Bounds for the Generalized ($\Phi, \mathrm{f})$-Mean Difference

Silvestru Sever Dragomir ${ }^{1,2}$
${ }^{1}$ Mathematics, College of Engineering \&s Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.
sever.dragomir@vu.edu.au, http://rgmia.org/dragomir
${ }^{2}$ School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

Abstract

In this paper we establish some bounds for the ($\Phi, \mathbf{f})$-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.

RESUMEN

En este artículo establecemos algunas cotas para la ($\Phi, \mathrm{f})$-diferencia media introducida en el contexto general de espacios medibles e integral de Lebesgue, que es una generalización a dos funciones de la diferencia media de Gini que ha sido ampliamente utilizada por economistas y sociólogos para medir desigualdad económica.

Keywords and Phrases: Gini mean difference, Mean deviation, Lebesgue integral, Expectation, Jensen's integral inequality.

2010 AMS Mathematics Subject Classification: 26D15; 26D10; 94A17.

1. Introduction

Let (Ω, \mathcal{A}, v) be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of subsets of Ω and a countably additive and positive measure v on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. For a v-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for v-a.e. (almost every) $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$, consider the Lebesgue space

$$
\mathrm{L}_{w}(\Omega, v):=\left\{\mathrm{f}: \Omega \rightarrow \mathbb{R}, \mathrm{f} \text { is } v \text {-measurable and } \int_{\Omega} w(\mathrm{x})|\mathrm{f}(\mathrm{x})| \mathrm{d} v(\mathrm{x})<\infty\right\}
$$

Let I be an interval of real numbers and $\Phi: I \rightarrow \mathbb{R}$ a Lebesgue measurable function on I. For $\mathrm{f}: \Omega \rightarrow \mathrm{I}$ a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$ we define the generalized ($\left.\Phi, \mathrm{f}\right)$-mean difference $\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; \boldsymbol{w})$ by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w):=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(\mathrm{x}) w(\mathrm{y})|(\Phi \circ \mathrm{f})(\mathrm{x})-(\Phi \circ \mathrm{f})(\mathrm{y})| \mathrm{d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y}) \tag{1.1}
\end{equation*}
$$

and the generalized (Φ, f)-mean deviation $M_{D}(\Phi, f ; w)$ by

$$
\begin{equation*}
M_{\mathrm{D}}(\Phi, f ; w):=\int_{\Omega} w(x)|(\Phi \circ f)(x)-E(\Phi, f ; w)| d v(x) \tag{1.2}
\end{equation*}
$$

where

$$
\mathrm{E}(\Phi, \mathrm{f} ; w):=\int_{\Omega}(\Phi \circ \mathrm{f})(\mathrm{y}) w(\mathrm{y}) \mathrm{d} v(\mathrm{y})
$$

the generalized ($\Phi, \mathrm{f})$-expectation.
If $\Phi=e$, where $e(t)=t, t \in \mathbb{R}$ is the identity mapping, then we can consider the particular cases of interest, the generalized f -mean difference

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\mathrm{f} ; w):=\mathrm{R}_{\mathrm{G}}(e, \mathrm{f} ; w)=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(\mathrm{y})|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})| \mathrm{d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y}) \tag{1.3}
\end{equation*}
$$

and the generalized f -mean deviation

$$
\begin{equation*}
M_{D}(f ; w):=M_{D}(e, f ; w)=\int_{\Omega} w(x)|f(x)-E(f ; w)| d v(x) \tag{1.4}
\end{equation*}
$$

where $E(f ; w):=\int_{\Omega} f(y) w(y) d v(y)$ is the generalized f-expectation.
If $\Omega=[-\infty, \infty]$ and $f=e$ then we have the usual mean difference

