η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds

Sampa Pahan
Department of Mathematics, Mrinalini Datta Mahavidyapith
Kolkata-700051, India.
sampapahan25@gmail.com

Abstract

In this paper, we study η-Ricci solitons on 3 -dimensional trans-Sasakian manifolds. Firstly we give conditions for the existence of these geometric structures and then observe that they provide examples of η-Einstein manifolds. In the case of ϕ-Ricci symmetric trans-Sasakian manifolds, the η-Ricci soliton condition turns them to Einstein manifolds. Afterward, we study the implications in this geometric context of the important tensorial conditions $R \cdot S=0, S \cdot R=0, W_{2} \cdot S=0$ and $S \cdot W_{2}=0$.

RESUMEN

En este artículo estudiamos solitones η-Ricci en variedades trans-Sasakianas tridimensionales. En primer lugar damos condiciones para la existencia de estas estructuras geométricas y luego observamos que ellas dan ejemplos de variedades η-Einstein. En el caso de variedades trans-Sasakianas ϕ-Ricci simétricas, la condición de solitón η-Ricci las convierte en variedades Einstein. A continuación estudiamos las implicancias en este contexto geométrico de las importantes condiciones tensoriales $R \cdot S=0, S \cdot R=0$, $W_{2} \cdot S=0$ y $S \cdot W_{2}=0$.

Keywords and Phrases: Trans-Sasakian manifold, η-Ricci solitons.
2010 AMS Mathematics Subject Classification: 53C21, 53C25, 53C44.

1 Introduction

In 1982, the notion of the Ricci flow was introduced by Hamilton [10] to find a canonical metric on a smooth manifold.The Ricci flow is an evolution equation for Riemannian metric $g(t)$ on a smooth manifold M given by

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{~g}(\mathrm{t})=-2 \mathrm{~S}
$$

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics $g(t)$, parameterized by t in a non-degenerate interval I, on a smooth manifold M satisfying the Ricci flow equation. If I has an initial point t_{0}, then $\left(M, g\left(t_{0}\right)\right)$ is called the initial condition of or the initial metric for the Ricci flow (or of the solution) [14].

Ricci solitons and η-Ricci solitons are natural generalizations of Einstein metrics. A Ricci soliton on a Riemannian manifold (M, g) is defined by

$$
S+\frac{1}{2} \mathcal{L}_{X g}=\lambda g
$$

where $\mathcal{L}_{X} g$ is the Lie derivative along the vector field X, S is the Ricci tensor of the metric and λ is a real constant. If $X=\nabla f$ for some function f on M, the Ricci soliton becomes gradient Ricci soliton. Ricci solitons appear as self-similar solutions to Hamiltons's Ricci flow and often arise as limits of dilations of singularities in the Ricci flow [11]. A soliton is called shrinking, steady and expanding according as $\lambda>0, \lambda=0$ and $\lambda<0$ respectively.

In 2009, the notion of η-Ricci soliton was introduced by J.C. Cho and M. Kimura [6]. J.C. Cho and M. Kimura proved that a real hypersurface admitting an η-Ricci soliton in a non-flat complex space form is a Hopf-hypersurface [6]. An η-Ricci soliton on a Riemannian manifold (M, g) is defined by the following equation

$$
\begin{equation*}
2 S+\mathcal{L}_{\xi} g+2 \lambda g+2 \mu \eta \otimes \eta=0 \tag{1.1}
\end{equation*}
$$

where \mathcal{L}_{ξ} is the Lie derivative operator along the vector field ξ, S is the Ricci tensor of the metric and λ, μ are real constants. If $\mu=0$, then η-Ricci soliton becomes Ricci soliton.

In the last few years, many authors have worked on Ricci solitons and their generalizations in different Contact metric manfolds in [1], [7], [8], [9], [12] etc. In 2014, B. Y. Chen and S. Deshmukh have established the characterizations of compact shrinking trivial Ricci solitons in [5]. Also, in [2], A. Bhattacharyya, T. Dutta, and S. Pahan studied the torqued vector field and established some applications of torqued vector field on Ricci soliton and conformal Ricci soliton. A.M. Blaga [3], D. G. Prakasha and B. S. Hadimani [17] observed η-Ricci solitons on different contact metric manifolds satisfying some certain curvature conditions.

