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ABSTRACT

In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the

general settings of measurable spaces and Lebesgue integral, which is a two functions

generalization of Gini mean difference that has been widely used by economists and

sociologists to measure economic inequality.

RESUMEN

En este art́ıculo establecemos algunas cotas para la (Φ, f)-diferencia media introdu-

cida en el contexto general de espacios medibles e integral de Lebesgue, que es una

generalización a dos funciones de la diferencia media de Gini que ha sido ampliamente

utilizada por economistas y sociólogos para medir desigualdad económica.
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1. Introduction

Let (Ω,A, ν) be a measurable space consisting of a set Ω, a σ -algebra A of subsets of Ω and

a countably additive and positive measure ν on A with values in R ∪ {∞} . For a ν-measurable

function w : Ω → R, with w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫
Ω
w (x)dν (x) = 1,

consider the Lebesgue space

Lw (Ω,ν) := {f : Ω → R, f is ν-measurable and

∫

Ω

w (x) |f (x)|dν (x) < ∞}.

Let I be an interval of real numbers and Φ : I → R a Lebesgue measurable function on I. For

f : Ω → I a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) we define the generalized (Φ, f)-mean

difference RG (Φ, f;w) by

RG (Φ, f;w) :=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y) (1.1)

and the generalized (Φ, f)-mean deviation MD (Φ, f;w) by

MD (Φ, f;w) :=

∫

Ω

w (x) |(Φ ◦ f) (x) − E (Φ, f;w)|dν (x) , (1.2)

where

E (Φ, f;w) :=

∫

Ω

(Φ ◦ f) (y)w (y)dν (y)

the generalized (Φ, f)-expectation.

If Φ = e, where e (t) = t, t ∈ R is the identity mapping, then we can consider the particular

cases of interest, the generalized f-mean difference

RG (f;w) := RG (e, f;w) =
1

2

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y) (1.3)

and the generalized f-mean deviation

MD (f;w) := MD (e, f;w) =

∫

Ω

w (x) |f (x) − E (f;w)|dν (x) , (1.4)

where E (f;w) :=
∫
Ω
f (y)w (y)dν (y) is the generalized f-expectation.

If Ω = [−∞,∞] and f = e then we have the usual mean difference

RG (w) := RG (f;w) =
1

2

∫
∞

−∞

∫
∞

−∞

w (x)w (y) |x − y|dxdy (1.5)

and the mean deviation

MD (w) := MD (f;w) =

∫

Ω

w (x) |x− E (w)|dx, (1.6)
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where w : R →[0,∞) is a density function, this means that w is integrable on R and
∫
∞

−∞
w (t)dt =

1, and

E (w) :=

∫
∞

−∞

xw (x)dx (1.7)

denote the expectation of w provided that the integral exists and is finite.

The mean difference RG (w) was proposed by Gini in 1912 [21], after whom it is usually named,

but was discussed by Helmert and other German writers in the 1870’s (cf. H. A. David [13], see

also [26, p. 48]). It has a certain theoretical attraction, being dependent on the spread of the

variate-values among themselves and not on the deviations from some central value ([26, p. 48]).

Further, its defining integral (1.5) may converge when that of the variance σ (w) ,

σ (w) :=

∫
∞

−∞

(x− E (w))
2
w (x)dx, (1.8)

does not. It is, however, more difficult to compute than the standard deviation.

For some recent results concerning integral representations and bounds for RG (w) see [5], [6],

[8] and [9].

For instance, if w : R →[0,∞) is a density function we define by

W (x) :=

∫x

−∞

w (t)dt, x ∈ R

its cumulative function. Then we have [5], [6]:

RG (w) = 2Cov (e,W) =

∫
∞

−∞

(1−W (y))W (y)dy

= 2

∫
∞

−∞

xw (x)W (x)dx− E (w)

= 2

∫
∞

−∞

(x − E (w)) (W (x) − γ)w (x)dx

= 2

∫
∞

−∞

(x − δ)

(

W (x) −
1

2

)

w (x)dx (1.9)

for any γ, δ ∈ R and [6]:

RG (w) =

∫
∞

−∞

∫
∞

−∞

(x− y) (W (x) −W (y))w (x)w (y)dxdy. (1.10)

With the above assumptions, we have the bounds [5]:

1

2
MD (w) ≤ RG (w) ≤ 2 sup

x∈R

|W (x) − γ|MD (w) ≤ MD (w) , (1.11)
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for any γ ∈ [0, 1] , where W (·) is the cumulative distribution of w and MD (w) is the mean

deviation.

