LeBrun ansatz

We lay out the basic definitions in the LeBrun ansatz and determine when the ansatz possesses

an integrable complex structure and when it possesses a closed Kähler 2-form. We end with some

expressions for curvature quantities of such metrics, and state when such a metric is extremal

Kähler. The reference for this section is [19].

2.1 The ansatz

The LeBrun ansatz is an S1-fibration π :M4 → N3 along with the metric

g = weu
(

dx2 + dy2
)

+ w dz2 + w−1 (dτ + π∗A)
2

(2.1)
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where (x, y, z) are local coordinates on N3, w = w(x, y, z) and u = u(x, y, z) are functions, and A

is a 1-form A = Ax(x, y, z)dx + Ay(x, y, z)dy + Az(x, y, z)dz on N3.1 The coordinate τ is defined

after a choice of a transversal: after setting τ = 0 on this transversal, τ is pushed forward via the

S1-action. The field d
dτ

is invariant under rechoosing the transversal so it is globally defined, and

it is Killing.

The exterior derivative of A will be important. Because dπ∗A = π∗dA, it is immaterial

whether we compute on M4 or N3. Letting B = dA we have

B = Bx dy ∧ dz − By dx ∧ dz + Bz dx ∧ dy, where

Bx = Ay,x −Ax,y, By = Ax,z −Az,x, Bz = Az,y −Ay,z.
(2.2)

In the spirit of Kaluza’s work, we may interpret A as a vector potential over 3-space and

B = dA as the corresponding Maxwell field strength. It so closely resembles a magnetostatic field

that we will sometimes call it the metric’s magnetic field. In all curvature computations A never

appears; only its field B appears.

A g-compatible almost-complex structure on (M4, g) is

J(dx) = −dy, J(dz) = −w−1(dτ + π∗A), (2.3)

which dualizes to

J(∇x) = ∇y, J(∇z) =
∂

∂τ
(2.4)

where the duality convention is J(η) , η ◦J for η ∈
∧1

. The corresponding antisymmetric form is

ω = g(J ·, ·) = weudx ∧ dy + dz ∧ (dτ + π∗A) . (2.5)

2.2 The complex and symplectic structures

As usual, the almost complex structure splits
∧1

C
=
∧1

(M4) ⊗ C into holomorphic and antiholo-

morphic bundles, where
∧1

C
=
∧1,0 ⊕∧0,1

are the respective ±
√
−1 eigenspaces of J . In bases,

∧

1,0 = spanC

{

dx+
√
−1dy, dz +

√
−1w−1(dτ + π∗A)

}

,
∧

0,1 = spanC

{

dx−
√
−1dy, dz −

√
−1w−1(dτ + π∗A)

}

.
(2.6)

Of the many ways to check the integrability of an almost-complex structure, the most conve-

nient will be verifying that d :
∧0,1 → ∧1

C
∧∧0,1.

Lemma 2.1. The complex structure (2.3) is integrable if and only if

wx = Bx and wy = By. (2.7)
1LeBrun denotes ω = dτ + π∗A, and interprets this as a connection. Following a different but very standard

convention, we shall prefer using the symbol ω for the 2-form ω = g(J ·, ·).
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Proof. This comes from out of the proof of Proposition 1 of [19]. We compute on bases.

Certainly d(dx −
√
−1dy) = 0. Then

d
(

dz −
√
−1w−1(dτ + π∗A)

)

= w−1
(

dw ∧
(

dz −
√
−1w−1(dτ + π∗A)

)

− dw ∧ dz −
√
−1B

)

.
(2.8)

From (2.6), the first term is in
∧1

C
∧∧0,1

. The second and third terms become

− dw ∧ dz −
√
−1B

= −(wx −
√
−1By)dx ∧ dz − (wy +

√
−1Bx)dy ∧ dz −

√
−1Bzdx ∧ dy

=
1

2

(

(wx −Bx)−
√
−1(wy −By)

)

dz ∧ (dx +
√
−1dy)

+
1

2

(

(wx +Bx)dz −
√
−1(By + wy)dz

−
√
−1Bz(dx+

√
−1dy)

)

∧ (dx −
√
−1dy).