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(w):=\mathrm{R}_{\mathrm{G}}(\mathrm{f} ; w)=\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(x) w(\mathrm{y})|x-y| \mathrm{d} x \mathrm{~d} y \tag{1.5}
\end{equation*}
$$

and the mean deviation

$$
\begin{equation*}
M_{\mathrm{D}}(w):=M_{\mathrm{D}}(\mathrm{f} ; w)=\int_{\Omega} w(x)|x-E(w)| \mathrm{d} x \tag{1.6}
\end{equation*}
$$

where $w: \mathbb{R} \rightarrow[0, \infty)$ is a density function, this means that w is integrable on \mathbb{R} and $\int_{-\infty}^{\infty} w(t) d t=$ 1 , and

$$
\begin{equation*}
\mathrm{E}(w):=\int_{-\infty}^{\infty} x w(x) \mathrm{d} x \tag{1.7}
\end{equation*}
$$

denote the expectation of w provided that the integral exists and is finite.
The mean difference $\mathrm{R}_{\mathrm{G}}(w)$ was proposed by Gini in 1912 [21], after whom it is usually named, but was discussed by Helmert and other German writers in the 1870's (cf. H. A. David [13], see also [26, p. 48]). It has a certain theoretical attraction, being dependent on the spread of the variate-values among themselves and not on the deviations from some central value ([26, p. 48]). Further, its defining integral (1.5) may converge when that of the variance $\sigma(w)$,

$$
\begin{equation*}
\sigma(w):=\int_{-\infty}^{\infty}(x-E(w))^{2} w(x) d x \tag{1.8}
\end{equation*}
$$

does not. It is, however, more difficult to compute than the standard deviation.
For some recent results concerning integral representations and bounds for $\mathrm{R}_{\mathrm{G}}(w)$ see [5], [6], [8] and [9].

For instance, if $w: \mathbb{R} \rightarrow[0, \infty)$ is a density function we define by

$$
W(x):=\int_{-\infty}^{x} w(t) d t, \quad x \in \mathbb{R}
$$

its cumulative function. Then we have [5], [6]:

$$
\begin{align*}
\mathrm{R}_{\mathrm{G}}(w) & =2 \operatorname{Cov}(e, W)=\int_{-\infty}^{\infty}(1-W(y)) W(y) d y \\
& =2 \int_{-\infty}^{\infty} x w(x) W(x) d x-E(w) \\
& =2 \int_{-\infty}^{\infty}(x-E(w))(W(x)-\gamma) w(x) d x \\
& =2 \int_{-\infty}^{\infty}(x-\delta)\left(W(x)-\frac{1}{2}\right) w(x) d x \tag{1.9}
\end{align*}
$$

for any $\gamma, \delta \in \mathbb{R}$ and [6]:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(w)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-y)(W(x)-W(y)) w(x) w(y) d x d y \tag{1.10}
\end{equation*}
$$

With the above assumptions, we have the bounds [5]:

$$
\begin{equation*}
\frac{1}{2} M_{\mathrm{D}}(w) \leq \mathrm{R}_{\mathrm{G}}(w) \leq 2 \sup _{x \in \mathbb{R}}|W(x)-\gamma| M_{\mathrm{D}}(w) \leq M_{\mathrm{D}}(w) \tag{1.11}
\end{equation*}
$$

for any $\gamma \in[0,1]$, where $W(\cdot)$ is the cumulative distribution of w and $M_{D}(w)$ is the mean deviation.

Consider the n-tuple of real numbers $a=\left(a_{1}, \ldots, a_{n}\right)$ and $p=\left(p_{1}, \ldots, p_{n}\right)$ a probability distribution, i.e. $p_{i} \geq 0$ for each $i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$, then by taking $\Omega=\{1, \ldots, n\}$ and the discrete measure, we can consider from (1.1) and (1.2) that (see [7])