Consider the n-tuple of real numbers a = (a1, ..., an) and p = (p1, ..., pn) a probability

distribution, i.e. pi ≥ 0 for each i ∈ {1, ..., n} with
∑n

i=1 pi = 1, then by taking Ω = {1, ..., n} and

the discrete measure, we can consider from (1.1) and (1.2) that (see [7])

RG (a;p) :=
1

2

n∑

i=1

n∑

j=1

pipj |Φ (ai) −Φ (aj)| , (1.12)

and

MD (a;p) :=
1

2

n∑

i=1

pi

∣

∣

∣

∣

∣

∣

Φ (ai) −

n∑

j=1

pjΦ (aj)

∣

∣

∣

∣

∣

∣

(1.13)

where a ∈ In := I× ...× I and Φ : I → R.

The quantity RG (a;p) has been defined in [7] and some results were obtained.

In the case when Φ = e, then we get the special case of Gini mean difference and mean

deviation of an empirical distribution that is particularly important for applications,

RG (a;p) :=
1

2

n∑

i=1

n∑

j=1

pipj |ai − aj| , (1.14)

and

MD (a;p) :=
1

2

n∑

i=1

pi

∣

∣

∣

∣

∣

∣

ai −

n∑

j=1

pjaj

∣

∣

∣

∣

∣

∣

. (1.15)

The following result incorporates an upper bound for the weighted Gini mean difference [7]:

For any a ∈ R
n and any p a probability distribution, we have the inequality:

1

2
MD (a;p) ≤ RG (a;p) ≤ ı́nf

γ∈R

[

n∑

i=1

pi |ai − γ|

]

≤ MD (a;p) . (1.16)

The constant 1
2
in the first inequality in (1.16) is sharp.

For some recent results for discrete Gini mean difference and mean deviation, see [7], [11], [14]

and [15].
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2. General Bounds

We have:

Theorem 1. Let I be an interval of real numbers and Φ : I → R a Lebesgue measurable function

on I. If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and if f : Ω → I is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

1

2
MD (Φ, f;w) ≤ RG (Φ, f;w) ≤ I (Φ, f;w) ≤ MD (Φ, f;w) , (2.1)

where

I (Φ, f;w) := ı́nf
γ∈R

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) . (2.2)

Demostración. Using the properties of the integral, we have

RG (Φ, f;w)

=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≥
1

2

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x)

∫

Ω

w (y)dν (y) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

=
1

2

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

=
1

2
MD (Φ, f;w)

and the first inequality in (2.1) is proved.

By the triangle inequality for modulus we have

|(Φ ◦ f) (x) − (Φ ◦ f) (y)| = |(Φ ◦ f) (x) − γ+ γ− (Φ ◦ f) (y)| (2.3)

≤ |(Φ ◦ f) (x) − γ|+ |(Φ ◦ f) (y) − γ|

for any x, y ∈ Ω and γ ∈ R.
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Now, if we multiply (2.3) by 1
2
w (x)w (y) and integrate, we get

RG (Φ, f;w)

=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≤
1

2

∫

Ω

∫

Ω

w (x)w (y) [|(Φ ◦ f) (x) − γ|+ |(Φ ◦ f) (y) − γ|]dν (x)dν (y)

=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − γ|dν (x)dν (y)

+
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (y) − γ|dν (x)dν (y)

=
1

2

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) +
1

2

∫

Ω

w (y) |(Φ ◦ f) (y) − γ|dν (y)

=

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) (2.4)

for any γ ∈ R.

Taking the infimum over γ ∈ R in (2.4) we get the second part of (2.1).