In this paper we study the existence of η-Ricci soliton on 3-dimensional trans-Sasakian manifold. Next we show that η-Ricci soliton on 3-dimensional trans-Sasakian manifolds becomes η-Einstein Manifold under some conditions. Next we prove that ϕ-Ricci symmetric trans-Sasakian manifold (M, g) manifold satisfying an η-Ricci soliton becomes an Einstein manifold. Next we give an example of an η-Ricci soliton on 3-dimensional trans-Sasaian manifold with $\lambda=-2$ and $\mu=6$. Later we obtain some different types of curvature tensors and their properties under certain conditions.

2 Preliminaries

The product $\bar{M}=M \times R$ has a natural almost complex structure J with the product metric G being Hermitian metric. The geometry of the almost Hermitian manifold ($\bar{M}, \mathrm{~J}, \mathrm{G}$) gives the geometry of the almost contact metric manifold (M, ϕ, ξ, η, g). Sixteen different types of structures on M like Sasakian manifold, Kenmotsu manifold etc are given by the almost Hermitian manifold ($\bar{M}, ~ J, ~ G)$. The notion of trans-Sasakian manifolds was introduced by Oubina [15] in 1985. Then J. C. Marrero [13] have studied the local structure of trans-Sasakian manifolds. In general a trans-Sasakian manifold $(M, \phi, \xi, \eta, g, \alpha, \beta)$ is called a trans-Sasakian manifold of type (α, β). An $n(=2 m+1)$ dimensional Riemannian manifold (M, g) is called an almost contact manifold if there exists a $(1,1)$ tensor field ϕ, a vector field ξ and a 1 -form η on M such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \tag{2.1}\\
\eta(\xi)=1, \eta(\phi X)=0, \tag{2.2}\\
\phi \xi=0, \tag{2.3}\\
\eta(X)=g(X, \xi), \tag{2.4}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2.5}\\
g(X, \phi Y)+g(Y, \phi X)=0, \tag{2.6}
\end{gather*}
$$

for any vector fields X, Y on M. A 3-dimensional almost contact metric manifold M is called a trans-Sasakian manifold if it satisfies the following condition

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=\alpha\{g(X, Y) \xi-\eta(Y) X\}+\beta\{g(\phi X, Y) \xi-\eta(Y) \phi X\} \tag{2.7}
\end{equation*}
$$

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of type (α, β). For 3-dimensional trans-Sasakian manifold, from (2.7) we have,

$$
\begin{equation*}
\nabla_{\mathrm{X}} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{2.9}
\end{equation*}
$$

In a 3-dimensional trans-Sasakian manifold, we have

$$
\begin{aligned}
R(X, Y) Z & =\left[\frac{r}{2}-2\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right][g(Y, Z) X-g(X, Z) Y] \\
& -\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \xi \\
& +[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)][\phi \operatorname{grad} \alpha-\operatorname{grad} \beta] \\
& -\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(Z)[\eta(Y) X-\eta(X) Y] \\
& -[Z \beta+(\phi Z) \alpha] \eta(Z)[\eta(Y) X-\eta(X) Y] \\
& -[X \beta+(\phi X) \alpha][g(Y, Z) \xi-\eta(Z) Y] \\
& -[Y \beta+(\phi Y) \alpha][g(X, Z) \xi-\eta(Z) X]
\end{aligned}
$$

$$
S(X, Y)=\left[\frac{r}{2}-\left(\alpha^{2}-\beta^{2}-\xi \beta\right)\right] g(X, Y)
$$

$$
-\left[\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)+\xi \beta\right] \eta(X) \eta(Y)
$$

$$
-[Y \beta+(\phi Y) \alpha] \eta(X)-[X \beta+(\phi X) \alpha] \eta(Y)
$$

When α and β are constants the above equations reduce to,

$$
\begin{gather*}
R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(X) \xi-X), \tag{2.10}\\
S(X, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(X), \tag{2.11}\\
R(\xi, X) Y=\left(\alpha^{2}-\beta^{2}\right)(g(X, Y) \xi-\eta(Y) X) . \tag{2.12}\\
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y) . \tag{2.13}
\end{gather*}
$$

Definition 2.1. A trans-Sasakian manifold M^{3} is said to be η-Einstein manifold if its Ricci tensor S is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a, b are smooth functions.