(2.9)

Because dx−
√
−1dy ∈ ∧0,1 the second term on the right is in

∧

1
C
∧∧ 0,1. But the first term

is in
∧1

C
∧∧1,0

. We conclude J is integrable if and only if this term is zero, which is the same as

(wx −Bx)−
√
−1(wy −By) = 0.

Lemma 2.2. We have dω = (−Bz + (weu)z) dz ∧ dx ∧ dy. In particular, the antisymmetric form

ω of (2.5) is closed if and only if Bz = (weu)z.

Proof. Using ω = dz ∧ (dτ + π∗A) + weudx ∧ dy and dπ∗A = π∗dA = π∗B,

dω = −dz ∧ dπ∗A + (weu)zdz ∧ dx ∧ dy

= (−Bz + (weu)z) dz ∧ dx ∧ dy,
(2.10)

from which the assertion follows.

Theorem 2.1. The triple (g, J, ω) always has g(J ·, J ·) = g(·, ·). It is

i) Hermitian if and only if Bx = wx and By = wy,

ii) symplectic if and only if Bz = (weu)z, and

iii) Kähler if and only if Bx = wx, By = wy, and Bz = (weu)z.

Condition (iii) implies

wxx + wyy + (weu)zz = 0. (2.11)
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Proof. After Lemmas 2.2 and 2.1, we must only verify equation (2.11). But with B = dA,

after assuming the relations in (iii) then equation (2.11) is just dB = 0.

Remark. The metric is almost Kähler if (ii) holds but (i) does not.

Remark. The original approach of LeBrun [19] was essentially the reverse of this. LeBrun

solves (2.11) for w first, and then finds a 1-form A (which will have Dirac string singularities)

whose field B satisfies (iii). This contrasts with our method which starts with a metric of the form

(2.1), finds conditions on A and w that give it special traits, and from such traits derives equation

(2.11).

We have the following characterization of the LeBrun ansatz.

Theorem 2.2. Let g be a metric on M4. Then g can be expressed locally via the LeBrun ansatz

if and only if the following three conditions hold:

i) M4 has a vector field v and an almost-complex structure J compatible with g so that, letting

ω = g(J ·, ·) be the associated antisymmetric form, then ω, g, and J are all v-invariant,

ii) Given any simply connected domain Ω ⊂ M4, there is a function z : Ω → R with ivω = dz,

and

iii) The action of ∇z on J , when restricted to the rank-2 distribution P ⊂ ∧1M4 that is null on

span{v, Jv}, is zero.

Remark. Regarding condition (iii), P is specifically the distribution P = {η ∈ ∧1
M4 such that

η(v) = 0 and η(Jv) = 0}.

Remark. Condition (iii) is certainly the most technical; it exists so that the first two terms

in the ansatz can be written in the form f(x, y, z)(dx2+dy2), instead of f1dx
2+f2(dxdy+dydx)+

f3dy
2. Condition (iii) could also be written L∇z(J

∣

∣

P
) = 0 where L is the Lie derivative.

Proof. Supposing g can be expressed via the LeBrun ansatz, we simply set v = ∂
∂t

and let J

be as in (2.3) or equivalently (2.4). The work above shows J and ω are v-invariant and ivω = dz.

We compute L∇zJ
∣

∣

P
by

(L∇zJ)(dx) = L∇z(Jdx) − JL∇zdx = L∇z(dy)− JL∇zdx. (2.12)

The Cartan formula gives L∇zdx = di∇zdx = d 〈dz, dx〉. But this inner product is zero, as

is easily verified after computing the inverse matrix gij . Similarly L∇zdy = 0, so we have shown

L∇zJ(dx) = 0. The same argument works for L∇zJ(dy), so we have shown that L∇z(J
∣

∣

P
) = 0.

For the converse we assume g, J , ω are v-invariant, and that ivω = dz for some function z.

