
CUBO, A Mathematical Journal

Vol.22, N◦02, (177–201). August 2020
http://dx.doi.org/10.4067/S0719-06462020000200177

Received: 28 February, 2020 | Accepted: 15 June, 2020

Mathematical Modeling of Chikungunya Dynamics:
Stability and Simulation

Ruchi Arora, Dharmendra Kumar, Ishita Jhamb and Avina Kaur Narang

Department of Mathematics, SGTB Khalsa College,

University of Delhi, Delhi-110007, India

ruchi@sgtbkhalsa.du.ac.in, dharmendrakumar@sgtbkhalsa.du.ac.in,

ishita.jhamb@gmail.com, kaur.avina45@gmail.com

ABSTRACT

Infection due to Chikungunya virus (CHIKV) has a substantially prolonged recupera-

tion period that is a long period between the stage of infection and recovery. However,

so far in the existing models (SIR and SEIR), this period has not been given due atten-

tion. Hence for this disease, we have modified the existing SEIR model by introducing

a new section of human population which is in the recuperation stage or in other words

the human population that is no more showing acute symptoms but is yet to attain

complete recovery. A mathematical model is formulated and studied by means of exis-

tence and stability of its disease free equilibrium (DFE) and endemic equilibrium (EE)

points in terms of the associated basic reproduction number (R0).

RESUMEN

La infección debida al virus Chikungunya (CHIKV) tiene un peŕıodo de recuperación

sustancialmente prolongado, que es un peŕıodo largo entre la etapa de infección y

recuperación. Sin embargo, hasta ahora en los modelos existentes (SIR y SEIR), este

peŕıodo no ha recibido suficiente atención. Por tanto, para esta enfermedad, hemos

modificado el modelo SEIR existente introduciendo una nueva sección de población

humana que está en la etapa de recuperación o, en otras palabras, la población humana

que ya no muestra śıntomas agudos pero todav́ıa no se recupera completamente. Se

formula y estudia un modelo matemático a través de la existencia y estabilidad de su

equilibrio libre de enfermedad (DFE) y puntos de equilibrio endémico (EE) en términos

del número de reproducción básico asociado (R0).
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1 Introduction

In recent past, the study of vector borne diseases has gained considerable attention and mathemat-

ics have become a useful tool for such studies. Several temporal deterministic models have been

proposed for diseases like dengue, malaria, chikungunya etc. Chikungunya is a disease caused by

the chikungunya virus, an RNA genome which is a member of the Alphavirus genus in the family

of Togaviridae. It is a mosquito borne viral disease which is transmitted to humans through Aedes

aegypti mosquito bite [1]. In 1952, chikungunya was first confirmed as the cause of an epidemic

of dengue like illness on the Comoros islands located on the eastern coast of northern Mozam-

bique [2]. Since its discovery, numerous CHIKV outbreaks with irregular intervals of 2-20 years

have affected Asian, African, European and American countries. In Thailand, the first report of

chikungunya infection occurred in Bangkok in 1958 [3]. In India, the virus emerged in parts of

Vellore, Calcutta and Maharashtra in the early 1960’s [4]. The virus continued to spread in Sri

Lanka in 1969 and many countries of Southeast Asia such as Myanmar, Indonesia and Vietnam

[4]. Later, some irregular cases of chikungunya fever were also seen in many provinces of Thailand

in the period from 1976 to 1995 [3]. From 1999 to 2000, the reemergence of chikungunya occurred

in Democratic Republic of Congo [2], 13,500 cases were reported in Lamu, Kenya in 2004 [5]. In

the years 2005-2007, there occurred an outbreak in Reunion islands in the Indian Ocean. In 2007,

197 cases were reported in Europe due to chikungunya [1]. The outbreak mutated to facilitate the

disease transmission by Aedes albopictus from the tiger mosquito family. It was a mutation in one

of the viral envelope genes which allowed the virus to be present in the mosquito saliva only two

days after the infection and seven days in Aedes aegypti mosquitoes. The results indicated that

the areas where the tiger mosquitoes are present could have a greater risk of outbreak.

After an effective bite from a mosquito infected with CHIKV, the incubation period (i.e., the

time elapsed between exposure to pathogenic organism and when symptoms and signs are first

apparent) usually lasts for 3-7 days with fever as the most prominent symptom. The symptoms

of chikungunya fever differ from the normal fever as they are accompanied with acute joint pains.

Other common symptoms are nausea, rashes, headache and fatigue. Some cases may result in neu-

rological, retinal and carpological complications as well, which makes it difficult for older people

to recover as against young people. In some instances, people live with joint pains for years which

indicates that the recuperation period can last for a long time. The symptoms of chikungunya

are generally mild and the disease may sometimes be misdiagnosed with Zika and Dengue due to

similarity in symptoms. There have been very few cases where chikungunya resulted in death and

mostly infected individuals are expected to make full recovery with lifelong immunity. As such,

there is no preventive vaccine or cure for chikungunya. One can only manage the symptoms by

taking medications for temporary relief. To prevent the spread of disease, breeding sites for the

mosquitoes should be checked. Using mosquito repellents and wearing long sleeve clothes and full
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pants can help in preventing mosquito bite. For more such information one may refer to [1].