$3 \quad \eta$-Ricci solitons on trans-Sasakian manifolds

To study the existence conditions of η-Ricci solitons on 3-dimensional trans-Sasakian manifolds, we prove the following theorem.

Theorem 3.1: Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3 -dimensional trans-Sasakian manifold with α, β constants $(\beta \neq 0)$. If the symmetric $(0,2)$ tensor field h satisfying the condition $\beta h(X, Y)-$ $\frac{\alpha}{2}[h(\phi X, Y)+h(X, \phi Y)]=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)$ is parallel with respect to the LeviCivita connection associated to g. Then (g, ξ, μ) becomes an η-Ricci soliton.

Proof: We consider a symmetric (0,2)-tensor field h which is parallel with respect to the LeviCivita connection $(\nabla \mathrm{h}=0)$. Then it follows that

$$
\begin{equation*}
h(R(X, Y) Z, W)+h(R(X, Y) Z, W)=0 \tag{3.1}
\end{equation*}
$$

for an arbitary vector field W, X, Y, Z on M. Put $X=Z=W=\xi$ we get

$$
\begin{equation*}
h(R(X, Y) \xi, \xi)=0 \tag{3.2}
\end{equation*}
$$

for any $X, Y \in \chi(M)$ By using the equation (2.13)

$$
\begin{equation*}
h(Y, \xi)=g(Y, \xi) h(\xi, \xi) \tag{3.3}
\end{equation*}
$$

for any $Y \in \chi(M)$. Differentiating the equation (3.3) covariantly with respect to the vector field $X \in \chi(M)$ we have

$$
\begin{equation*}
h\left(\nabla_{X} Y, \xi\right)+h\left(Y, \nabla_{X} \xi\right)=g\left(\nabla_{X} Y, \xi\right) h(\xi, \xi)+g\left(Y, \nabla_{X} \xi\right) h(\xi, \xi), \tag{3.4}
\end{equation*}
$$

Using the equation (2.8) we have

$$
\begin{equation*}
\beta h(X, Y)-\alpha h(\phi X, Y)=-\alpha g(\phi X, Y) h(\xi, \xi)+\beta h(\xi, \xi) g(X, Y) \tag{3.5}
\end{equation*}
$$

Interchanging X by Y we have

$$
\begin{equation*}
\beta h(X, Y)-\alpha h(X, \phi Y)=-\alpha g(X, \phi Y) h(\xi, \xi)+\beta h(\xi, \xi) g(X, Y) \tag{3.6}
\end{equation*}
$$

Then adding the above two equations we get

$$
\begin{equation*}
\beta h(X, Y)-\frac{\alpha}{2}[h(\phi X, Y)+h(X, \phi Y)]=\beta h(\xi, \xi) g(X, Y) \tag{3.7}
\end{equation*}
$$

We see that $\beta h(X, Y)-\frac{\alpha}{2}[h(\phi X, Y)+h(X, \phi Y)]$ is a symmetric tensor of type $(0,2)$. Since $\mathcal{L}_{\xi} g(X, Y)$, $S(X, Y), \eta(X)=g(X, \xi)$ and $\eta(Y)=g(Y, \xi)$ are symmetric tensors of type $(0,2)$ and λ, μ are real constants, the sum $\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)$ is a symmetric tensor of type $(0,2)$.

