Characterization of Upper Detour Monophonic Domination Number

M. Mohammed Abdul Khayyoom
Department of Mathematics
PTM Govt. College, Perintalmanna, Malappuram, Kerala, India.
khayyoom.m@gmail.com

Abstract

This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph G with vertex set $V(G)$, a set $M \subseteq V(G)$ is called minimal detour monophonic dominating set, if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by $\gamma_{d m}^{+}(G)$. For any two positive integers p and q with $2 \leq p \leq q$ there is a connected graph G with $\gamma_{m}(G)=\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$. For any three positive integers p, q, r with $2<p<q<r$, there is a connected graph G with $m(G)=p, \gamma_{d m}(G)=q$ and $\gamma_{d m}^{+}(G)=r$. Let p and q be two positive integers with $2<p<q$ such that $\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$. Then there is a minimal DMD set whose cardinality lies between p and q. Let p, q and r be any three positive integers with $2 \leq p \leq q \leq r$. Then, there exist a connected graph G such that $\gamma_{d m}(G)=p, \gamma_{d m}^{+}(G)=q$ and $|V(G)|=r$.

RESUMEN

Este artículo introduce el concepto de número de dominación de desvío monofónico superior de un grafo. Para un grafo conexo G con conjunto de vértices $V(G)$, un conjunto $M \subseteq V(G)$ se llama conjunto dominante de desvío monofónico minimal, si ningún subconjunto propio de M es un conjunto dominante de desvío monofónico. La cardinalidad máxima entre todos los conjuntos dominantes de desvío monofónico minimales se llama número de dominación de desvío monofónico superior y se denota por $\gamma_{d m}^{+}(G)$. Para cualquier par de enteros positivos p y q con $2 \leq p \leq q$ existe un grafo conexo G con $\gamma_{m}(G)=\gamma_{d m}(G)=p$ y $\gamma_{d m}^{+}(G)=q$. Para cualquiera tres enteros positivos p, q, r con $2<p<q<r$, existe un grafo conexo G con $m(G)=p, \gamma_{d m}(G)=q$ y $\gamma_{d m}^{+}(G)=r$. Sean p y q dos enteros positivos con $2<p<q$ tales que $\gamma_{d m}(G)=p$ y
$\gamma_{d m}^{+}(G)=q$. Entonces existe un conjunto DMD mínimo cuya cardinalidad se encuentra entre p y q. Sean p, q y r tres enteros positivos cualquiera con $2 \leq p \leq q \leq r$. Entonces existe un grafo conexo G tal que $\gamma_{d m}(G)=p, \gamma_{d m}^{+}(G)=q$ y $|V(G)|=r$.

Keywords and Phrases: Monophonic number, Domination Number, Detour monophonic number, Detour monophonic domination number, Upper detour monophonic domination number.

2020 AMS Mathematics Subject Classification: 05C69, 05C12.

1 Introduction

Consider an undirected connected graph $G(V, E)$ without loops or multiple edges. Let P : $u_{1}, u_{2}, \ldots u_{n}$ be a path of G. An edge e is said to be a chord of P if it is the join of two non adjacent vertices of P. A path is said to be monophonic path if there is no chord. If S is a set of vertices of G such that each vertex of G lies on an $u-v$ monophonic path in G for some $u, v \in S$, then S is called monophonic set. Monophonic number is the minimum cardinality among all the monophonic sets of G. It is denoted by $m(G)[1,2]$.

A vertex v in a graph G dominates itself and all its neighbours. A set T of vertices in a graph G is a dominating set if $N[T]=V(G)$. The minimum cardinality among all the dominating sets of G is called domination number and is dented by $\gamma(G)[4]$. A set $T \subset V(G)$ is a monophonic dominating set of G if T is both monophonic set and dominating set. The monophonic domination number is the minimum cardinality among all the monophonic dominating sets of G and is denoted by $\gamma_{m}(G)[5,6]$. A monophonic set M in a connected graph G is minimal monophonic set if no proper subset of M is a monophonic set. The upper monophonic number is the maximum cardinality among all minimal monophonic sets and is denoted by $m^{+}(G)[9]$.