Since, obviously

I (Φ, f;w) = ı́nf
γ∈R

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x)

≤

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

= MD (Φ, f;w) ,

the last part of (2.1) is thus proved.

By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if (Φ ◦ f)
2
∈ Lw (Ω,ν) , then we have

[∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

]2

≤

∫

Ω

w (x)

[

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

]2

dν (x)

=

∫

Ω

w (x) (Φ ◦ f)
2
(x)dν (x)

− 2

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∫

Ω

w (x) (Φ ◦ f) (x)dν (x)

+

[∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

]2 ∫

Ω

w (x)dν (x)

=

∫

Ω

w (x) (Φ ◦ f)
2
(x)dν (x) −

[∫

Ω

w (x) (Φ ◦ f) (x)dν (x)

]2

.
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By considering the generalized (Φ, f)-dispersion

σ (Φ, f;w) :=

(∫

Ω

w (x) (Φ ◦ f)
2
(x)dν (x) −

[∫

Ω

w (x) (Φ ◦ f) (x)dν (x)

]2
)1/2

,

then we have

MD (Φ, f;w) ≤ σ (Φ, f;w) (2.5)

provided (Φ ◦ f)
2
∈ Lw (Ω,ν).

If there exists the constants m, M so that

−∞ < m ≤ Φ (t) ≤ M < ∞ for almost any t ∈ I (2.6)

then by the reverse CBS inequality

σ (Φ, f;w) ≤
1

2
(M−m) , (2.7)

by (2.1) and by (2.5) we can state the following result:

Corollary 1. Let I be an interval of real numbers and Φ : I → R a Lebesgue measurable function on

I satisfying the condition (2.6) for some constants m, M. If w : Ω → R is a ν-measurable function

with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and if f : Ω → I is a ν-measurable

function with (Φ ◦ f)
2
∈ Lw (Ω,ν) , then we have the chain of inequalities

1

2
MD (Φ, f;w) ≤ RG (Φ, f;w) ≤ I (Φ, f;w) ≤ MD (Φ, f;w)

≤ σ (Φ, f;w) ≤
1

2
(M−m) . (2.8)

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16) while for the

univariate case with
∫
∞

−∞
w (t)dt = 1 we have

1

2
MD (w) ≤ RG (w) ≤ I (w) ≤ MD (w) ≤ σ (Φ, f;w) (2.9)

where

I (w) := ı́nf
γ∈R

∫
∞

−∞

w (x) |x− γ|dx. (2.10)

If w is supported on the finite interval [a, b] , namely
∫b

a
w (x)dx = 1, then we have the chain

of inequalities

1

2
MD (w) ≤ RG (w) ≤ I (w) ≤ MD (w) ≤ σ (Φ, f;w) ≤

1

2
(M−m) . (2.11)
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3. Bounds for Various Classes of Functions

In the case of functions of bounded variation we have:

Theorem 2. Let Φ : [a, b] → R be a function of bounded variation on the closed interval [a, b] .

If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1

and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w) ≤
1

2

b
∨

a

(Φ) , (3.1)

where
∨b

a (Φ) is the total variation of Φ on [a, b] .

Demostración. Using the inequality (2.4) we have

RG (Φ, f;w) ≤

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) (3.2)

for any γ ∈ R.

By the triangle inequality, we have
∣

∣

∣

∣

(Φ ◦ f) (x) −
1

2
[Φ (a) +Φ (b)]

∣

∣

∣

∣

≤
1

2
|Φ (a) −Φ (f (x))|+

1

2
|Φ (b) −Φ (f (x))| (3.3)

for any x ∈ Ω.

Since Φ : [a, b] → R is of bounded variation and d is a division of [a, b] , namely

d ∈ D ([a, b]) := {d := {a = t0 < t1 < ... < tn = b}} ,

then
b
∨

a

(Φ) = sup
d∈D([a,b])

n−1∑

i=0

|Φ (ti+1) −Φ (ti)| < ∞.