Therefore, we can take the sum as an another symmetric tensor field of type (0,2). Hence for we can assume that $\beta h(X, Y)-\frac{\alpha}{2}[h(\phi X, Y)+h(X, \phi Y)]=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)$.
Then we compute

$$
\beta h(\xi, \xi) g(X, Y)=\mathcal{L}_{\xi} g(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)
$$

As h is parallel so, $h(\xi, \xi)$ is constant. Hence, we can write $h(\xi, \xi)=-\frac{2}{\beta} \lambda$ where β is constant and $\beta \neq 0$.
So, from the equation (3.7) we have

$$
\begin{equation*}
\beta h(X, Y)-\frac{\alpha}{2}[h(\phi X, Y)+h(X, \phi Y)]=-2 \lambda g(X, Y) \tag{3.8}
\end{equation*}
$$

for any $X, Y \in X(M)$. Therefore $\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)+2 \mu \eta(X) \eta(Y)=-2 \lambda g(X, Y)$ and so (g, ξ, μ) becomes an η-Ricci soliton.

Corollary 3.2: Let $(M, g, \phi, \eta, \xi, \alpha, \beta)$ be a 3 -dimensional trans-Sasakian manifold with α, β constants $(\beta \neq 0)$. If the symmetric $(0,2)$ tensor field h admitting the condition $\beta h(X, Y)-$ $\frac{\alpha}{2}[h(\phi X, Y)+h(X, \phi Y)]=\mathcal{L}_{\xi} g(X, Y)+2 S(X, Y)$ is parallel with respect to the Levi-Civita connection associated to g with $\lambda=2 n$. Then (g, ξ) becomes a Ricci soliton.

Next theorem shows the necessary condition for the existence of η-Ricci soliton on 3-dimensional trans-Sasakian manifolds.
Theorem 3.3: If 3-dimensional trans-Sasakian manifold satisfies an η-Ricci soliton then the manifold becomes η-Einstein manifold with α and β constants.

Proof: From the equation (1.1) we get

$$
\begin{equation*}
2 S(X, Y)=-g\left(\nabla_{X} \xi, Y\right)-g\left(X, \nabla_{Y} \xi\right)-2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y) \tag{3.9}
\end{equation*}
$$

By using the equation (2.8) we get

$$
\begin{equation*}
S(X, Y)=-(\beta+\lambda) g(X, Y)+(\beta-\mu) \eta(X) \eta(Y) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
S(X, \xi)=-(\lambda+\mu) \eta(X) \tag{3.11}
\end{equation*}
$$

Also from (2.11) we have

$$
\begin{equation*}
\lambda+\mu=2\left(\beta^{2}-\alpha^{2}\right) \tag{3.12}
\end{equation*}
$$

The Ricci operator Q is defined by $g(Q X, Y)=S(X, Y)$. Then we get

$$
\begin{equation*}
\mathrm{QX}=\left(\mu-\beta+2\left(\alpha^{2}-\beta^{2}\right)\right) X+(\beta-\mu) \eta(X) \xi \tag{3.13}
\end{equation*}
$$

Then we can easily see that the manifold is an η-Einstein manifold.

We know a manifold is ϕ-Ricci symmetric if $\phi^{2} \circ \nabla \mathrm{Q}=0$. Now we prove the next theorem.

Theorem 3.4: If a ϕ-Ricci symmetric trans-Sasakian manifold (M, g) satisfies an η-Ricci soliton then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ and (M, g) is an Einstein manifold.

Proof: From the equation (3.13) we have

$$
\begin{gathered}
\left(\nabla_{X} Q\right) Y=\nabla_{X} Q Y-Q\left(\nabla_{X} Y\right) \\
=-\alpha(\beta-\mu) \eta(Y) \phi X+\beta(\beta-\mu) \eta(Y) X-(\beta-\mu) \eta(Y) \eta(X) \xi \\
+(\beta-\mu)[-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y)] \xi
\end{gathered}
$$

Now applying ϕ^{2} both sides we have $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ and (M, g) is an Einstein manifold.

We construct an example of η-Ricci soliton on 3-dimensional trans-Sasakian manifolds in the The next section.