The shortest $x-y$ path is called geodetic path and longest $x-y$ monophonic path is called detour monophonic path. If every vertex of G lies on a $x-y$ detour monophonic path in G for some $x, y \in M \subseteq V(G), M$ could be identified as a detour monophonic set. The minimum cardinality among all the detour monophonic set is the detour monophonic number and is denoted by $d m(G)$. A minimal detour monophonic set D of a connected graph G is a subset of $V(G)$ whose any proper subset is not a detour monophonic set of G. The maximum cardinality among all minimal detour monophonic sets is called upper detour monophonic set, denoted by $\mathrm{dm}^{+}(G)$ [10].

If D is both a detour monophonic set and a dominating set, it could be a detour monophonic dominating set. The minimum cardinality among all detour monophonic dominating sets of G is the detour monophonic dominating number (DMD number) and is denoted by $\gamma_{d m}(G)[7,8]$. A vertex v is an extreme vertex if the sub graph induced by its neighbourhood is complete. A vertex u in a connected graph G is a cut-vertex of G, if $G-u$ is disconnected. In this article, we consider
G as a connected graph of order $n \geq 2$ if otherwise not stated. For basic notations and terminology refer [3].

Theorem 1.1 (8). Each extreme vertex of a connected graph G belongs to every detour monophonic dominating set of G.

Example 1.1. Consider the graph G given in Figure 1. Here $M_{1}=\left\{v_{1}, v_{4}\right\}$ is a monophonic set. Therefore $m(G)=2$. M_{1} also dominate G. Hence $\gamma(G)=2$. The set $M_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimum detour monophonic set. Thus $d m(G)=3 . M_{2}$ does not dominate $G . M_{2} \cup\left\{v_{4}\right\}$ is a minimum DMD set. Therefore $\gamma_{d m}(G)=4$.

2 UDMD Number of a Graph

Definition 2.1. A detour monophonic dominating set M in a connected graph G is called minimal detour monophonic dominating set if no proper subset of M is a detour monophonic dominating set. The maximum cardinality among all minimal detour monophonic dominating sets is called upper detour monophonic domination number and is denoted by $\gamma_{d m}^{+}(G)$.

Figure 1: Graph G with UDMD number 5

Example 2.1. Consider the graph G given in Figure 1. The set $M=\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is a minimal DMD set with maximum cardinality. Therefore $\gamma_{d m}^{+}(G)=5$.

Theorem 2.1. Let G be a connected graph and v an extreme vertex of G. Then v belongs to every minimal detour monophonic dominating set of G.

Proof. Every minimal detour monophonic dominating set is a minimum detour monophonic set. Since each extreme vertex belongs to every minimum detour monophonic dominating set, the result follows.

Theorem 2.2. Let v be a cut- vertex of a connected graph G. If M is a minimal $D M D$ set of G, then each component of $G-v$ have an element of M.

Proof. Suppose let A is a component of $G-v$ having no vertices of M. Let u be any one of the vertex in A. Since M is a minimal DMD set, there exist two vertices p, q in M such that u lies on a $p-q$ detour monophonic path $P: p, u_{0}, u_{1}, \ldots, u, \ldots, u_{m}=q$ in G. Consider two sub-paths $P_{1}: p-u$ and $P_{2}: u-q$ of P. Given v is a cut-vertex of G. Therefore both P_{1} and P_{2} contain v. Hence P is not a path. This is a contradiction. That is, each component of $G-v$ have an element of every minimal DMD set.

Theorem 2.3. For a connected graph G of order $n, \gamma_{d m}(G)=n$ if and only if $\gamma_{d m}^{+}(G)=n$.

Proof. First, suppose $\gamma_{d m}^{+}(G)=n$. That is $M=V(G)$ is the unique minimal DMD set of G, so that no proper subset of M is a DMD set. Hence M is the unique DMD set. Therefore $\gamma_{d m}(G)=n$. Conversely, let $\gamma_{d m}(G)=n$. Since every DMD set is a minimal DMD set, $\gamma_{d m}(G) \leq \gamma_{d m}^{+}(G)$. Therefore $\gamma_{d m}^{+}(G) \geq n$. Since $V(G)$ is the maximum DMD set, $\gamma_{d m}^{+}(G)=n$.