Taking the division d0 := {a = t0 < t < t2 = b} we then have

|Φ (t) −Φ (a)|+ |Φ (b) −Φ (t)| ≤

b
∨

a

(Φ)

for any t ∈ [a, b] and then

|Φ (f (x)) −Φ (a)|+ |Φ (b) −Φ (f (x))| ≤

b
∨

a

(Φ) (3.4)

for any x ∈ Ω.
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On making use of (3.3) and (3.4) we get

∣

∣

∣

∣

(Φ ◦ f) (x) −
1

2
[Φ (a) +Φ (b)]

∣

∣

∣

∣

≤
1

2

b
∨

a

(Φ) (3.5)

for any x ∈ Ω.

If we multiply (3.5) by w (x) and integrate, then we obtain

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −
1

2
[Φ (a) +Φ (b)]

∣

∣

∣

∣

≤
1

2

b
∨

a

(Φ) . (3.6)

Finally, by choosing γ = 1
2
[Φ (a) +Φ (b)] in (3.2) and making use of (3.6) we deduce the

desired result (3.1).

In the case of absolutely continuous functions we have:

Theorem 3. Let Φ : [a, b] → R be an absolutely continuous function on the closed interval [a, b] .

If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1

and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w) ≤






‖Φ′‖[a,b],∞ RG (f;w) if Φ′ ∈ L∞ ([α,β]) ,

1
21/p ‖Φ′‖[a,b],p R

1/q
G (f;w) if Φ′ ∈ Lp ([α,β]) ,

p > 1, 1
p
+ 1

q
= 1,

(3.7)

where the Lebesgue norms are defined by

‖g‖[α,β],p :=






essupt∈[α,β] |g (t)| if p = ∞,

(∫β
α
|g (t)|

p
dt
)1/p

if p ≥ 1

and Lp ([α,β]) :=
{
g| g measurable and ‖g‖[α,β],p < ∞

}
, p ∈ [1,∞] .

Demostración. Since f is absolutely continuous, then we have

Φ (t) −Φ (s) =

∫t

s

Φ′ (u)du

for any t, s ∈ [a, b] .

Using the Hölder integral inequality we have

|Φ (t) −Φ (s)| =

∣

∣

∣

∣

∫t

s

Φ′ (u)du

∣

∣

∣

∣

≤






‖Φ′‖[a,b],∞ |t− s| if p = ∞,

‖Φ′‖[a,b],p |t− s|
1/q if p > 1, 1

p
+ 1

q
= 1

(3.8)
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for any t, s ∈ [a, b] .

Using (3.8) we then have

|(Φ ◦ f) (x) − (Φ ◦ f) (y)|

≤






‖Φ′‖[a,b],∞ |f (x) − f (y)| if p = ∞,

‖Φ′‖[a,b],p |f (x) − f (y)|
1/q

if p > 1, 1
p
+ 1

q
= 1

(3.9)

for any x, y ∈ Ω.

If we multiply (3.9) by 1
2
w (x)w (y) and integrate, then we get

1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≤






1
2
‖Φ′‖[a,b],∞

∫
Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|dν (x)dν (y) if p = ∞,

1
2
‖Φ′‖[a,b],p

∫
Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|

1/q
dν (x)dν (y)

if p > 1, 1
p
+ 1

q
= 1.

(3.10)

This proves the first branch of (3.7).

Using Jensen’s integral inequality for concave function Ψ (t) = ts, s ∈ (0, 1) we have for

s = 1
q
< 1 that

∫
Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|

1/q
dν (x)dν (y)

≤
(∫

Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q
,

which implies that

1

2
‖Φ′‖[a,b],p

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|
1/q

dν (x)dν (y)

≤
1

2
‖Φ′‖[a,b],p

(∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q

= ‖Φ′‖[a,b],p

(

1

2q

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q

= ‖Φ′‖[a,b],p

(

1

2q−1

1

2

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q

=
1

2
q−1
q

‖Φ′‖[a,b],p (RG (f;w))
1/q

=
1

21/p
‖Φ′‖[a,b],p R

1/q
G (f;w)

and the second part of (3.7) is proved.

The function Φ : [a, b] → R is called of r-H-Hölder type with the given constants r ∈ (0, 1]

and H > 0 if

|Φ (t) −Φ (s)| ≤ H |t− s|
r
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for any t, s ∈ [a, b] .