4 Example of η-Ricci solitons on 3-dimensional trans-Sasakian manifolds

We consider the three dimensional manifold $M=\left\{(x, y, z) \in R^{3}: y \neq 0\right\}$ where (x, y, z) are the standard coordinates in R^{3}. The vector fields

$$
e_{1}=e^{2 z} \frac{\partial}{\partial x}, e_{2}=e^{2 z} \frac{\partial}{\partial y}, e_{3}=\frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
g_{i j}=\left\{\begin{array}{lll}
1 & \text { for } & i=\mathfrak{j} \\
0 & \text { for } & i \neq \mathfrak{j}
\end{array}\right.
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi\left(M^{3}\right)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi\left(e_{1}\right)=e_{2}, \phi\left(e_{2}\right)=-e_{1}, \phi\left(e_{3}\right)=0$. Then using the linearity property of ϕ and g we have

$$
\eta\left(e_{2}\right)=1, \phi^{2}(Z)=-Z+\eta(Z) e_{2}, g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi\left(M^{3}\right)$. Thus for $e_{2}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, after some calculation we have,

$$
\left[e_{1}, e_{3}\right]=-2 e_{1},\left[e_{2}, e_{3}\right]=-2 e_{2},\left[e_{1}, e_{2}\right]=0
$$

The Riemannian connection ∇ of the metric is given by the Koszul's formula which is

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
$$

By Koszul's formula we get,

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=2 e_{3}, \nabla_{e_{2}} e_{1}=0, \nabla_{e_{3}} e_{1}=0, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{2}} e_{2}=2 e_{3} \\
\nabla_{e_{3}} e_{2}=0, \nabla_{e_{1}} e_{3}=-2 e_{1}, \nabla_{e_{2}} e_{3}=-2 e_{2}, \nabla_{e_{3}} e_{3}=0
\end{gathered}
$$

From the above it can be easily shown that $M^{3}(\phi, \xi, \eta, g)$ is a trans-Sasakian manifold of type $(0,-2)$.
Here

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{2}=-4 e_{1}, R\left(e_{3}, e_{2}\right) e_{2}=4 e_{2}, R\left(e_{1}, e_{3}\right) e_{3}=-4 e_{1}, R\left(e_{2}, e_{3}\right) e_{3}=-4 e_{2} \\
R\left(e_{3}, e_{1}\right) e_{1}=-4 e_{2}, R\left(e_{2}, e_{1}\right) e_{1}=4 e_{3}
\end{gathered}
$$

So, we have

$$
\begin{equation*}
S\left(e_{1}, e_{1}\right)=0, S\left(e_{2}, e_{2}\right)=0, S\left(e_{3}, e_{3}\right)=-8 \tag{4.1}
\end{equation*}
$$

From the equation (1.1) we get $\lambda=-2$ and $\mu=6$. Therefore, (g, ξ, λ, μ) is an η-Ricci soliton on $M^{3}(\phi, \xi, \eta, g)$.

In the next sections we consider η-Ricci Solitons on 3-dimensional trans-Sasakian manifolds satisfying some curvature conditions.

5η-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $R(\xi, X) \cdot S=0$

First we suppose that 3 -dimensional trans-Sasakian manifolds with η-Ricci solitons satisfy the condition

$$
R(\xi, X) \cdot S=0 .
$$

Then we have

$$
S(R(\xi, X) Y, Z)+S(Y, R(\xi, X) Z)=0
$$

for any $X, Y, Z \in X(M)$.

Using the equations (2.12), (3.10), (3.11) we get

$$
(\beta-\mu) g(X, Y) \eta(Z)+(\beta-\mu) g(X, Z) \eta(Y)-2(\beta-\mu) \eta(X) \eta(Y) \eta(Z)=0
$$

Put $Z=\xi$ we have

$$
(\beta-\mu) g(X, Y)-(\beta-\mu) \eta(X) \eta(Y)=0
$$

Setting $X=\phi X$ and $Y=\phi Y$ in the above equation we get

$$
(\beta-\mu) g(\phi X, \phi Y)=0
$$

Again using the equation (3.12) we have

$$
\mu=\beta, \quad \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

Also we can easily see that M is an Einstein manifold. So we have the following theorem.

Theorem 5.1: If a 3 -dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $R(\xi, X) \cdot S=0$ then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ and M is an Einstein manifold.