3 UDMD Number of Some Standard Graphs

Example 3.1. Complete bipartite graph $K_{m, n}$

For complete bipartite graph $G=K_{m, n}$,

$$
\gamma_{d m}^{+}(G)=\left\{\begin{array}{l}
2, \quad \text { if } \quad m=n=1 \\
n, \quad \text { if } \quad n \geq 2, m=1 \\
4, \quad \text { if } \quad m=n=3 \\
\max \{m, n\} \quad \text { if } \quad m, n \geq 2, m, n \neq 3
\end{array}\right.
$$

Proof. Case (i): Let $m=n=1$. Then $K_{m, n}=K_{2}$. Therefore $\gamma_{d m}^{+}(G)=2$.
Case (ii): Let $n \geq 2, m=1$. This graph is a rooted tree. There are n end vertices. All these are extreme vertices. Therefore they belong to every DMD set and consequently every minimal DMD set.
Case (iii): If $m=n=3$, then exactly two vertices from both the particians form a minimal DMD set.
Case (iv): Let $m, n \geq 2, m, n \neq 3$. Assume that $m \leq n$. Let $A=\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$ and $B=$ $\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$ be the partitions of G. First, prove $M=B$ is a minimal DMD set. Take a vertex $a_{j}, 1 \leq j \leq m$, which lies in a detour monophonic path $b_{i} a_{j} b_{k}$ for $k \neq j$ so that M is a detour monophonic set. They also dominate G. Hence M is a DMD set.

Next, let S be any minimal DMD set such that $|S|>n$. Then S contains vertices from both the sets A and B. Since A and B are themselves minimal DMD sets, they do not completely belongs to S. Note that if S contains exactly two vertices from A and B, then it is a minimum DMD set. Thus $\gamma_{d m}^{+}(G)=n=\max \{m, n\}$.

Example 3.2. Complete graph K_{n}

For complete graph $G=K_{n}, \gamma_{d m}^{+}(G)=n$.

Proof. For a complete graph G, every vertex in G is an extreme vertex. By theorem 2.1 they belong to every minimal DMD set.

Example 3.3. Cycle graph C_{n}

For Cycle graph $G=C_{n}$ with n vertices,

$$
\gamma_{d m}^{+}(G)=\left\{\begin{array}{l}
3, \quad \text { if } \quad n \leq 7, n \neq 4 \\
2, \quad \text { if } n=4 \\
4+\frac{n-7-r}{3}, \quad \text { if } \quad n \geq 8, \quad n-7 \equiv r \bmod (3)
\end{array}\right.
$$

Proof. For $n \leq 7$ the results are trivial. For $n \geq 8$, let $C_{n}: v_{1}, v_{2}, v_{3}, \ldots, v_{n}, v_{1}$ be the cycle with n vertices. Then the set of vertices $\left\{v_{1}, v_{3}, v_{n-1}\right\}$ is a minimal detour monophonic set but not dominating. This set dominates only seven vertices. There are $n-7$ remaining vertices. If r is the reminder when $n-7$ is divided by 3 , then $\frac{n-7-r}{3}+1$ vertices dominate the remaining vertices. Therefore every minimal DMD set contains $4+\frac{n-7-r}{3}$ vertices.

4 Characterization of $\gamma_{d m}^{+}(G)$

Theorem 4.1. For any two positive integers p and q with $2 \leq p \leq q$ there is a connected graph G with $\gamma_{m}(G)=\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$.

Proof. Construct a graph G as follows. Let $C_{6}: u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{1}$ be the cycle of order 6 . Join $p-1$ disjoint vertices $M_{1}=\left\{x_{1}, x_{2}, \ldots, x_{p-1}\right\}$ with the vertex u_{1}. Let $M_{2}=\left\{y_{1}, y_{2}, \ldots, y_{q-p-1}\right\}$ be a set of $q-p-1$ disjoint vertices. Add each vertex in M_{2} with u_{4} and u_{6}. Let x_{p-1} be adjacent with u_{2} and u_{6}. This is the graph G given in Figure 2.

Since all vertices except x_{p-1} in M_{1} are extreme, they belong to every minimum monophonic dominating set and DMD set. The set $M=M_{1} \cup\left\{u_{4}\right\}$ is a minimum monophonic dominating set. Therefore $\gamma_{m}(G)=p$. Moreover, the set of all vertices in M form a DMD set and is minimum. That is $\gamma_{d m}(G)=p$.