In the case when r = 1, namely, there is the constant L > 0 such that

|Φ (t) −Φ (s)| ≤ L |t− s|

for any t, s ∈ [a, b] , the function Φ is called L-Lipschitzian on [a, b] .

We have:

Theorem 4. Let Φ : [a, b] → R be a function of r-H-Hölder type on the closed interval [a, b] . If

w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν-a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1

and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w) ≤
1

21−r
HRr

G (f;w) . (3.11)

In particular, if Φ is L-Lipschitzian on [a, b] , then

RG (Φ, f;w) ≤ LRG (f;w) . (3.12)

Demostración. We have

|(Φ ◦ f) (x) − (Φ ◦ f) (y)| ≤ H |f (x) − f (y)|
r (3.13)

for any x, y ∈ Ω.

If we multiply (3.13) by 1
2
w (x)w (y) and integrate, then we get

1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≤
1

2
H

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|
r
dν (x)dν (y) . (3.14)

By Jensen’s integral inequality for concave functions we also have
∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|
r
dν (x)dν (y)

≤

(∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)r

.
(3.15)

Therefore, by (3.14) and (3.15) we get

RG (Φ, f;w) ≤
1

2
H

(∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)r

=
1

21−r
H

(

1

2

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)r

=
1

21−r
HRr

G (f;w)

and the inequality (3.11) is proved.
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We have:

Theorem 5. Let Φ, Ψ : [a, b] → R be continuos functions on [a, b] and differentiable on (a, b) with

Ψ′ (t) 6= 0 for t ∈ (a, b) . If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω

and
∫
Ω
w (x)dν (x) = 1 and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) ,

then

ı́nf
t∈(a,b)

∣

∣

∣

∣

Φ′ (t)

Ψ′ (t)

∣

∣

∣

∣

RG (Ψ, f;w) ≤ RG (Φ, f;w) ≤ sup
t∈(a,b)

∣

∣

∣

∣

Φ′ (t)

Ψ′ (t)

∣

∣

∣

∣

RG (Ψ, f;w) . (3.16)

Demostración. By the Cauchy’s mean value theorem, for any t, s ∈ [a, b] with t 6= s there exists

a ξ between t and s such that

Φ (t) −Φ (s)

Ψ (t) − Ψ (s)
=

Φ′ (ξ)

Ψ′ (ξ)
.

This implies that

ı́nf
τ∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (t) − Ψ (s)| ≤ |Φ (t) −Φ (s)|

≤ sup
τ∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (t) − Ψ (s)| (3.17)

for any t, s ∈ [a, b] .

Therefore, we have

ı́nfτ∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (f (x)) − Ψ (f (y))| ≤ |Φ (f (x)) −Φ (f (y))|

≤ supt∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (f (x)) − Ψ (f (y))|

(3.18)

for any x, y ∈ Ω.

If we multiply (3.18) by 1
2
w (x)w (y) and integrate, we get the desired result (3.16).

Corollary 2. Let Φ : [a, b] → R be a continuos function on [a, b] and differentiable on (a, b) . If

w is as in Theorem 5, then we have

ı́nf
t∈(a,b)

|Φ′ (t)|RG (f;w) ≤ RG (Φ, f;w) ≤ sup
t∈(a,b)

|Φ′ (t)|RG (f;w) . (3.19)

We also have:

Theorem 6. Let Φ : [a, b] → R be an absolutely continuous function on the closed interval [a, b] .

If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1
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and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w)

≤






‖Φ′‖[a,b],∞ M (f;w) if p = ∞,

‖Φ′‖[a,b],p M1/q (f;w) if p > 1, 1
p
+ 1

q
= 1

≤






1
2
(b− a) ‖Φ′‖[a,b],∞ if p = ∞,

1
21/q (b− a)

1/q ‖Φ′‖[a,b],p if p > 1, 1
p
+ 1

q
= 1,

(3.20)

where M (f;w) is defined by

M (f;w) :=

∫

Ω

w (x)

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

dν (x) . (3.21)

Demostración. From the inequality (3.8) we have

∣

∣(Φ ◦ f) (x) −Φ
(

a+b
2

)∣

∣

≤






‖Φ′‖[a,b],∞

∣

∣f (x) − a+b
2

∣

∣ if p = ∞,

‖Φ′‖[a,b],p

∣

∣f (x) − a+b
2

∣

∣

1/q
if p > 1, 1

p
+ 1

q
= 1

(3.22)

for any x ∈ Ω.