This allows us to perform a version of the Kähler reduction. Because z is itself v-invariant (due

to the fact that Lvz = ivivω = 0), the function z passes to the quotient manifold N3 = M4/v
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where the quotient is by the action of the Killing field v—this works if the orbits of v are closed;

if not then a second Killing field must exist, and we can take an appropriate linear combination

to find a Killing field with closed orbits. Pick a level-set Σ2
z = {z = const} on which to place

isothermal coordinates (x, y), and then extend (x, y) along trajectories of ∇z so the functions x,

y are now defined on some region of N3. We show that (x, y) remains isothermal on all other

nearby level-sets of z; this is a consequence of J |P being invariant under trajectories of ∇z. To see

this, note that J |P restricts to the Hodge-star ∗2 on any level-set of z, and x, y are isothermal if

and only if d ∗2 dx = d ∗2 dy = 0 and dx ∧ ∗dy = 0. By construction, d ∗2 dx = d ∗2 dy = 0 and

dx ∧ ∗dy = 0 holds on one level-set of z; to see it is true on all nearby level-sets we compute

L∇zd ∗2 dx = dL∇zJ |P dx = dJ |PL∇zdx = dJ |P dL∇zx = 0. (2.13)

where we used the facts that d always commutes with L∇z , that by hypothesis L∇zJ |P = 0, and

that by construction L∇zx = 0. Therefore d ∗2 dx remains zero on all level-sets. Similarly we

compute

L∇z (dx ∧ ∗2dy) = (L∇zdx) ∧ ∗2dy + dx ∧ (L∇z ∗2 dy)

= dx ∧ ∗2 (L∇zdy) = 0
(2.14)

where again we used L∇zdx = L∇zdy = 0 and L∇z∗2 = L∇zJ |P = 0.

Now, because the functions x, y remain an isothermal system on any level-set of z, we may express

the metric g3 on the quotient manifold N3 in the form g3 = f1(x, y, z)dz
2+ f2(x, y, z)

(

dx2 + dy2
)

.

We define the functions w, eu by

w , |dz|−2
g3

= f1

weu , |dx|−2
g3

= |dy|−2
g3

= f2.
(2.15)

The functions x and y pull back fromN3 toM4, where we now have three coordinate functions

x, y, and z. For the fourth coordinate τ , after choosing a transversal to v, we may set τ = 0 along

this transversal, and push τ along trajectories of v—incidentally, this establishes ∂
∂τ

= v and

J∇z = ∂
∂τ

. We now have coordinates (x, y, z, τ) on M4.

From (2.15) we have w−1 = |dz|2 = |∇z|2 = |J∇z|2 = |∂/∂τ |2. We define functions C, Ax,

Ay, and Az in terms of the complex structure J by

−C (dτ +Axdx+Aydy +Azdz) = Jdz. (2.16)

We can compute the value of C. Transvecting both sides of (2.16) with ∂
∂τ

gives

−C = Jdz
(

∂
∂τ

)

=
〈

∇z, J ∂
∂τ

〉

= −|∇z|2 = −|dz|2 = −w−1. (2.17)

Therefore C = w−1. Finally because the distribution {∇x,∇y} is perpendicular to the distri-

bution {∇z, ∂/∂τ}, we arrive at the expression
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g = weu
(

dx2 + dy2
)

+ wdz2 + w−1 (dτ +Axdz +Aydy +Azdz)
2
. (2.18)

2.3 Curvature quantities

Proposition 2.1. Assume the metric (2.1) is Kähler, meaning (iii) of Theorem 2.1 holds. Then

the Ricci curvature of g is

Ric = −1

2

(

Hess u (·, ·) + Hess u (J ·, J ·)
)

(2.19)

Proof. The proof of Proposition 1 of [19] gives Ricci form and Ricci curvature

ρ = −
√
−1∂∂̄u, and

Ric = ρ(·, J ·) = −1

2

(

Hess u (·, ·) + Hessu (J ·, J ·)
)

.
(2.20)

Proposition 2.2. Assume the metric (2.1) is Kähler, meaning (iii) of Theorem 2.1 holds. Then

the scalar curvature s of g is

s = − 1

weu
(uxx + uyy + (eu)zz) . (2.21)

Proof. This is computed in the proof of Proposition 1 of [19].

Proposition 2.3 (The extremal condition). Assume the metric (2.1) is Kähler. Then it is an

extremal Kähler metric if constants m, b ∈ R exist so

− 1

weu
(uxx + uyy + (eu)zz) = mz + b. (2.22)

Proof. If (2.22) holds then s = mz + b and so ∇s = m∇z and J∇s = m ∂
∂τ

; thus J∇s is a

Killing field. The proposition is established after recalling that a Kähler metric is extremal if and

only if J∇s is Killing [7] [8].