Corollary 5.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $R(\xi, X) \cdot S=0$, there is no Ricci soliton with the potential vector field ξ.

$6 \quad \eta$-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying $S(\xi, X) \cdot R=0$

We consider 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition

$$
S(\xi, X) \cdot R=0
$$

So we have

$$
\begin{gathered}
S(X, R(Y, Z) W) \xi-S(\xi, R(Y, Z) W) X+S(X, Y) R(\xi, Z) W-S(\xi, Y) R(X, Z) W \\
+S(X, Z) R(Y, \xi) W-S(\xi, Z) R(Y, X) W+S(X, W) R(Y, Z) \xi-S(\xi, W) R(Y, Z) X=0 .
\end{gathered}
$$

Taking inner product with ξ then the above equation becomes

$$
\begin{gather*}
S(X, R(Y, Z) W)-S(\xi, R(Y, Z) W) \eta(X)+S(X, Y) \eta(R(\xi, Z) W) \\
-S(\xi, Y) \eta(R(X, Z) W)+S(X, Z) \eta(R(Y, \xi) W)-S(\xi, Z) \eta(R(Y, X) W) \\
+S(X, W) \eta(R(Y, Z) \xi)-S(\xi, W) \eta(R(Y, Z) X)=0 \tag{6.1}
\end{gather*}
$$

Put $W=\xi$ and using the equations (2.10), (2.12), (3.10), (3.11) we get

$$
\begin{equation*}
-(\beta+\lambda) g(X, R(Y, Z) \xi)+(\lambda+\mu) \eta(R(Y, Z) X)=0 \tag{6.2}
\end{equation*}
$$

Also we have

$$
\eta(R(Y, Z) X)=-g(X, R(Y, Z) \xi)
$$

So from the equation (6.2) we get

$$
(\beta+2 \lambda+\mu) g(X, R(Y, Z) \xi)=0
$$

Again using the equation (3.12) we have

$$
\mu=\beta+4\left(\beta^{2}-\alpha^{2}\right), \quad \lambda=-\left[2\left(\beta^{2}-\alpha^{2}\right)+\beta\right]
$$

So we have the following theorem.

Theorem 6.1: If a 3 -dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot R=0$ then $\mu=\beta+4\left(\beta^{2}-\alpha^{2}\right), \quad \lambda=$ $-\left[2\left(\beta^{2}-\alpha^{2}\right)+\beta\right]$.

Corollary 6.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $S(\xi, X) \cdot R=0$, there is no Ricci soliton with the potential vector field ξ.

$7 \quad \eta$-Ricci solitons on 3 -dimensional trans-Sasakian manifolds satisfying $W_{2}(\xi, X) \cdot S=0$

Definition 7.1. Let M be 3-dimensional trans-Sasakian manifold with respect to semi-Symmetric metric connection. The W_{2}-curvature tensor of M is defined by [16]

$$
\begin{equation*}
W_{2}(X, Y) Z=R(X, Y) Z+\frac{1}{2}(g(X, Z) Q Y-g(Y, Z) Q X) \tag{7.1}
\end{equation*}
$$

We assume 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition

$$
W_{2}(\xi, X) \cdot S=0
$$

Then we have

$$
S\left(W_{2}(\xi, X) Y, Z\right)+S\left(Y, W_{2}(\xi, X) Z\right)=0
$$

for any $X, Y, Z \in X(M)$.
Using the equations (2.12), (3.10), (3.11), (7.1) we get

$$
\begin{aligned}
& {\left[-\frac{(\beta+\lambda)}{2}(\lambda+\mu)+\frac{(\beta+\lambda)^{2}}{2}+(\beta-\mu)\left(\alpha^{2}-\beta^{2}\right)+(\lambda+\mu) \frac{(\beta-\mu)}{2}\right] g(X, Y) \eta(Z)} \\
& +\left[\frac{(\beta+\lambda)^{2}}{2}-\frac{(\beta+\lambda)}{2}(\lambda+\mu)+(\beta-\mu)\left(\alpha^{2}-\beta^{2}\right)+(\lambda+\mu) \frac{(\beta-\mu)}{2}\right] g(X, Z) \eta(Y) \\
& +\left[-(\beta+\lambda)(\beta-\mu)-2(\beta-\mu)\left(\alpha^{2}-\beta^{2}\right)-(\beta-\mu)(\lambda+\mu)\right] \eta(X) \eta(Y) \mathfrak{\eta}(Z)=0
\end{aligned}
$$