Increasing globalization and factors contributing to climate change brought about a sudden

expansion of mosquito breeding sites. This makes it necessary to improve the vector control tech-

niques and to identify the indexes that monitor thresholds for such programs. Through the 20th

century, mathematical modeling has been extensively used to study epidemic diseases. Futher-

more, this branch of mathematics is also being used to devise optimal control strategies for various

infectious diseases. Like M. Barro et al. [6] introduced an optimal control for a SIR model governed

by an ODE system with time delay. And, O. K. Oare [7] considered and analyzed a deterministic

multipatch hepatitis C virus model for it.

In context of infection due to chikungunya virus, Y. Dumont et al. [8] proposed a model

associated with the time course of the first epidemic of chikungunya in several cities of Reunion

Island. A model describing the mosquito population dynamics and the virus transmission to human

population was discussed by D. Moulay et al. [9]. Although simplistic, L. Yacob et al. [10] gave

a model which provided a close approximation of the peak incidence of the outbreak and the final

epidemic size. S. Naowarat and I. M. Tang [11] studied the model taking into consideration the

presence of two species of Aedes mosquito (Aedes aegypti and Aedes albopictus). D. H. Palacio

and J. Ospina [12] derived measures of disease control, by means of three scenarios, namely a single

vector, two vectors, and two vectors and human and non-human reservoirs. It also showed the

need to periodically evaluate the effectiveness of vector control measures. F. B. Agusto et al. [13]

described the chikungunya model of three age structured transmission dynamics by considering

juvenile, adult and senior population, where the dynamics of shift in individuals from one stage to

another was studied.

In this paper, we introduce a deterministic model to study the dynamics and transmission of

chikungunya virus by considering a very significant section from the class of infected individuals.

Usually, the existing models focus on the SIR or the SEIR human population model and SEI

mosquito population model. Since the period from the infected stage to the complete recovery

stage is quite long for this disease, so it becomes significant to study that particular class of

human population which has recovered from acute symptoms of the disease but is yet to attain

full recovery. Though the class no longer shows the immediate symptoms like fever, rashes, nausea

etc. but at the same time they are bearing the latent and the passive effects of the disease like

joint pains, fatigue, headache etc. Generally such ailments continue for a prolonged period which

may vary from individual to individual. But as long as the patient is suffering from these ailments,

he or she cannot be declared as fully recovered [14]. Focussing on this category of patients, we

introduce a new compartment between compartments of the infected and the recovered human

population within the existing SEIR model. We refer to it as the recuperation compartment and

denote it by R′. So, in this paper our aim is to study, analyse and investigate in detail the model

showing the interaction between the human population divided into five compartments resulting
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into a SEIR′R model and the mosquito population into the traditional three compartments which

we denote by XYZ model.

The paper is divided as follows: Section 2 deals with the formulation of the model, section 3

analyses its feasibility, section 4 determines the disease free equilibrium (DFE) and establishes its

local and global stability , section 5 deals with the existence of endemic equilibrium (EE) and its

local stability. Also by means of simulation of the formulated model, we provide a visualization

to the dynamics of this disease, in section 6. Finally related to our model, some conclusions are

stated.

2 Model Formulation

In this section, an epidemic model is formulated for chikungunya disease. Let NH represent the

total human population which is further subdivided into five categories; susceptibles (S), humans

exposed to infection (E), infected humans (I), population in recuperation phase (R′) and finally

the population that has attained complete recovery (R). So, the traditional SEIR epidemic model

has been modified to a more relevant and practically applicable SEIR′R model. Hence in this case,

at any time t

NH(t) = S(t) + E(t) + I(t) +R′(t) +R(t). (2.1)

Let NM represent the total mosquito population which is further subdivided into 3 parts; suscep-

tible mosquitoes (X), mosquitoes exposed to infection (Y) and infectious mosquitoes (Z). So the

total mosquito population is NM (t) = X(t) + Y (t) + Z(t).

For human population, let µ be the constant birth rate and ζ be the natural death rate. Then

the rate of change of susceptible human population is given by

dS

dt
= µ− λHS − ζS, (2.2)

where λH =
βBHZ

NH

. BH is the transmission probability per contact for susceptible humans (S)

and β is the mosquito biting rate for transfer of infection from infectious mosquito class (Z) to

susceptible human population (S). As only the susceptible human population out of the whole

population is prone to get infection, thereby we divide the expression by NH . The rate of change

of exposed human population is given by

dE

dt
= λHS − αE − ζE, (2.3)

where α is the rate of progression from exposed (E) to infected (I) human population. Here the

inflow rate is λH and outflow rate is α + ζ. Similarly, the rate of change of infected human

population is



CUBO
22, 2 (2020)

Mathematical Modeling of Chikungunya Dynamics . . . 181

dI

dt
= αE − γI − (ζ + ζ1)I, (2.4)

where ζ1 is death rate due to infection and γ is progression rate of infected (I) to recuperated