Next, we prove that $\gamma_{d m}^{+}(G)=q$. Clearly $N=M_{1} \cup M_{2} \cup\left\{u_{5}, u_{6}\right\}$ is a DMD set. N is also a minimal DMD set of G. For the proof, let N^{\prime} be any proper subset of N. Then there exists at least one vertex $u \in N$ and $u \notin N^{\prime}$. If $u=y_{i}$, for $1 \leq i \leq q-p-1$, then y_{i} does not lie on any $x-y$ detour monophonic path for some $x, y \in N^{\prime}$. Similarly if $u \in\left\{u_{5}, u_{6}, x_{p-1}\right\}$, then that vertex does not lie on any detour monophonic path in N^{\prime}. Thus N is a minimal DMD set. Therefore $\gamma_{d m}^{+}(G) \geq q$.

Figure 2: $\quad \gamma_{m}(G)=\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$.
Note that N is a minimal DMD set with maximum cardinality. On the contrary, suppose there exists a minimal DMD set, say T, whose cardinality is strictly greater than q. Then there is a vertex $u \in T, u \notin N$. Therefore $u \in\left\{u_{2}, u_{3}, u_{4}\right\}$. If $u=u_{4}$, then $M_{1} \cup\left\{u_{4}\right\}$ is a DMD set properly contained in T which is a contradiction. If $u=u_{3}$, then the set $M_{1} \cup\left\{u_{3}, u_{5}\right\}$ is a DMD set which is a proper subset of T and is a contradiction. If $u=u_{2}$, then the set $\left(N-\left\{u_{6}\right\}\right) \cup\left\{u_{2}\right\}$ is a DMD set properly contained in T and is a contradiction. Thus $\gamma_{d m}^{+}(G)=q$.

Theorem 4.2. For any three positive integers p, q, r with $2<p<q<r$, there is a connected graph G with $m(G)=p, \gamma_{d m}(G)=q$ and $\gamma_{d m}^{+}(G)=r$.

Proof. Let G be the graph constructed as follows. Take $q-p$ copies of a cycle of order 5 with each cycle C_{i} has a vertex set $\left\{d_{i}, e_{i}, f_{i}, g_{i}, h_{i}\right\}$, for $1 \leq i \leq q-p$. Join each e_{i} with all other vertices in C_{i}. Also join the vertex f_{i-1} of C_{i-1} with the vertex d_{i} of C_{i}. Let $\{u, v\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{r-q+1}\right\}$ be two sets of mutually non adjacent vertices. Join each b_{i} with u and v, for $1 \leq i \leq r-q+1$. Join another $p-2$ pendent vertices with u and one pendent vertex with d_{1}. This is the graph G given in Figure 3.

The set $M_{1}=\left\{a_{0}, a_{1}, a_{2} \ldots, a_{p-2}\right\}$ is the set of all extreme vertices and belongs to every monophonic dominating set and DMD set (Theorem 1.1). Clearly M_{1} is not monophonic. But $M_{1} \cup\{v\}$ is a monophonic set and is minimum. Therefore $m(G)=p$. Take $M_{2}=\left\{e_{1}, e_{2}, \ldots, e_{q-p}\right\}$. Then $M_{1} \cup M_{2} \cup\{v\}$ is a DMD set and is minimum. Therefore $\gamma_{d m}(G)=p-1+q-p+1=q$.

Figure 3: Graph G with $m(G)=p, \gamma_{d m}(G)=q$ and $\gamma_{d m}^{+}(G)=r$.

Let $M_{3}=\left\{b_{1}, b_{2}, \ldots, b_{r-q+1}\right\}$. Then $M=M_{1} \cup M_{2} \cup M_{3}$ is a DMD set. Now M is a minimal DMD set. On the contrary, suppose N is any proper DMD subset of M so that there exists at least one vertex in M which does not belong to N. Let $u \in M$ and $u \notin N$. Clearly $u \notin M_{1}$ since M_{1} is the set of all extreme vertices. If $u=e_{i}$ for some i, then the vertex e_{i} does not belong to any detour monophonic path induced by N. Therefore $u \notin M_{2}$. Similarly $u \notin M_{3}$. This is a contradiction. Hence M is a minimal DMD set with maximum cardinality. Therefore $\gamma_{d m}^{+}(G)=\left|M_{1}\right|+\left|M_{2}\right|+\left|M_{3}\right|=(p-1)+(q-p)+(r-q+1)=r$.