Put $Z=\xi$ in the above equation we get

$$
\begin{aligned}
& {\left[-\frac{(\beta+\lambda)}{2}(\lambda+\mu)+\frac{(\beta+\lambda)^{2}}{2}+(\beta-\mu)\left(\alpha^{2}-\beta^{2}\right)+(\lambda+\mu) \frac{(\beta-\mu)}{2}\right] g(X, Y)} \\
& \quad+\left[\frac{(\beta+\lambda)^{2}}{2}-\frac{(\beta+\lambda)}{2}(\lambda+\mu)+(\beta-\mu)\left(\alpha^{2}-\beta^{2}\right)+(\lambda+\mu) \frac{(\beta-\mu)}{2}\right.
\end{aligned}
$$

$$
\left.-(\beta+\lambda)(\beta-\mu)-2(\beta-\mu)\left(\alpha^{2}-\beta^{2}\right)-(\beta-\mu)(\lambda+\mu)\right] \eta(X) \eta(Y)=0
$$

Setting $X=\phi X$ and $Y=\phi Y$ in the above equation we get

$$
(\beta-\mu)\left(\frac{\left(\beta+2 \lambda+\mu+2\left(\alpha^{2}-\beta^{2}\right)\right)}{2}\right) g(\phi X, \phi Y)=0
$$

Again using the equation (3.12) we have

$$
\mu=\beta, \quad \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

or

$$
\mu=2\left(\beta^{2}-\alpha^{2}\right)+\beta, \quad \lambda=-\beta
$$

So we have the following theorem.

Theorem 7.1: If a 3 -dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $W_{2}(\xi, X) \cdot S=0$ then $\mu=\beta, \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta$ or $\mu=2\left(\beta^{2}-\alpha^{2}\right)+\beta, \quad \lambda=-\beta$.

Corollary 7.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $W_{2}(\xi, X) \cdot S=0$, there is no Ricci soliton with the potential vector field ξ.

$8 \quad \eta$-Ricci solitons on 3 -dimensional trans-Sasakian manifolds satisfying $S(\xi, X) \cdot W_{2}=0$

Suppose that 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfy the condition

$$
S(\xi, X) \cdot W_{2}=0
$$

So we have

$$
\begin{gathered}
S\left(X, W_{2}(Y, Z) V\right) \xi-S\left(\xi, W_{2}(Y, Z) V\right) X+S(X, Y) W_{2}(\xi, Z) V-S(\xi, Y) W_{2}(X, Z) V \\
+S(X, Z) W_{2}(Y, \xi) V-S(\xi, Z) W_{2}(Y, X) V+S(X, V) W_{2}(Y, Z) \xi-S(\xi, V) W_{2}(Y, Z) X=0
\end{gathered}
$$

Taking inner product with ξ then the above equation becomes

$$
\begin{gather*}
S\left(X, W_{2}(Y, Z) V\right)-S\left(\xi, W_{2}(Y, Z) V\right) \eta(X)+S(X, Y) \eta\left(W_{2}(\xi, Z) V\right) \\
-S(\xi, Y) \eta\left(W_{2}(X, Z) V\right)+S(X, Z) \eta\left(W_{2}(Y, \xi) V\right)-S(\xi, Z) \eta\left(W_{2}(Y, X) V\right) \\
+S(X, V) \eta\left(W_{2}(Y, Z) \xi\right)-S(\xi, V) \eta\left(W_{2}(Y, Z) X\right)=0 \tag{8.1}
\end{gather*}
$$