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\mathrm{a} ; \mathrm{p}):=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i} p_{j}\left|\Phi\left(a_{i}\right)-\Phi\left(a_{j}\right)\right| \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{D}(a ; p):=\frac{1}{2} \sum_{i=1}^{n} p_{i}\left|\Phi\left(a_{i}\right)-\sum_{j=1}^{n} p_{j} \Phi\left(a_{j}\right)\right| \tag{1.13}
\end{equation*}
$$

where $a \in I^{n}:=\mathrm{I} \times \ldots \times \mathrm{I}$ and $\Phi: \mathrm{I} \rightarrow \mathbb{R}$.
The quantity $\mathrm{R}_{\mathrm{G}}(\mathrm{a} ; \mathrm{p})$ has been defined in $[7]$ and some results were obtained.
In the case when $\Phi=e$, then we get the special case of Gini mean difference and mean deviation of an empirical distribution that is particularly important for applications,

$$
\begin{equation*}
R_{G}(a ; p):=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i} p_{j}\left|a_{i}-a_{j}\right| \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{D}(a ; p):=\frac{1}{2} \sum_{i=1}^{n} p_{i}\left|a_{i}-\sum_{j=1}^{n} p_{j} a_{j}\right| \tag{1.15}
\end{equation*}
$$

The following result incorporates an upper bound for the weighted Gini mean difference [7]:
For any $a \in \mathbb{R}^{n}$ and any p a probability distribution, we have the inequality:

$$
\begin{equation*}
\frac{1}{2} M_{D}(a ; p) \leq R_{G}(a ; p) \leq \inf _{\gamma \in \mathbb{R}}\left[\sum_{i=1}^{n} p_{i}\left|a_{i}-\gamma\right|\right] \leq M_{D}(a ; p) \tag{1.16}
\end{equation*}
$$

The constant $\frac{1}{2}$ in the first inequality in (1.16) is sharp.
For some recent results for discrete Gini mean difference and mean deviation, see [7], [11], [14] and [15].

2. General Bounds

We have:

Theorem 1. Let I be an interval of real numbers and $\Phi: \mathrm{I} \rightarrow \mathbb{R}$ a Lebesgue measurable function on I. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $\mathcal{w}(x) \geq 0$ for v-a.e. (almost every) $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$ and if $\mathrm{f}: \Omega \rightarrow \mathrm{I}$ is a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$, then

$$
\begin{equation*}
\frac{1}{2} M_{\mathrm{D}}(\Phi, f ; w) \leq \mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \leq \mathrm{I}(\Phi, f ; w) \leq M_{\mathrm{D}}(\Phi, f ; w) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{I}(\Phi, f ; w):=\inf _{\gamma \in \mathbb{R}} \int_{\Omega} w(x)|(\Phi \circ f)(x)-\gamma| d v(x) \tag{2.2}
\end{equation*}
$$

Demostración. Using the properties of the integral, we have

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \\
& =\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|(\Phi \circ f)(x)-(\Phi \circ f)(y)| d v(x) d v(y) \\
& \geq \frac{1}{2} \int_{\Omega} w(x)\left|(\Phi \circ f)(x) \int_{\Omega} w(y) d v(y)-\int_{\Omega} w(y)(\Phi \circ f)(y) d v(y)\right| d v(x) \\
& =\frac{1}{2} \int_{\Omega} w(x)\left|(\Phi \circ f)(x)-\int_{\Omega} w(y)(\Phi \circ f)(y) d v(y)\right| d v(x) \\
& =\frac{1}{2} M_{D}(\Phi, f ; w)
\end{aligned}
$$

and the first inequality in (2.1) is proved.
By the triangle inequality for modulus we have

$$
\begin{align*}
|(\Phi \circ f)(x)-(\Phi \circ f)(y)| & =|(\Phi \circ f)(x)-\gamma+\gamma-(\Phi \circ f)(y)| \tag{2.3}\\
& \leq|(\Phi \circ f)(x)-\gamma|+|(\Phi \circ f)(y)-\gamma|
\end{align*}
$$

for any $x, y \in \Omega$ and $\gamma \in \mathbb{R}$.