(R′) human population. Now, rate of change of human population in recuperation phase is

dR′

dt
= γI − λR′ − (ζ + ζ2)R

′, (2.5)

where ζ2 is the death rate of humans in recuperated phase due to virus and λ is the rate of

progression from recuperation (R′) to the recovery phase (R). Finally, rate of change of recovered

human population is,

dR

dt
= λR′ − ζR. (2.6)

Again for the mosquito population, let ρ be the constant birth rate and κ be the natural death

rate, then the rate of susceptible mosquito population is given by

dX

dt
= ρ− λMX − κX, (2.7)

where λM =
νBM (I +R′)

NH

. BM is the transmission probability per contact for susceptible

mosquito population (X) and ν is the mosquito biting rate for transfer of infection from infected

(I) or recuperated (R′) human population to susceptible mosquito population (X). Again there

occurs division by NH because infection can be transfered to mosquitoes only by a certain fraction

of human population. Now, the rate of change of exposed mosquito population is given by

dY

dt
= λMX − ψY − κY, (2.8)

where ψ is the progression rate from exposed (Y) to infectious (Z) mosquito population. Here the

inflow rate is λM and outflow rate is ψ + κ. Similarly, the rate of change of mosquito population

carrying infection is

dZ

dt
= ψY − κZ. (2.9)

Compiling the above discussion, we get the eight dimensional system of nonlinear ordinary differ-

ential equations that forms our Chikungunya Model (CM). The parameters and the variables used

in the model (CM) are described in Table 1. To get a clear view of the inter relationships between

various compartments in discussion, one may refer to Figure 1 which shows the schematic flow
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diagram of the model. The model (CM) is as follows:

(CM)
dS

dt
= µ−

βBHZS

NH

− ζS,

dE

dt
=
βBHZS

NH

− αE − ζE,

dI

dt
= αE − γI − (ζ + ζ1)I,

dR′

dt
= γI − λR′ − (ζ + ζ2)R

′,

dR

dt
= λR′ − ζR,

dX

dt
= ρ−

νBM (I +R′)X

NH

− κX,

dY

dt
=
νBM (I +R′)X

NH

− ψY − κY,

dZ

dt
= ψY − κZ.

Figure 1: Schematic diagram of Chikungunya Model (CM)
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Table 1: Description of variables and parameters used in model (CM)

Variables Description
S Susceptible human population.
E Exposed human population.

(Population that is infected but yet to show symptoms).
I Infected Human population showing symptoms.
R′ Human population in recuperation phase.
R Fully recovered human population.
X Susceptible mosquito population.
Y Exposed mosquito population.

(carrying infection but not yet capable to spread it).
Z Infectious mosquito population spreading the disease.

Parameters Description
µ Human birth rate.
β Mosquito biting rate for transfer of infection from

infectious mosquito class (Z) to susceptible human population (S).
α Progression rate of exposed to infected human population.
γ Progression rate of infected to recuperated human population.
λ Progression rate of recuperated to fully recovered human population.
ρ Mosquito birth rate.
ν Mosquito biting rate for transfer of infection from

infected human population(I) or population under recuperation phase (R′)
to susceptible mosquito population (X).

ψ Progression rate from exposed to infectious mosquito population.
ζ Natural death rate for human population.
ζ1 Human death rate in infected stage due to viral infection.
ζ2 Human death rate due to infection under recovery phase.
κ Natural death rate for mosquito population.
BH Transmission probability per contact in susceptible humans.
BM Transmission probability per contact in susceptible mosquitoes.
NH Total human population, i.e. S+E+I+R′+R.
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Table 2: Range of Parameters for the model (CM)

Parameters Range References

µ 400×
1

15× 365
- 400×

1

12× 365
[15, 16]

β 0.19 - 0.39 [15, 17]

α
1

4
-
1

2
[4, 15, 18, 19, 20, 21]

γ
1

4
-
1

2
Estimated [14]

λ
1

8
-
1

4
Estimated [14]

ρ 500× 0.015 - 500× 0.33 [15, 16, 22, 23]

ν 0.19 - 0.39 [15, 17]

ψ
1

6
-
1

2
[9, 18, 20, 24]

ζ
1

60× 365
-

1

18× 365
[13]

ζ1
1

105
-

1

104
[25]

ζ2
1

106
-

1

105
[25]

κ
1

42
-

1

14
[9, 18, 19, 20, 21]

BH 0.001 - 0.54 [8, 15, 26, 18, 27]

BM 0.005 - 0.35 [8, 26, 27, 28, 29]
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Table 3: Values of Parameters for Simulation

Parameters R0 < 1 R0 > 1

µ 400×
1

15× 365
400×

1

15× 365

β 0.25 0.30

α
1

3

1

4

γ
1

3

1

4

λ
1

7

1

8

ρ 500× 0.1675 500× 0.2

ν 0.25 0.30

ψ
1

3.5

1

4

ζ
1

40× 365

1

30× 365

ζ1
1

104
1

105

ζ2
1

105
1

106

κ
1

14

1

30

BH 0.24 0.30

BM 0.24 0.30
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3 Preliminary Results

3.1 Positivity of Solutions

In order to establish the epidemiological meaningfullness [13], we prove the non negativity of the

state variables for the formulated model at all t > 0.