Remark. Whether g is Kähler or not, its scalar curvature is

s = − 1

weu

(

(

uxx + uyy + (eu)zz

)

+
1

w

(

wxx + wyy + (weu)zz

)

+
1

2w2
(B2

x − (wx)
2) +

1

2w2
(B2

y − (wy)
2) +

e−u

2w2
(B2

z −
(

(weu)z
)2

)

.

(2.23)
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3 Expressing Toric Kähler metrics using the LeBrun ansatz

The LeBrun ansatz operates on 4-manifolds with one symmetry. On Kähler 4-manifolds with

two holomorphic symmetries, there are more specialized ansätze. Letting X 1, X 2 be commuting

holomorphic Killing fields (recall that “holomorphic” means LX iJ = 0, just as Killing means

LX ig = 0), then (M4, g, J,X 1,X 2) can be considered a toric Kähler 4-manifold. This situation

has been studied in [17] [1] [13] [14] [2] [9] and many other works. Certainly a toric Kähler metric

can be translated into the LeBrun ansatz once a distinguished Killing field is chosen. We do this

here.

3.1 The two toric ansätze

There are two standard presentations for toric Kähler 4-manifolds. These were originally explored

by Guillemin [17], who also discovered that they are equivalent via a Legendre transform. The

LeBrun ansatz is a mixture of the two.

The first of the two presentations is the symplectic ansatz. If {X 1,X 2} are independent

commuting holomorphic Killing fields, we can use the Arnold-Liouville construction [3] to produce

the so-called action-angle coordinates on M4. To execute this construction, one defines action

variables (up to a constant) by ∇ϕi = −JX i or equivalently by dϕi = iX iω, and defines angle

variables, denoted θ1, θ2, by choosing a transversal and then pushing forward the action of the

fields X 1, X 2. In these coordinates, the ansatz demands the metric be expressed

g = Uijdϕ
i ⊗ dϕj + U ijdθi ⊗ dθj (3.1)

where U = U(ϕ1, ϕ2) is a convex function of the action variables. The matrix (Uij) is defined by

Uij ,
∂2U

∂ϕiϕj , and we define (U ij) , (Uij)
−1.

The map M4 → R2 given by p 7→ (ϕ1(p), ϕ2(p)) sends M4 to a region Σ2 ⊂ R2; this is

sometimes called the Arnold-Liouville reduction or, by abuse of terminology, the moment map. If

M4 is compact then its image Σ2 is a compact polygon in R2. This polygon encodes the topology

of M4, via the Delzant gluing rules [11]. If M4 is non-compact, then Σ2 need not be a polygon

nor even be topologically closed.

The second ansatz, the holomorphic ansatz, also begins with the fields {X 1,X 2}. Again we

may produce corresponding coordinates θ1, θ2 after choosing a transversal. Because X 1, X 2 are

not only symplectomorphic but holomorphic, the variables θi are actually pluriharmonic, meaning

d(Jdθi) = 0. The Poincaré lemma then guarantees functions ξ1, ξ2 exist (at least locally) so that

dξi = Jdθi, and we have two holomorphic functions fi = ξi+
√
−1θi which constitute a holomorphic

chart (f1, f2) : Ω → C2 on some subdomain Ω ⊆M4. The Kähler form on this chart, as usual, can

be expressed ω =
√
−1∂∂̄V for some pseudoconvex function V . Because V is θ1-θ2 invariant, it is
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convex instead of just pseudoconvex. The metric is then

g = V ijdξi ⊗ dξi + V ijdθi ⊗ dθj (3.2)

where (V ij) is the matrix with components V ij , ∂2V
∂ξi∂ξj

.

We might consider the map p 7→ (ξ1(p), ξ2(p)) for p ∈M4, just as we considered the moment

map p 7→ (ϕ1(p), ϕ2(p)). But it is much less interesting than the moment map. If M4 is compact

then its image is all of R2. In particular there is no way to read off the topology of M4 from its

image.