Now, if we multiply (3.22) by w (x) and integrate, then we get

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −Φ

(

a+ b

2

)∣

∣

∣

∣

dν (x)

≤






‖Φ′‖[a,b],∞

∫
Ω
w (x)

∣

∣f (x) − a+b
2

∣

∣dν (x) if p = ∞,

‖Φ′‖[a,b],p

∫
Ω
w (x)

∣

∣f (x) − a+b
2

∣

∣

1/q
dν (x) if p > 1, 1

p
+ 1

q
= 1.

(3.23)

By Jensen’s integral inequality for concave functions we have

∫

Ω

w (x)

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

1/q

dν (x) ≤

(∫

Ω

w (x)

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

dν (x)

)1/q

. (3.24)

On making use of (3.2), (3.23) and (3.24) we get the first inequality in (3.20).

The last part of (3.20) follows by the fact that

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

≤
1

2
(b− a)

for any x ∈ Ω.
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4. Bounds for Special Convexity

When some convexity properties for the function Φ are assumed, then other bounds can be

derived as follows.

Theorem 7. Let w : Ω → R be a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and f : Ω → [a, b] be a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) . Assume

also that Φ : [a, b] → R is a continuous function on [a, b] .

(i) If |Φ| is concave on [a, b] , then

RG (Φ, f;w) ≤ |Φ (E (f;w))| , (4.1)

(ii) If |Φ| is convex on [a, b] , then

RG (Φ, f;w) ≤
1

b− a
[(b− E (f;w)) |Φ (a)|+ (E (f;w) − a)Φ |(b)|] . (4.2)

Demostración. (i) If |Φ| is concave on [a, b] , then by Jensen’s inequality we have
∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) ≤

∣

∣

∣

∣

Φ

(∫

Ω

w (x) f (x)dν (x)

)
∣

∣

∣

∣

. (4.3)

From (3.2) for γ = 0 we also have

RG (Φ, f;w) ≤

∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) . (4.4)

This is an inequality of interest in itself.

On utilizing (4.3) and (4.4) we get (4.1).

(ii) Since |Φ| is convex on [a, b] , then for any t ∈ [a, b] we have

|Φ (t)| =

∣

∣

∣

∣

Φ

(

(b − t)a+ b (t− a)

b − a

)∣

∣

∣

∣

≤
(b− t) |Φ (a)|+ (t− a)Φ |(b)|

b− a
.

This implies that

|(Φ ◦ f) (x)| ≤
(b− f (x)) |Φ (a)|+ (f (x) − a)Φ |(b)|

b− a
(4.5)

for any x ∈ Ω.

If we multiply (4.5) by w (x) and integrate, then we get
∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x)

≤
1

b − a

[(

b

∫

Ω

w (x)dν (x) −

∫

Ω

w (x) f (x)dν (x)

)

|Φ (a)|

+

(∫

Ω

w (x) f (x)dν (x) − a

∫

Ω

w (x)dν (x)

)

Φ |(b)|

]

,

which, together with (4.4), produces the desired result (4.2).
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In order to state other results we need the following definitions:

Definition 1 ([19]). We say that a function f : I → R belongs to the class P (I) if it is nonnegative

and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t)y) ≤ f (x) + f (y) .

It is important to note that P (I) contains all nonnegative monotone, convex and quasi convex

functions, i.e. functions satisfying

f (tx+ (1− t)y) ≤ máx {f (x) , f (y)}

for all x, y ∈ I and t ∈ [0, 1] .

For some results on P-functions see [19] and [28] while for quasi convex functions, the reader

can consult [18].