Put $V=\xi$ and using the equations (2.10), (2.12), (3.10), (3.11), (7.1) we get

$$
\begin{equation*}
-(\beta+\lambda) g\left(X, W_{2}(Y, Z) \xi\right)+(\lambda+\mu) \eta\left(W_{2}(Y, Z) X\right)=0 \tag{8.2}
\end{equation*}
$$

Using the equations (3.10), (3.11), (7.1) then the equation (8.2) becomes

$$
\left[(\beta+\lambda)^{2}+(\lambda+\mu)^{2}+2\left(\alpha^{2}-\beta^{2}\right)(\beta+2 \lambda+\mu)\right] g(X, R(Y, Z) \xi)=0
$$

Using the equation (3.12) we have

$$
\mu=\beta, \quad \lambda=2\left(\beta^{2}-\alpha^{2}\right)-\beta
$$

or

$$
\mu=2\left(\beta^{2}-\alpha^{2}\right)+\beta, \quad \lambda=-\beta
$$

So we have the following theorem.

Theorem 8.1: If Let a 3 -dimensional trans-Sasakian manifold ($M, g, \phi, \eta, \xi, \alpha, \beta$) with α, β constants admitting an η-Ricci soliton satisfies the condition $S(\xi, X) \cdot W_{2}=0$ then $\mu=\beta, \lambda=$ $2\left(\beta^{2}-\alpha^{2}\right)-\beta$ or $\mu=2\left(\beta^{2}-\alpha^{2}\right)+\beta, \quad \lambda=-\beta$.

Corollary 8.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condition $S(\xi, X) \cdot W_{2}=0$, there is no Ricci soliton with the potential vector field ξ.

Acknowledgement: The author wish to express her sincere thanks and gratitude to the referee for valuable suggestions towards the improvement of the paper.

References

[1] C. S. Bagewadi, G. Ingalahalli, S. R. Ashoka, A stuy on Ricci solitons in Kenmotsu Manifolds, ISRN Geometry, (2013), Article ID 412593, 6 pages.
[2] A. Bhattacharyya, T. Dutta, and S. Pahan, Ricci Soliton, Conformal Ricci Soliton And Torqued Vector Fields, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics,, Vol 10(59), No. 1 (2017), 39-52.
[3] A. M. Blaga, Eta-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications, Vol.20, No.1, 2015, pp. 1-13.
[4] C. Călin, M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex forms, Revue Roumaine de Math. Pures et app., 57 (1), (2012), 53-63.
[5] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan Journal of Geometry and Its Applications, Vol.19, No.1, 2014, pp. 13-21
[6] J.C. Cho, M. Kimura Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2), (2009), 205-2012.
[7] O. Chodosh, F. T.-H Fong, Rational symmetry of conical Kähler-Ricci solitons, Math. Ann., 364(2016), 777-792.
[8] A. Futaki, H. Ono, G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom. 83 (3), (2009), 585-636.
[9] S. Golab, On semi-symmetric and quarter-symmetric linear connection, Tensor. N. S., 29(1975), 249-254.
[10] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), 2, 7-136, International Press, Combridge, MA, 1995.
[11] R. S. Hamilton, The Ricci flow on surfaces, Mathematical and general relativity, Contemp. math, 71(1988), 237-261.
[12] G. Ingalahalli, C. S. Bagewadi, Ricci solitons on α-Sasakian Manifolds, ISRN Geometry, (2012), Article ID 421384, 13 pages.
[13] J. C. Marrero, Ihe local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl., (4), 162(1992), 77-86.
[14] J. Morgan, G. Tian, Ricci Flow and the Poincaŕe Conjecture, American Mathematical Society Clay Mathematics Institute, (2007).

CUBO

[15] J. A. Oubina, New classes of almost contact metric structures, pub. Math. Debrecen, 20 (1), (2015), 1-13.
[16] G. P. Pokhariyal, R. S. Mishra, The curvature tensors and their relativistic significance, Yokohama Math. J., 18(1970), 105-106.
[17] D. G. Prakasha, B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, Journal of Geometry, (2016), DOI: 10.1007/s00022-016-0345-z, pp 1-10.