A duality relationship exists between the symplectic system (ϕ1, θ1, ϕ
2, θ2) with its symplectic

potential U and the holomorphic system (ξ1, θ1, ξ2, θ2) with its Kähler potential V . As shown in

[17], they are Legendre transforms of each other:

ξi =
∂U

∂ϕi
, ϕi =

∂V

∂ξi
, and

U(ϕi) + V (ξi) =
∑

i

ϕiξi.
(3.3)

3.2 Translation to the LeBrun Ansatz

It is now possible to relate these two systems to the LeBrun ansatz, which is a mixed symplectic-

holomorphic system. We define the LeBrun variable τ to be the angle variable θ1 corresponding to

X 1, and y the angle variable θ2 corresponding to X 2. Let z be the symplectic variable corresponding

to the angle τ , meaning z = ϕ1, and x the holomorphic variable corresponding the angle variable y,

meaning x = ξ2. Then we create the LeBrun functions w and u, and determine the 1-form A. We

record the change of frame from the symplectic frame
{

∂
∂ϕ1 ,

∂
∂θ1

, ∂
∂ϕ2 ,

∂
∂θ2

}

to the LeBrun frame
{

∂
∂z
, ∂

∂τ
, ∂
∂x
, ∂

∂y

}

. One easily computes

∂
∂ϕ1 = ∂

∂z
+ U21

∂
∂x

dϕ1 = dz
∂

∂θ1
= ∂

∂τ
dθ1 = dτ

∂
∂ϕ2 = U22

∂
∂x

dϕ2 = −U21

U22
dz + 1

U22
dx

∂
∂θ1

= ∂
∂y

dθ2 = dy.

(3.4)

Upon substituting the symplectic frame components into the LeBrun metric (2.1), we find the

functions w, u and the components Ax, Ay, and Az to be

w = 1/U11, u = log
(

U11U22 − (U12)2
)

Ax = 0, Ay =
U12

U11
, Az = 0.

(3.5)

We express this in the form of a proposition.
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Proposition 3.1. Assume (M4, J, g,X 1,X 2) is a toric Kähler manifold. Let (ϕ1, θ1, ϕ
2, θ2) be

symplectic coordinates and (ξ1, θ1, ξ2, θ2) holomorphic coordinates on M4. There exists a convex

function U(ϕ1, ϕ2) on Σ2, where Σ2 is the image of the moment map (ϕ1, ϕ2) : M4 → R2, so that

g = Uijdϕ
i ⊗ dϕj + U ijdθi ⊗ dθj (3.6)

where Uij = ∂2U
∂ϕiϕj and (U ij) = (Uij)

−1. There also exists a convex function V = V (ξ1, ξ2) on R
2

so that

g = V ijdξi ⊗ dξj + V ijdθi ⊗ dθj (3.7)

where V ij = ∂2V
∂ξiξj

. These systems are related via the Legendre transform:

ϕi =
∂V

∂ξi
, ξi =

∂U

∂ϕi
,

U(ϕ1, ϕ2) + V (ξ1, ξ2) = ϕ1ξ1 + ϕ2ξ2.

(3.8)

The metric (M4, g, J,X 1,X 2) can be expressed in the LeBrun ansatz after setting

(

z, τ, x, y
)

=
(

ϕ1, θ1, ξ2, θ2
)

. (3.9)

A LeBrun ansatz expression of g is obtained by setting

u = log detU ij = log
(

U11U22 − (U12)2
)

,

w =
1

U11
, and A = Aydy =

U12

U11
dy

(3.10)

(the components Ax and Az are zero). The components of the magnetic 2-form are Bx = −Ay,z,

By = 0, and Bz = Ay,x.

3.3 Variation of LeBrun structures

In our construction of Section 3.2 we began by setting τ = θ1, but we could have chosen τ = θ2 or

indeed any linear combination of the cyclic variables. Up to scale a toric metric automatically has

a 1-parameter family of distinct LeBrun structures. If α ∈ [0, π/2] is a constant and X 1, X 2 are

symplectomorphic Killing fields, then for each α we may select the field

X = cos(α)X 1 + sin(α)X 2. (3.11)

Then, referring to the construction of Section 3.2, the corresponding angle variable is τ =

cos(α)θ1+sin(α)θ2 with conjugate momentum variable z = cos(α)ϕ1+sin(α)ϕ2. The holomorphic

variables are then x = − sin(α)ξ1 + cos(α)ξ2 and y = − sin(α)θ1 + cos(α)θ2.