Theorem 3.1: The solution M(t) = (S,E, I, R′, R,X, Y, Z) of model (CM) with M(0) ≥ 0, is

non negative for all t > 0. Moreover,

lim
t→∞

sup NH(t) =
µ

ζ
and lim

t→∞

sup NM (t) =
ρ

κ

where NH(t) = S(t) + E(t) + I(t) +R′(t) +R(t) and NM (t) = X(t) + Y (t) + Z(t).

Proof: Let t1 = sup {t > 0 :M(t) > 0}. Clearly t1 > 0. Consider the first equation of the model

(CM),
dS

dt
= µ−

βBHSZ

NH

− ζS.

Solving the differential equation we have,

d

dt

{

S(t) exp

[(
∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt

)]}

= µ exp

[(
∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt

)]

=⇒ S(t1) exp

[(
∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt1

)]

− S(0) =

∫ t1

0

µ exp

[(
∫ u

0

βBHZ(τ)

NH(τ)
dτ + ζu

)]

du.

Furthermore,

S(t1) =S(0) exp

[(

−

∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt1

)]

+exp

[(

−

∫ t1

0

βBHZ(τ)

NH(τ)
dτ + ζt1

)]
∫ t1

0

µ exp

[(
∫ u

0

βBHZ(τ)

NH(τ)
dτ + ζu

)]

du > 0.

Similarly, the non negativity can be shown for all the state variables, i.e., M(t1) > 0 and therefore

M(t) > 0 for all t > 0. In fact, we now have, 0 < S(t) ≤ NH(t), 0 < E(t) ≤ NH(t), 0 < I(t) ≤

NH(t), 0 < R′(t) ≤ NH(t), 0 < R(t) ≤ NH(t); 0 < X(t) ≤ NM (t), 0 < Y (t) ≤ NM (t), 0 < Z(t) ≤

NM (t). As the total human population is given by NH(t) = S(t) + E(t) + I(t) +R′(t) +R(t), the

rate of change of human population with respect to time is given by

dNH

dt
= µ− ζ(S + E + I +R′ +R)− ζ1I − ζ2R

′

= µ− ζNH − ζ1I − ζ2R
′

≤ µ− ζNH . (3.1)
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Now for NM (t) = X(t) + Y (t) + Z(t),

dNM

dt
≤ ρ− κNM .

LetN =
µ

ζ
. As t→ ∞, the disease will disappear. Therefore, lim

t→∞

sup I(t) = 0 and lim
t→∞

sup R′(t) =

0. Now,
dNH

dt
= µ − ζNH this implies NH(t) =

µ

ζ
+

(

NH(0)−
µ

ζ

)

e−ζt, which further implies

lim
t→∞

NH(t) =
µ

ζ
= N . This follows that 0 < lim

t→∞

supNH(t) ≤ N =
µ

ζ
if lim

t→∞

sup I(t) = 0 and

lim
t→∞

sup R′(t) = 0. And if NH > N =
µ

ζ
then from (3.1),

dNH

dt
< 0. Similarly, it can be seen that

0 < lim
t→∞

supNM (t) ≤
ρ

κ
.

3.2 Invariant Region

Consider ℜ = ℜH ×ℜM ⊂ R
5
+ × R

3
+, where

ℜH =

{

S,E, I, R′, R : NH(t) ≤
µ

ζ

}

,

ℜM =
{

X,Y, Z : NM (t) ≤
ρ

κ

}

.

Now, we establish the positive invariance [13], of the region ℜ associated to the model (CM). That

is, we show that solutions in ℜ remain in ℜ for all t > 0 .

Theorem 3.2: The region ℜ ⊂ R
8
+ is positively invariant for the model (CM), with non-negative

initial conditions in R
8
+.

Proof : As seen in Theorem 3.1,
dNH

dt
≤ µ − ζNH and

dNM

dt
≤ ρ − κNM . By using standard

comparison theorem [30], it can be seen that, NH(t) ≤
µ

ζ
= N . So, clearly every solution in ℜH

remains in ℜH for all t > 0. Similar is the case for every solution of ℜM . Hence, the region ℜ is

positively invariant and contains all solutions of R8
+ for model (CM).

In the following sections, we show the existence and stability of the disease free equilibrium

(DFE) and endemic equilibrium (EE) for the model (CM).

4 Disease Free Equilibrium (DFE)

In this section, we find a unique disease free equilibrium (DFE) for the model (CM) and then

analyse its stability.
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4.1 Existence of Equilibrium

To determine the disease free equilibrium (DFE) of the model, we consider the sections of pop-

ulations that are free from disease and put their time derivatives equal to zero. Let DFE be

denoted by Ed = (S∗, E∗, I∗, R
′
∗, R∗, X∗, Y ∗, Z∗). As sections of susceptible and recovered hu-

mans as well as susceptible mosquitoes are the only sections free from disease therefore Ed =

(S∗, 0, 0, 0, R∗, X∗, 0, 0). Solving the differential equations of the model (CM), DFE is obtained as

Ed =
(

µ
ζ
, 0, 0, 0, 0, ρ

κ
, 0, 0

)

.