Theorem 4.3. Let p and q be two positive integers with $2<p<q$ such that $\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$. Then there is a minimal DMD set whose cardinality lies between p and q.

Proof. Consider three sets of mutually disjoint vertices $M_{1}=\left\{a_{1}, a_{2}, \ldots, a_{q-n+1}\right\}, M_{2}=\left\{b_{1}, b_{2}, \ldots, b_{n-p+1}\right\}$ and $M_{3}=\{x, y, z\}$. Join each vertex a_{i} with x and z and each vertex b_{j} with y and z. Add $p-2$ pendent vertices $M_{4}=\left\{c_{1}, c_{2}, \ldots, c_{p-2}\right\}$ with the vertex y. This is the graph G given in Figure 4. Since M_{4} is the set of all extreme vertices, it belongs to every DMD set. But M_{4} is not a DMD set. The set $M=M_{4} \cup\{x, z\}$ is a minimum DMD set. Therefore $\gamma_{d m}(G)=p$.

Consider the set $N=M_{1} \cup M_{2} \cup M_{4}$. We claim N is a minimal DMD set with maximum cardinality. On the contrary, suppose there is a set $N^{\prime} \subset N$ which is a DMD set of G. Then there exists at least one vertex, say u in N which does not belong to N^{\prime}. Clearly $u \notin M_{4}$ since it is the set of all extreme vertices. If $u \in M_{1}$, then $u=a_{i}$ for some i. Then the vertex a_{i} does not lie on any detour monophonic path, which is a contradiction. Similarly, if $u \in M_{2}$, we get a contradiction. Thus N is a minimal DMD set. Therefore $\gamma_{d m}^{+}(G) \geq q$.

Figure 4: Graph G with $\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$

Next, we claim that N has the maximum cardinality of any minimal DMD set. If $\gamma_{d m}^{+}(G)>q$, there is at least one vertex $v \in V(G), v \notin N$ and belongs to a minimal DMD set. Therefore $v \in M_{3}$. If $v=x$, then the set $M_{2} \cup M_{4} \cup\{v\}$ is a minimal DMD set having less than q vertices. Similarly if $v=z$, then the set $M_{1} \cup M_{4} \cup\{v\}$ is a minimal DMD set. For $v=y$, the set $N \cup\{y\}$ is not a minimal DMD set. Therefore $\gamma_{d m}^{+}(G) \leq q$.

Let n be any number which lies between p and q. Then there is a minimal DMD set of cardinality n. For the proof, consider the set $T=M_{2} \cup M_{4} \cup\{x\} . T$ is a minimal DMD set. If T is not a minimal DMD set, there is a proper subset T^{\prime} of T such that T^{\prime} is a minimal DMD set. Let $u \in T$ and $u \notin T^{\prime}$. Since each vertex in M_{4} is an extreme vertex, $v \notin M_{4}$. If $u=x$, then the vertex u is not an internal vertex of any detour monophonic path in T^{\prime}. A similar argument may be made if $u \in M_{2}$. This leads to a contradiction. Therefore T is a minimal DMD set with cardinality $(n-p+1)+(p-2)+1=n$.

Theorem 4.4. Let p, q and r be any three positive integers with $2 \leq p \leq q \leq r$. Then, there exists a connected graph G such that $\gamma_{d m}(G)=p, \gamma_{d m}^{+}(G)=q$ and $|V(G)|=r$.

Proof. Let $K_{1, p}$ is a star graph with leaves set $M_{1}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and let u be the support vertex of $K_{1, p}$. Insert $r-q-1$ vertices $M_{2}=\left\{v_{1}, v_{2}, \ldots, v_{r-q-1}\right\}$ in the edges $u u_{i}$ respectively for $1 \leq i \leq r-q-1$. Add $q-p$ vertices $M_{3}=\left\{x_{1}, x_{2}, \ldots, x_{q-p}\right\}$ with this graph and join each x_{i} with u and u_{1}. This is the graph G as shown in Figure 5. Here $|V(G)|=(q-p)+p+(r-q-1)+1=r$. The length of a detour monophonic path is 4 .