This allows for a “tuning” or selection of a distinguished 1-parameter symmetry field form

which the LeBrun ansatz metric can be constructed. The variable y remains cyclic (that is, its field
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remains a symmetry direction), and u, w will remain functions of x and z. These functions will

change with α, so we may write u = uα(x, z) and w = wα(x, z). We remark that a third auxiliary

function u̇α , d
dα
uα exists. If the uα solve the LeBrun equation (uα)xx + (euα)zz = 0 then u̇α will

solve the linearized equation (u̇α)xx + (u̇αe
uα)zz = 0. Under some conditions uα will be positive,

and setting w = u̇α we have an entirely new LeBrun metric.

4 Expressing U(2)-invariant metrics in the LeBrun ansatz

The usual ansatz for U(2)-invariant metrics is

g = Adr2 + B (η1)
2 + C

(

(η2)
2 + (η3)

2
)

(4.1)

where {η1, η2, η3} is a standard left-invariant coframe on S3, and A, B, C are functions of the

radial variable r. If (ψ, ϕ, θ) are Euler coordinates on on S3, the usual frame transitions are

η1 =
1

2
(dψ + cos(θ)dϕ)

η2 =
1

2
(sin(θ) cos(ψ)dϕ − sin(ψ)dθ)

η3 =
1

2
(sin(θ) sin(ψ)dϕ+ cos(ψ)dθ) .

(4.2)

From this we deduce (η2)
2 + (η3)

2 = 1
4

(

dθ2 + sin2(θ)dϕ2
)

, so in Euler coordinates

g = Adr2 +
B

4
(dψ + cos(θ)dϕ)2 +

C

4

(

dθ2 + sin2(θ)dϕ2
)

(4.3)

This is already close to LeBrun ansatz form. To place it precisely in LeBrun ansatz form we

make the change of variables

x = log cot
θ

2
, y = ϕ, z =

1

2

∫ √
AB dr, τ = ψ. (4.4)

This gives dθ2 + sin2(θ)dϕ2 = sech2(x)(dx2 + dy2), and the metric now reads

g =
4

B
dz2 +

B

4
(dτ + tanh(x) dy)

2
+
C

4
sech2(x)

(

dx2 + dy2
)

. (4.5)

Reading off the LeBrun ansatz quantities from (2.1), we have

w =
4

B
, u = log

(

BC

16
sech2(x)

)

Ax = 0, Ay = tanh(x), Az = 0

(4.6)

where B and C are now functions of the new variable z, via the transition from r to z given in

(4.4). Because U(2) has a rank 2 toral subgroup, any U(2)-invariant metric is also T
2-invariant—

if the metric is Kähler then it is toric. One can see directly that the metric (4.5) has no τ - or

y-dependency so has T2 symmetry.
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5 Examples

We give two examples of our method. The exceptional half-plane metric from [21] was originally

written in a toric ansatz, and the Page metric on CP 2♯CP 2 was originally written in the U(2)

ansatz. We use our methods to express both in the LeBrun ansatz. In the last section we outline

methods for creating new metrics that are Einstein, half-conformally flat, or Bach-flat.

5.1 The exceptional half-plane metric on C2.

This toric SFK metric on C2 appears in [21]. It has one translational and one rotational field. In

rectangular coordinates (x1, y1, x2, y2) on C2, these fields are X 1 = ∂
∂y1

and X 2 = −y2 ∂
∂x2

+x2
∂

∂y2

,

which are clearly translational and rotational, respectively. Let U = U(ϕ1, ϕ2) be the symplectic

potential

U =
1

2

(

(ϕ2)2

1 + 2Mϕ1
+ ϕ1 log(ϕ1) +M(ϕ1)2

)

(5.1)

where M ≥ 0 is a constant. The case M = 0 produces the flat metric. When M > 0, the resulting

metric is the exceptional half-plane metric; the fact that (5.1) is the correct symplectic potential

for the exceptional half-plane metric can be verified directly from equations (6-1) and (6-3) of

[21]. The Kähler potential V is difficult to write explicitly, as it involves inverting a function with

transcendental and algebraic parts. However it is possible to find LeBrun coordinates, which in

terms of the symplectic coordinates are

x =
ϕ2

1 + 2Mϕ1
, y = θ2, z = ϕ1, τ = θ1. (5.2)

The LeBrun functions w and u are

w = M +
1

2z
, u = log (2z) (5.3)

and the vector potential and field strength are

A = 2Mxdy, which is Ax = 0, Ay = 2Mx, Az = 0,

B = 2Mdx ∧ dy, which is Bx = 0, By = 0, Bz = 2M.
(5.4)