Now, if we multiply (2.3) by $\frac{1}{2} w(x) w(y)$ and integrate, we get

$$
\begin{align*}
& \mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \\
& =\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|(\Phi \circ f)(x)-(\Phi \circ f)(y)| \mathrm{d} v(x) \mathrm{d} v(\mathrm{y}) \\
& \leq \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)[|(\Phi \circ f)(x)-\gamma|+|(\Phi \circ f)(y)-\gamma|] \mathrm{d} v(x) d v(y) \\
& =\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|(\Phi \circ f)(x)-\gamma| d v(x) d v(y) \\
& +\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|(\Phi \circ f)(y)-\gamma| d v(x) d v(y) \\
& =\frac{1}{2} \int_{\Omega} w(x)|(\Phi \circ f)(x)-\gamma| d v(x)+\frac{1}{2} \int_{\Omega} w(y)|(\Phi \circ f)(y)-\gamma| d v(y) \\
& =\int_{\Omega} w(x)|(\Phi \circ f)(x)-\gamma| d v(x) \tag{2.4}
\end{align*}
$$

for any $\gamma \in \mathbb{R}$.
Taking the infimum over $\gamma \in \mathbb{R}$ in (2.4) we get the second part of (2.1).
Since, obviously

$$
\begin{aligned}
I(\Phi, f ; w) & =\inf _{\gamma \in \mathbb{R}} \int_{\Omega} w(x)|(\Phi \circ f)(x)-\gamma| \mathrm{d} v(\mathrm{x}) \\
& \leq \int_{\Omega} w(x)\left|(\Phi \circ f)(x)-\int_{\Omega} w(y)(\Phi \circ f)(y) d v(y)\right| d v(x) \\
& =M_{D}(\Phi, f ; w)
\end{aligned}
$$

the last part of (2.1) is thus proved.

By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if $(\Phi \circ f)^{2} \in \mathrm{~L}_{w}(\Omega, v)$, then we have

$$
\begin{aligned}
& {\left[\int_{\Omega} w(x)\left|(\Phi \circ f)(x)-\int_{\Omega} w(y)(\Phi \circ f)(y) d v(y)\right| d v(x)\right]^{2}} \\
& \leq \int_{\Omega} w(x)\left[(\Phi \circ f)(x)-\int_{\Omega} w(y)(\Phi \circ f)(y) d v(y)\right]^{2} d v(x) \\
& =\int_{\Omega} w(x)(\Phi \circ f)^{2}(x) d v(x) \\
& -2 \int_{\Omega} w(y)(\Phi \circ f)(y) d v(y) \int_{\Omega} w(x)(\Phi \circ f)(x) d v(x) \\
& +\left[\int_{\Omega} w(y)(\Phi \circ f)(y) d v(y)\right]^{2} \int_{\Omega} w(x) d v(x) \\
& =\int_{\Omega} w(x)(\Phi \circ f)^{2}(x) d v(x)-\left[\int_{\Omega} w(x)(\Phi \circ f)(x) d v(x)\right]^{2}
\end{aligned}
$$

By considering the generalized (Φ, \mathbf{f})-dispersion

$$
\sigma(\Phi, f ; w):=\left(\int_{\Omega} w(x)(\Phi \circ f)^{2}(x) d v(x)-\left[\int_{\Omega} w(x)(\Phi \circ f)(x) d v(x)\right]^{2}\right)^{1 / 2}
$$

then we have

$$
\begin{equation*}
M_{D}(\Phi, f ; w) \leq \sigma(\Phi, f ; w) \tag{2.5}
\end{equation*}
$$

provided $(\Phi \circ f)^{2} \in L_{w}(\Omega, v)$.
If there exists the constants m, M so that

$$
\begin{equation*}
-\infty<\mathfrak{m} \leq \Phi(\mathrm{t}) \leq \mathrm{M}<\infty \text { for almost any } \mathrm{t} \in \mathrm{I} \tag{2.6}
\end{equation*}
$$