4.2 Reproduction Number

Let the basic reproduction number be denoted by R0, which is defined as the expected number of

secondary cases produced by a single (typical) infection in a population that is completely disease

free. To find the threshold quantity R0 [31, 32], we consider the next generation matrix G, which

comprises of two matrices F and V −1, where F =
dFi(x0)

dxj
and V =

dVi(x0)

dxj
for 1 ≤ i, j ≤ 5.

Here, Fi represents the new infection, whereas Vi corresponds to the transfers of infection from one

compartment to another. Let x0 be the disease free equilibrium state. Hence, the reproduction

number is the largest eigen value of the next generation matrix G (defined as the product of

matrices F and V −1), that is the largest eigen value of the matrix, G = FV −1. Corresponding to

the model (CM),

F =













βBHSZ
NH

0
0

νBM (I+R′)X
NH

0













and V =













αE + ζE

−αE + γI + (ζ + ζ1)I
−γI + λR′ + (ζ + ζ2)R

′

ψY + κY

−ψY + κZ













.

Next, we find the Jacobian F and V of the matrices F and V respectively and the eigen values of

the matrix G = FV −1, gives the reproduction number as

R0 =

√

ρνψζαβBHBM (λ+ γ + ζ + ζ2)

κ
√

µ(ψ + κ)(ζ + α)(ζ + γ + ζ1)(ζ + λ+ ζ2)
.



CUBO
22, 2 (2020)

Mathematical Modeling of Chikungunya Dynamics . . . 189

4.3 Local Stability

Theorem 4.1 : The DFE of the chikungunya model (CM) is locally asymptotically stable, if

R0 < 1 and unstable if R0 > 1, where R0 is the associated reproduction number.

Proof : We consider the system of non linear differential equations, corresponding to the model

(CM) to evaluate its Jacobian matrix. Let JD denote the Jacobian of the system at DFE that is,

JD =

























−ζ 0 0 0 0 0 0 −BHβ

0 −α− ζ 0 0 0 0 0 BHβ

0 α −γ − ζ − ζ1 0 0 0 0 0
0 0 γ −λ− ζ − ζ2 0 0 0 0
0 0 0 λ −ζ 0 0 0

0 0 − νBMρζ
κµ

− νBMρζ
κµ

0 −κ 0 0

0 0 νBMρζ
κµ

νBMρζ
κµ

0 0 −ψ − κ 0

0 0 0 0 0 0 ψ −κ

























Clearly, the trace of the matrix JD is negative and determinant of matrix JD [33, 34], is given by

det(JD) =
−ζ2[κ2µ(ψ + κ)(ζ(ζ + α+ γ) + αγ + ζζ1 + ζ1α)(−ζ − λ− ζ2)] + ρνζψαβBHBM (ζ + λ+ γ + ζ2)

µ
.

For R0 < 1, we have

√

ρνψζαβBHBM (ζ + γ + λ+ ζ2) < κ
√

µ(ψ + κ)(ζ + α)(ζ + λ+ ζ2)(ζ + γ + ζ1).

Therefore,

κ2µ(ψ + κ)(ζ + λ+ ζ2)(ζ(ζ + α+ γ) + αγ + ζζ1 + ζ1α)− ψ[ρνζαβBHBM (ζ + λ+ γ + ζ2)] > 0

or det(JD) > 0. Hence, DFE is locally asymptotically stable if R0 < 1 .

4.4 Global Stability

Consider the feasible region ℜ1 = {D ∈ ℜ : S ≤ S∗, X ≤ X∗} where D = (S,E, I, R′, R,X, Y, Z),

S∗ and X∗ are the components of DFE (Ed).

Lemma 4.1: The region ℜ1 is positively invariant for the model (CM).
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Proof: From the first equation of the model (CM),

dS

dt
= µ−

βBHZS

NH

− ζS

≤ µ− ζS

≤ ζ

(

µ

ζ
− S

)

≤ ζ(S∗ − S)

S ≤ S∗ + (S(0)− S∗)e−ζt

Thus, if S∗ = µ
ζ
for all t ≥ 0 and S(0) ≤ S∗ , then S ≤ S∗ for all t ≥ 0. Similarly, for

dX

dt
= ρ−

νBM (I +R′)X

NH

− κX

≤ ρ− κX

≤ κ(X∗ −X)

X ≤ X∗ + (X(0)−X∗)e−κt

Thus, if X∗ = ρ
κ
for all t ≥ 0 and X(0) ≤ X∗, then X ≤ X∗ for all t ≥ 0. Hence, it has been shown

that the region ℜ1 is positively invariant and attracts all solutions in ℜ8
+ for the model (CM).

Now in order to establish the global asymptotic stability of DFE [35], we rewrite the model (CM)

as
[

dTU

dt
= F (TU , TI)

dTI

dt
= G(TU , TI), G(TU , 0) = 0

]

(RM)

where TU = (S,R,X) ∈ R
3 and TI = (E, I,R′, Y, Z) ∈ R

5.