We notice that u = log(2z) gives what LeBrun called the hyperbolic ansatz in section 4 of

[19]. If M = 0 this is the flat metric, which LeBrun wrote down on p. 233 of [19] (unfortunately

LeBrun’s equations are mostly unnumbered). The exceptional half-plane metric in LeBrun ansatz

form is

g = (1 + 2Mz)(dx2 + dy2) +
1 + 2Mz

2z
dz2 +

2z

1 + 2Mz
(dτ + 2Mxdy)2. (5.5)



CUBO
22, 3 (2020)

Toric, U(2), and LeBrun metrics 407

5.2 The Page metric

The Page metric was originally developed in [20], and can be found explicitly in (3.25) of [16]

(unfortunately its expression in the appendix of [15] has a typo). Methods for building Ricci-flat

metrics, including the Page metric, can be found [4]; see also 9.125 of [5]. This metric exists on

CP 2♯CP 2; it is Einstein, Hermitian, and Bach-flat, but not half-conformally flat. It is conformal to

an extremal Kähler metric, which Calabi [7] [8] independently wrote down; see [10] for the specific

conformal transformation, or [12] for a more general theory of conformal transformations between

extremal Kähler and Einstein metrics on 4-manifolds. From [16] the Page metric is

g =
3(1 + ν2)

Λ

[

1− ν cos2(r)

3− ν2 − ν2(1 + ν2) cos2(r)
dr2+

+
3− ν2 − ν2(1 + ν2) cos2(r)

(3 + ν2)2(1− ν cos2(r))
sin2(r)η21 + 4

1− ν2 cos2(r)

3 + 6ν2 − ν4
(

η22 + η23
)

]

.

(5.6)

The method of Section 4 gives its expression in the LeBrun ansatz:

g = weu
(

dx2 + dy2
)

+ w dz2 +
1

w
(dτ + tanh(x)dy)

2
, where

w =
F (z)

G(z)
and weu =

1

3Λ(1 + ν2)(3 + 6ν2 − ν4)
H(z) sech2(x)

(5.7)

and F , G, H are the polynomials

F (z) = 27(1 + ν2 − ν4 − ν6) + 36(4ν2 + 4ν4 + ν6)Λz

− 12(9ν2 + 6ν4 + ν6)Λ2z2

G(z) = 27(1 + ν2 − ν4 − ν6) + 3(−9 + 9ν2 + 11ν4 + 15ν6)Λz

− 24(3ν2 + 3ν4 − ν6)Λ2z2 + 4(9ν2 + 6ν3 + ν6)Λ3z3

H(z) = 9(1 + ν2 − ν4 − ν6) + 12(3ν2 + 16ν4 + ν6)Λz

− 4(9ν2 + 6ν4 + ν6)Λ2z2.

(5.8)

The domain for (x, z) is x ∈ R and z ∈
[

0, 3(1+ν2)
Λ(3+ν2)

]

.

5.3 New metrics

Creation of special metrics, namely Einstein, half-conformally flat, or Bach-flat metrics are of

considerable importance in differential geometry. One may regard the metric g, if expressed in

the LeBrun ansatz, as a dynamic variable with five unknowns w, u, Bx, By, Bz which are each

functions of the coordinates (x, y, z). These values can be specified independently, subject to the

single requirement that Bx,x+By,y+Bz,z = 0 which is equivalent to the definition of B from (2.2),
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which is that B = dA for a 1-form A. In a sense, there are four completely independent variables

that may be chosen, with the choice of a fifth being partially constrained.

LettingW+ be the self-dual part of the Weyl tensor, one might consider the conditionW+ = 0.

Because the operatorW+ :
∧+ →

∧+
has three eigenvalues which are subject to the condition that

they sum to zero, the condition W+ = 0 imposes two differential identities on our five variables.

With the fifth constraint discussed above, we arrive at an underdetermined system, which surely

has a large solutions space. There remain many obstacles, both technical and theoretical, to fully

understanding this system. Similar comments hold for systems like Rı
◦

c = 0 and B = 0 where Rı
◦

c

is the trace-free Ricci tensor and B is the Bach tensor. This subject will be taken up elsewhere.
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