then by the reverse CBS inequality

$$
\begin{equation*}
\sigma(\Phi, f ; w) \leq \frac{1}{2}(M-m) \tag{2.7}
\end{equation*}
$$

by (2.1) and by (2.5) we can state the following result:
Corollary 1. Let I be an interval of real numbers and $\Phi: I \rightarrow \mathbb{R}$ a Lebesgue measurable function on I satisfying the condition (2.6) for some constants m, M. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $w(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) \mathrm{d} v(x)=1$ and if $\mathrm{f}: \Omega \rightarrow \mathrm{I}$ is a v-measurable function with $(\Phi \circ f)^{2} \in L_{w}(\Omega, v)$, then we have the chain of inequalities

$$
\begin{align*}
\frac{1}{2} M_{\mathrm{D}}(\Phi, f ; w) & \leq \mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \leq \mathrm{I}(\Phi, f ; w) \leq M_{\mathrm{D}}(\Phi, f ; w) \\
& \leq \sigma(\Phi, f ; w) \leq \frac{1}{2}(M-m) \tag{2.8}
\end{align*}
$$

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16) while for the univariate case with $\int_{-\infty}^{\infty} w(t) d t=1$ we have

$$
\begin{equation*}
\frac{1}{2} M_{\mathrm{D}}(w) \leq \mathrm{R}_{\mathrm{G}}(w) \leq \mathrm{I}(w) \leq M_{\mathrm{D}}(w) \leq \sigma(\Phi, f ; w) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{I}(w):=\inf _{\gamma \in \mathbb{R}} \int_{-\infty}^{\infty} w(x)|x-\gamma| \mathrm{d} x \tag{2.10}
\end{equation*}
$$

If w is supported on the finite interval $[a, b]$, namely $\int_{a}^{b} w(x) d x=1$, then we have the chain of inequalities

$$
\begin{equation*}
\frac{1}{2} M_{\mathrm{D}}(w) \leq \mathrm{R}_{\mathrm{G}}(w) \leq \mathrm{I}(w) \leq M_{\mathrm{D}}(w) \leq \sigma(\Phi, f ; w) \leq \frac{1}{2}(M-m) \tag{2.11}
\end{equation*}
$$

3. Bounds for Various Classes of Functions

In the case of functions of bounded variation we have:
Theorem 2. Let $\Phi:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be a function of bounded variation on the closed interval $[\mathrm{a}, \mathrm{b}]$. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $w(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$ and if $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}]$ is a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \leq \frac{1}{2} \bigvee_{\mathrm{a}}^{\mathrm{b}}(\Phi) \tag{3.1}
\end{equation*}
$$

where $\bigvee_{a}^{\mathrm{b}}(\Phi)$ is the total variation of Φ on $[\mathrm{a}, \mathrm{b}]$.

Demostración. Using the inequality (2.4) we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \leq \int_{\Omega} w(x)|(\Phi \circ \mathrm{f})(\mathrm{x})-\gamma| \mathrm{d} v(\mathrm{x}) \tag{3.2}
\end{equation*}
$$

for any $\gamma \in \mathbb{R}$.
By the triangle inequality, we have

$$
\begin{align*}
& \left|(\Phi \circ f)(x)-\frac{1}{2}[\Phi(a)+\Phi(b)]\right| \\
& \leq \frac{1}{2}|\Phi(a)-\Phi(f(x))|+\frac{1}{2}|\Phi(b)-\Phi(f(x))| \tag{3.3}
\end{align*}
$$

for any $x \in \Omega$.
Since $\Phi:[a, b] \rightarrow \mathbb{R}$ is of bounded variation and d is a division of $[a, b]$, namely

$$
d \in \mathcal{D}([a, b]):=\left\{d:=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}\right\}
$$

then

$$
\bigvee_{a}^{b}(\Phi)=\sup _{d \in \mathcal{D}([a, b])} \sum_{i=0}^{n-1}\left|\Phi\left(t_{i+1}\right)-\Phi\left(t_{i}\right)\right|<\infty
$$