Let E∗

D = (T ∗

U , 0) be DFE of (RM) where T ∗

U =
(

µ
ζ
, 0, ρ

κ

)

. We now state the following two condi-

tions which must be satisfied to guarantee global asymptotic stability:

(H1) For
dTU

dt
= F (TU , 0), T

∗

U is globally asymptotically stable.

(H2) G(TU , TI) = ATI − Ĝ(TU , TI), Ĝ(TU , TI) ≥ 0, (TU , TI) ∈ ℜ where A =
∂G(T ∗

U , 0)

∂TI
is an

M-matrix which by definition has the off diagonal elements non-negative.

Theorem 4.2: The fixed point E∗

D = (T ∗

U , 0) is globally asymptotic stable (g.a.s) equilibrium of

(RM) provided that R0 < 1 and that assumptions (H1) and (H2) are satisfied.

Proof: For the system (RM),

dTU

dt
= F (TU , 0) =







µ− ζS

0

ρ− κX









CUBO
22, 2 (2020)

Mathematical Modeling of Chikungunya Dynamics . . . 191

We solve the above linear differential system to get the S(t) =
µ

ζ
+ S∗(0)e−µt, R(t) = 0 and

X(t) =
ρ

κ
+X∗(0)e−κt which implies S(t) →

µ

ζ
, R(t) → 0 and X(t) →

ρ

κ
as t→ ∞.

Therefore, disease free point T ∗

U is a globally asymptotic stable (g.a.s) equilibrium of
dTU

dt
=

F (TU , 0). Hence (H1) holds. Clearly it can be seen that

G(TU , TI) =













βBHZS
NH

− αE − ζE

αE − γI − (ζ + ζ1)I
γI − λR′ − (ζ + ζ2)R

′

νBM (I+R′)X
NH

− ψY − κY

ψY − κZ













Also from (H2) G(TU , TI) = ATI − Ĝ(TU , TI), where

A =
∂G(T ∗

U , 0)

∂TI
=













−α− ζ 0 0 0 βBH

α −γ − ζ − ζ1 0 0 0
0 γ −λ− ζ − ζ2 0 0

0 νBMρζ
κµ

νBMρζ
κµ

−ψ − κ 0

0 0 0 ψ −κ













.

Therefore,

∂G(T ∗

U , 0)

∂TI
TI =













−αE − ζE − βBHZ

αE − γI − (ζ + ζ1)I
γI − λR′ − (ζ + ζ2)R

′

νBMaζ
κµ

(I +R′)− (ψ + κ)Y

ψY − κZ













.

In view of (H2), Ĝ(TU , TI) =
∂G(T∗

U
,0)

∂TI

TI −G(TU , TI) which gives

Ĝ(TU , TI) =















βBHZ(1−
S

NH

)

0
0

νBM (I +R′)
[

ρζ
µκ

− X
NH

]

0















.

Clearly, βBHZ(1−
S

NH

) ≥ 0 as
S

NH

< 1. Also,
κX

ρ
≤
ζNH

µ
or

ρζ

µκ
≥

X

NH

⇒
X∗

S∗
≥

X

NH

and from

Lemma 4.1 we know X∗ ≥ X and N∗

H = S∗ ≥ NH , which implies νBM (I + R′)

[

ρζ

µκ
−

X

NH

]

≥ 0.

Therefore, (H2) holds true. Hence, E∗

D = (T ∗

U , 0) is globally asymptotically stable in the region ℜ

whenever R0 ≤ 1.

5 Endemic Equilibrium

In this section, we first determine the endemic equilibrium points for the model (CM), establish

its existence and then analyse its stability.
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5.1 Endemic Equilibrium Points

Let endemic equilibrium points be denoted by Ee = (S∗∗, E∗∗, I∗∗, R′∗∗, R∗∗, X∗∗, Y ∗∗, Z∗∗). The

components of Ee are obtained by imposing constant solutions in the model (CM) and solving the

algebraic equations. By computations, we have

S∗∗ =
µNH

ζNH + Z∗∗βBH

,

E∗∗ =
βBHZ

∗∗µ

(α + ζ)(βBHZ∗∗ + ζNH)
,

I∗∗ =
αβBHZ

∗∗µ

(γ + ζ + ζ1)(α + ζ)(βBHZ∗∗ + ζNH)
,

R′∗∗ =
αγβBHZ

∗∗µ

(λ + ζ + ζ2)(γ + ζ + ζ1)(α + ζ)(βBHZ∗∗ + ζNH)
,

R∗∗ =
λαβBHZ

∗∗µγ

ζ(λ + ζ + ζ2)(γ + ζ + ζ1)(α+ ζ)(βBHZ∗∗ + ζNH)
,

X∗∗ =
ρ

λM + κ
,

Y ∗∗ =
ρλM

(λM + κ)(ψ + κ)
,

Z∗∗ =
ρψλM

κ(λM + κ)(ψ + κ)
.