Figure 5: \quad Graph G with $\gamma_{d m}(G)=p$ and $\gamma_{d m}^{+}(G)=q$

Let $T=M_{1}-\left\{u_{1}\right\}$. All the vertices in T are extreme vertices and belong to all DMD sets and minimal DMD sets. Clearly M_{1} is a DMD set with minimum cardinality. Therefore $\gamma_{d m}(G)=p$. Let $N=T \cup M_{3} \cup\left\{v_{1}\right\}$. Then $|N|=(p-1)+(q-p)+1=q$. We claim that N is a minimal DMD set with maximum cardinality.

On the contrary, suppose there is a proper subset N^{\prime} of N which is a minimal DMD set of G. Then there exists at least one vertex $x \in N, x \notin N^{\prime}$. Clearly $x \notin T$. If $x \in M_{3}$, then $x=x_{i}$ for some $i, 1 \leq i \leq q-p$. Then the vertex x_{i} does not lie on any $u-v$ detour monophonic path for $u, v \in N^{\prime}$. If $x=v_{1}$ then v_{1} does not lies on any detour monophonic path in N^{\prime}. Thus no such vertex x exists. This is a contradiction. Therefore $\gamma_{d m}^{+}(G) \geq q$.

To prove maximum cardinality of N, suppose there exists a minimal DMD set S with $|S|>q$. Since S contains T, the set of all extreme vertices, the vertex x lies on some $u-v$ detour monophonic path for all $x \in\left\{u, v_{2}, v_{3}, . ., v_{r-q-1}\right\}$. Now S is a minimal DMD set having more than q vertices and $u, v_{2}, v_{3}, \ldots, v_{r-q-1} \notin S$. Therefore $S=\left\{v_{1}\right\} \cup M_{3} \cup\left\{u_{1}\right\} \cup T$. Then N is properly contained in S. This is a contradiction. Therefore $\gamma_{d m}^{+}(G)=q$. Hence the proof.

References

[1] P. A. P. Sudhahar, M. M. A. Khayyoom and A. Sadiquali, "Edge Monophonic Domination Number of Graphs". J.Adv.in Mathematics, vol. 11, no. 10, pp. 5781-5785, 2016.
[2] P. A. P. Sudhahar, M. M. A. Khayyoom and A. Sadiquali, "The Connected Edge Monophonic Domination Number of Graphs". Int. J Comp.Applications, vol. 145, no. 12, pp. 18-21, 2016.
[3] G. Chartrand and P. Zhang, Introduction to Graph Theory. MacGraw Hill, 2005.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundementals of Domination in Graphs. 208, Marcel Dekker Inc, New York, 1998.
[5] J. Jhon and P. A. P. Sudhahar, "On The Edge Monophonic Number of a Graph Filomat", vol. 26, no. 6, pp. 1081-1089, 2012.
[6] J.Jhon and P.Arul Paul Sudhahar, "The Monophonic Domination Number of a Graph, Proceedings of the International Conference on Mathematics and Business Managment", pp. 142-145, 2012.
[7] M. M. A. Khayyoom and P. A. P. Sudhahar. "Edge Detour Monophonic Domination Number of a Graph. International Journal of Pure and Applied Mathematics", vol. 120, no. 7, pp. 195-203, 2018.
[8] M. M. A. Khayyoom and P. A. P. Sudhahar, "Connected Detour Monophonic Domination Number of a Graph". Global Journal of Pure and Applied Mathematics, vol. 13, no. 5, pp. 241-249, 2017.
[9] S. R. Chellathurai, and S. Padma Vijaya, "Upper Geodetic Domination Number of a Graph" Int. Journal of Cont. Math Sci., vol. 10, no. 1, pp. 23-36, 2015.
[10] P. Titus, A. P. Santhakumaran, K. Ganesamoorthy, "Upper Detour Monophonic Number of a Graph", Electronic Note in Discrete Mathematics, vol. 53, pp. 331-342, 2016.