Definition 2 ([3]). Let s be a real number, s ∈ (0, 1]. A function f : [0,∞) → [0,∞) is said to be

s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t)y) ≤ tsf (x) + (1− t)
s
f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25], [27] and [29].

Theorem 8. Let w : Ω → R be a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and f : Ω → [a, b] be a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) . Assume

also that Φ : [a, b] → R is a continuous function on [a, b] .

(i) If |Φ| belongs to the class P on [a, b] , then

RG (Φ, f;w) ≤ |Φ (a)|+Φ |(b)| ; (4.6)

(ii) If |Φ| is quasi convex on [a, b] , then

RG (Φ, f;w) ≤ máx {|Φ (a)| , Φ |(b)|} ; (4.7)

(iii) If |Φ| is Breckner s-convex on [a, b] , then

RG (Φ, f;w) ≤
1

(b− a)
s

[

|Φ (a)|

∫

Ω

w (x) (b − f (x))
s
dν (x)

+Φ |(b)|

∫

Ω

w (x) (f (x) − a)
s
dν (x)

]

≤
1

(b− a)
s

[

|Φ (a)| (b− E (f;w))
s
dν (x)

+Φ |(b)| (E (f;w) − a)
s
dν (x)

]

. (4.8)
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Demostración. (i) Since |Φ| belongs to the class P on [a, b] , then for any t ∈ [a, b] we have

|Φ (t)| =

∣

∣

∣

∣

Φ

(

(b− t)a+ b (t− a)

b− a

)
∣

∣

∣

∣

≤ |Φ (a)|+Φ |(b)| .

This implies that

|(Φ ◦ f) (x)| ≤ |Φ (a)|+Φ |(b)| (4.9)

for any x ∈ Ω.

If we multiply (4.9) by w (x) and integrate, then we get

∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) ≤ |Φ (a)|+Φ |(b)| , (4.10)

which, together with (4.4), produces the desired result (4.6).

(ii) Goes in a similar way.

(iii) By Breckner s-convexity we have

|Φ (t)| =

∣

∣

∣

∣

Φ

(

(b − t)a+ b (t− a)

b− a

)
∣

∣

∣

∣

≤

(

b− t

b− a

)s

|Φ (a)|+

(

t− a

b − a

)s

Φ |(b)|

for any t ∈ [a, b] .

This implies that

|(Φ ◦ f) (x)| ≤
1

(b− a)
s

[

(b − f (x))
s
|Φ (a)| + (f (x) − a)

s
Φ |(b)|

]

(4.11)

for any x ∈ Ω.

If we multiply (4.11) by w (x) and integrate, then we get

∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) ≤
1

(b− a)
s

[

|Φ (a)|

∫

Ω

w (x) (b − f (x))
s
dν (x)

+Φ |(b)|

∫

Ω

w (x) (f (x) − a)
s
dν (x)

]

, (4.12)

which, together with (4.4), produces the first part of (4.8).

The last part follows by Jensen’s integral inequality for concave functions, namely

∫

Ω

w (x) (b− f (x))
s
dν (x) ≤

(

b−

∫

Ω

w (x) f (x)dν (x)

)s

and ∫

Ω

w (x) (f (x) − a)
s
dν (x) ≤

(∫

Ω

w (x) f (x)dν (x) − a

)s

,

where s ∈ (0, 1) .
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5. Some Examples

Let f : Ω → [0,∞) be a ν-measurable function and w : Ω → R a ν-measurable function with

w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1. We define, for the function Φ (t) = tp, p > 0,

the generalized (p, f)-mean difference RG (p, f;w) by

RG (p, f;w) :=
1

2

∫

Ω

∫

Ω

w (x)w (y) |fp (x) − fp (y)|dν (x)dν (y) (5.1)

and the generalized (p, f)-mean deviation MD (p, f;w) by

MD (p, f;w) :=

∫

Ω

w (x) |fp (x) − E (p, f;w)|dν (x) , (5.2)

where

E (p, f;w) :=

∫

Ω

fp (y)w (y)dν (y) (5.3)

is the generalized (p, f)-expectation.