5.2 Existence and Uniqueness of Endemic Equilibrium(E
e
)

Theorem 5.1 : Chikungunya Model (CM) has a unique endemic equilibrium if R0 > 1.

As seen in section 2,

λM =
νBM (I∗∗ +R

′
∗∗)

NH

=
νBMζαβµBHZ

∗∗(ζ + ζ2 + λ+ γ)

µ(βBHZ∗∗ + µ)(α+ ζ)(ζ + ζ1 + γ)(ζ + ζ2 + λ)

=
R2

0µZ
∗∗κ2(ψ + κ)

ρψ(βBHZ∗∗ + µ)

Also, λH =
βBHZ

∗∗

NH

=
βBHρψλM

κNH(λM + κ)(ψ + κ)
, or equivalently λM =

λHµκ
2(ψ + κ)

βBHρψζ − µκ(ψ + κ)λH
.
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Equating both values of λM , we get the following linear equation in terms of λH :

λH(ρψβBH +R2
0µκ(ψ + κ)) = (R2

0 − 1)βBHρψζ.

The unique solution to this equation exists and is given by

λH =
(R2

0 − 1)βBHρψζ

ρψβBH +R2
0µκ(ψ + κ)

,

which is positive if R2
0 > 1. This implies Z∗∗ > 0, for R0 > 1. Hence, unique endemic equilibrium

exists for R0 > 1.

5.3 Local Stability

Theorem 5.2: The endemic equilibrium of the chikungunya model (CM) is locally asymptotically

stable if R0 > 1.

Proof: We evaluate the Jacobian matrix for the system of nonlinear differential equations corre-

sponding to the model (CM). Let Je denote the Jacobian of the system at Ee (which exists for

R0 > 1). Clearly, JE = (J1, J2, J3, J4, J5, J6, J7, J8)
T where

J1 =
(

−βBHZ∗∗

NH
+ βBHZ∗∗S∗∗

(NH )2
− ζ,

βBHZ∗∗S∗∗

(NH)2
,
βBHZ∗∗S∗∗

(NH)2
,
βBHZ∗∗S∗∗

(NH)2
,
βBHZ∗∗S∗∗

(NH)2
, 0, 0, −βBHS∗∗

NH

)

,

J2 =
(

βBHZ∗∗

NH
−

βBHZ∗∗S∗∗

(NH )2
,
−βBHZ∗∗S∗∗

(NH)2
− α− ζ,

−βBHZ∗∗S∗∗

(NH)2
,
−βBHZ∗∗S∗∗

(NH)2
,
−βBHZ∗∗S∗∗

(NH)2
, 0, 0, βBHS∗∗

NH

)

,

J3 = (0, α,−γ − ζ − ζ1, 0, 0, 0, 0, 0) , J4 = (0, 0, γ,−λ− ζ − ζ2, 0, 0, 0, 0) ,

J5 = (0, 0, 0, λ,−ζ, 0, 0, 0) ,

J6 =

(

νBM (I∗∗+R
′
∗∗)X∗∗

(NH )2
,
νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
,
νBM (I∗∗+R

′
∗∗)X∗∗

(NH )2
−

νBMX∗∗

NH

,
νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
−

νBMX∗∗

NH

,

0,− νBM (I∗∗+R
′
∗∗)

NH
− κ, 0, 0

)

,

J7 =

(

−νBM (I∗∗+R
′
∗∗)X∗∗

(NH )2
,
−νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
,
−νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
+ νBMX∗∗

NH

,
−νBM (I∗∗+R

′
∗∗)X∗∗

(NH)2
+ νBMX∗∗

NH

,

0, νBM (I∗∗+R
′
∗∗)

NH
,−κ− ψ, 0

)

, J8 = (0, 0, 0, 0, 0, 0, ψ,−κ)

Further, we reduce JE to the following upper triangular matrix (UE). UE = (U1, U2, U3, U4, U5, U6, U7, U8)
T

where

U1 =
(

−βBHZ∗∗

NH

+ βBHZ∗∗S∗∗

(NH)2 − ζ, βBHZ∗∗S∗∗

(NH)2 , βBHZ∗∗S∗∗

(NH)2 , βBHZ∗∗S∗∗

(NH)2 , βBHZ∗∗S∗∗

(NH)2 , 0, 0, −βBHS∗∗

NH

)

,

U2 =
(

0, −βBHZ∗∗S∗∗

(NH)2 − α− ζ, −βBHZ∗∗S∗∗

(NH)2 , −βBHZ∗∗S∗∗

(NH)2 , −βBHZ∗∗S∗∗

(NH)2 , 0, 0, βBHS∗∗

NH

)

,

U3 = (0, 0,−γ − ζ − ζ1, 0, 0, 0, 0, 0) , U4 = (0, 0, 0,−λ− ζ − ζ2, 0, 0, 0, 0) ,

U5 = (0, 0, 0, 0,−ζ, 0, 0, 0) , U6 =

(

0, 0, 0, 0, 0,− νBM(I∗∗+R
′
∗∗)

NH

− κ, 0, 0

)

,

U7 = (0, 0, 0, 0, 0, 0,−κ− ψ, 0) , U8 = (0, 0, 0, 0, 0, 0, 0,−κ)
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Attached are the eigen values of UE :
(

−ζ,−κ,−ψ − κ,−γ − ζ − ζ1,−λ− ζ − ζ2,−
νBM (I∗∗+R

′
∗∗)

NH
− κ,

Z∗∗βBH(S∗∗
−NH)

(NH)2 − ζ, −βBHZ∗∗S∗∗

(NH)2 − α− ζ

)

each of which is negative and by the criterion given in [36], the endemic equilibrium point (Ee) is

locally asymptotically stable if R0 > 1.

6 Numerical Simulation

The values of parameters that would be used for simulation of the model (CM) are listed in Table

3. The values used for simulation are taken with reference to their ranges, as stated in Table 2.

Fig. 2a and Fig. 2b are visualizations of the existence and stability of equilibria for the cases,

R0 < 1 and R0 > 1, respectively. Also, it illustrates that for R0 < 1, the infection dies out over a

period of time as it is the case of DFE. However, in the same time period, it can been seen that

the infection continues to persist in the population when R0 > 1 as it is the case of EE.

(a) (b)

Figure 2: Total number of Infected Humans (I) with respect to time.

In Fig. 3a, it is clear that the recuperated population ultimately falls down to zero for the

case when R0 < 1, where finally the disease dies out and ultimately the entire population will shift

to the recovered section with no more inflow into the recuperated part. In contrast, for the same

time period, if R0 > 1 (Fig. 3b), the disease persists in the population. Therefore, we can see a

substantial proportion of population which is still in the recuperated phase.

Fig. 4 and Fig. 5, both show the time duration around which the number of infected popula-

tion comes to a fall which is actually the same for recuperated population to reach the peak.

In Fig. 6a, again for R0 < 1, as the disease dies out so it is evidently a situation when the

population of the infectious mosquitoes dies out. In contrast to it, for R0 > 1 (Fig. 6b), the number



CUBO
22, 2 (2020)

Mathematical Modeling of Chikungunya Dynamics . . . 195

(a) (b)

Figure 3: Total number of Recuperated Humans (R′) with respect to time.

Figure 4: Total number of Infected (I) and Recuperated (R′) Humans when R0 < 1.

of infectious mosquitoes continue to persist in population as it is the case of endemic equilibrium

(EE).

Fig. 7 shows the change in the number of infected, recuperated and recovered population with

respect to time in accordance with model (CM) whereas Fig. 8 is a simulation of the model (CM)

without recuperated section of population.

The curve representing the recovered population in Fig. 8, is an increasing curve showing a rapid

increase in the number of people attaining full recovery. But this does not fit in accordance to the

case of Chikungunya infection. However, in Fig. 7, we can see the convexity of the curve repre-

senting recovered population for a substantial period of time and this is because of the presence of

recuperation factor which has been considered in our model. During this period, the recuperation

curve is rising higher which is practically more relevant and well in consensus with the nature of

this particular disease.
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Figure 5: Total number of Infected (I) and Recuperated (R′) Humans when R0 > 1.

(a) (b)

Figure 6: Total number of Infectious Mosquitoes (Z) with respect to time.

7 Conclusion

In this paper, a new deterministic model is formulated to study the transmission dynamics of

Chikungunya virus (CHIKV). Making a considerable refinement to the existing models present in

the literature, a so far neglected section of human population is introduced, namely the population

in the recuperation phase. The study shows that the disease free equilibrium (DFE) of the model is

locally as well as globally asymptotically stable whenever existence of an associated reproduction

number R0, is less than 1 and unstable otherwise. Also, an endemic equilibrium (EE) exists

whenever R0 is greater than 1 and is locally asymptotically stable too. Simulations of the model

make it evident that introduction of the said compartment is well justified, as this model provides a

more realistic illustration for Chikungunya infection wherein the quantitative behaviour of disease

has given a better visualisation. Moreover, the qualitative behaviour of the disease as studied by
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Figure 7: Variation of Infected, Recuperated and Recovered Human Population with time for model
(CM).

Figure 8: Variation of Infected and Recovered Human Population with time for model (CM) without
recuperation section.

various researchers in [14] is very well taken into consideration through our model.

If we do not consider the recuperation section in model (CM), then the following model

becomes a special case of our model. It is clearly seen that our model (CM) gives a better

illustration to the dynamics of the Chikungunya virus and hence, the proposed model is indeed
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more realistic and practical.

dS

dt
= µ−

βBHZS

NH

− ζS,

dE

dt
=
βBHZS

NH

− αE − ζE,

dI

dt
= αE − γI − (ζ + ζ1)I,

dR

dt
= γI − ζR,

dX

dt
= ρ−

νBMIX

NH

− κX,

dY

dt
=
νBMIX

NH

− ψY − κY,

dZ

dt
= ψY − κZ, where NH(t) = S(t) + E(t) + I(t) +R(t).

Comparison of the above model with our model (CM) is done in section 6 with the help of the

graphs shown in Fig. 7 and Fig. 8.
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