If f : Ω → [a, b] ⊂ [0,∞) is a ν-measurable function, then by (3.1) we have

RG (p, f;w) ≤
1

2
(bp − ap) . (5.4)

By (3.7) we have

RG (p, f;w) ≤ pδp (a, b)RG (f;w) , (5.5)

where

δp (a, b) :=






bp−1 if p ≥ 1,

ap−1 if p ∈ (0, 1)

and

RG (p, f;w) ≤
p

21/α

[

bα(p−1)+1 − aα(p−1)+1

α (p − 1) + 1

]1/α

R
1/β
G (f;w) , (5.6)

where α > 1, 1
α
+ 1

β
= 1.

From (3.20) we also have

RG (p, f;w)

≤






δp (a, b)M (f;w) ,

p
(

bα(p−1)+1−aα(p−1)+1

α(p−1)+1

)1/α

M1/β (f;w) if α > 1, 1
α
+ 1

β
= 1

≤






1
2
(b− a) δp (a, b) ,

1
21/β (b− a)

1/β
p
(

bα(p−1)+1−aα(p−1)+1

α(p−1)+1

)1/α

if α > 1, 1
α
+ 1

β
= 1,

(5.7)
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where M (f;w) is defined by (3.21).

If p ∈ (0, 1) , then the function |Φ (t)| = tp is concave on [a, b] ⊂ [0,∞) and by (4.1) we have

RG (p, f;w) ≤ Ep (f;w) . (5.8)

For p ≥ 1 the function |Φ (t)| = tp is convex on [a, b] ⊂ [0,∞) and by (4.2) we have

RG (p, f;w) ≤
1

b − a
[(b− E (f;w))ap + (E (f;w) − a)bp] . (5.9)

Let f : Ω → [0,∞) be a ν-measurable function and w : Ω → R a ν-measurable function with

w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1. We define, for the function Φ (t) = ln t, the

generalized (ln, f)-mean difference RG (ln, f;w) by

RG (ln, f;w) :=
1

2

∫

Ω

∫

Ω

w (x)w (y) |ln f (x) − ln f (y)|dν (x)dν (y) (5.10)

and the generalized (p, f)-mean deviation MD (ln, f;w) by

MD (ln, f;w) :=

∫

Ω

w (x) |ln f (x) − E (ln, f;w)|dν (x) , (5.11)

where

E (ln, f;w) :=

∫

Ω

w (y) ln f (y)dν (y) (5.12)

is the generalized (ln, f)-expectation.

If f : Ω → [a, b] ⊂ [0,∞) is a ν-measurable function, then by (3.1) we have

RG (ln, f;w) ≤
1

2
(lnb − lna) . (5.13)

By (3.7) we have

RG (ln, f;w)

≤






1
a
RG (f;w) ,

1
21/p

(

bp−1−ap−1

(p−1)bp−1ap−1

)1/p

R
1/q
G (f;w) if p > 1, 1

p
+ 1

q
= 1.

(5.14)

By (3.20) we have

RG (ln, f;w)

≤






1
a
M (f;w) ,

(

bp−1−ap−1

(p−1)bp−1ap−1

)1/p

M1/q (f;w) if p > 1, 1
p
+ 1

q
= 1

≤






1
2

(

b
a
− 1
)

,

1
21/q (b− a)

1/q
(

bp−1−ap−1

(p−1)bp−1ap−1

)1/p

if p > 1, 1
p
+ 1

q
= 1.

(5.15)
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Now, observe that the function |Φ (t)| = |ln t| is convex on (0, 1) and concave on [1,∞). If

f : Ω → [a, b] ⊂ (0, 1) is a ν-measurable function, then by (4.2) we have

RG (ln, f;w) ≤
1

b− a
[(b− E (f;w)) |lna|+ (E (f;w) − a) |lnb|] (5.16)

and if f : Ω → [a, b] ⊂ [1,∞), then by (4.1) we have

RG (ln, f;w) ≤ ln (E (f;w)) . (5.17)

The interested reader may state similar bounds for functions Φ such as Φ (t) = exp t, t ∈ R

or Φ (t) = t ln t, t > 0. We omit the details.
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