Taking the division $\mathrm{d}_{0}:=\left\{\mathrm{a}=\mathrm{t}_{0}<\mathrm{t}<\mathrm{t}_{2}=\mathrm{b}\right\}$ we then have

$$
|\Phi(\mathrm{t})-\Phi(\mathrm{a})|+|\Phi(\mathrm{b})-\Phi(\mathrm{t})| \leq \bigvee_{\mathrm{a}}^{\mathrm{b}}(\Phi)
$$

for any $t \in[a, b]$ and then

$$
\begin{equation*}
|\Phi(\mathrm{f}(\mathrm{x}))-\Phi(\mathrm{a})|+|\Phi(\mathrm{b})-\Phi(\mathrm{f}(\mathrm{x}))| \leq \bigvee_{\mathrm{a}}^{\mathrm{b}}(\Phi) \tag{3.4}
\end{equation*}
$$

for any $x \in \Omega$.

On making use of (3.3) and (3.4) we get

$$
\begin{equation*}
\left|(\Phi \circ f)(x)-\frac{1}{2}[\Phi(a)+\Phi(b)]\right| \leq \frac{1}{2} \bigvee_{a}^{b}(\Phi) \tag{3.5}
\end{equation*}
$$

for any $x \in \Omega$.
If we multiply (3.5) by $w(x)$ and integrate, then we obtain

$$
\begin{equation*}
\int_{\Omega} w(x)\left|(\Phi \circ f)(x)-\frac{1}{2}[\Phi(a)+\Phi(b)]\right| \leq \frac{1}{2} \bigvee_{a}^{b}(\Phi) \tag{3.6}
\end{equation*}
$$

Finally, by choosing $\gamma=\frac{1}{2}[\Phi(a)+\Phi(b)]$ in (3.2) and making use of (3.6) we deduce the desired result (3.1).

In the case of absolutely continuous functions we have:
Theorem 3. Let $\Phi:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be an absolutely continuous function on the closed interval $[\mathrm{a}, \mathrm{b}]$. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $w(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) \mathrm{d} v(x)=1$ and if $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}]$ is a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$, then

$$
\mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \leq\left\{\begin{array}{l}
\left\|\Phi^{\prime}\right\|_{[\mathrm{a}, \mathrm{~b}], \infty} \mathrm{R}_{\mathrm{G}}(\mathrm{f} ; w) \text { if } \Phi^{\prime} \in \mathrm{L}_{\infty}([\alpha, \beta]) \tag{3.7}\\
\frac{1}{2^{1 / p}}\left\|\Phi^{\prime}\right\|_{[\mathrm{a}, \mathrm{~b}], p} \mathrm{R}_{\mathrm{G}}^{1 / \mathrm{q}}(\mathrm{f} ; w) \text { if } \Phi^{\prime} \in \mathrm{L}_{\mathrm{p}}([\alpha, \beta]) \\
p>1, \frac{1}{\mathrm{p}}+\frac{1}{q}=1,
\end{array}\right.
$$

where the Lebesgue norms are defined by

$$
\|g\|_{[\alpha, \beta], p}:=\left\{\begin{array}{l}
\operatorname{essup}_{\mathrm{t} \in[\alpha, \beta]}|g(\mathrm{t})| \text { if } p=\infty \\
\left(\int_{\alpha}^{\beta}|g(\mathrm{t})|^{p} \mathrm{dt}\right)^{1 / p} \quad \text { if } p \geq 1
\end{array}\right.
$$

and $\mathrm{L}_{\mathrm{p}}([\alpha, \beta]):=\left\{g \mid g\right.$ measurable and $\left.\|\mathrm{g}\|_{[\alpha, \beta], p}<\infty\right\}, p \in[1, \infty]$.
Demostración. Since f is absolutely continuous, then we have

$$
\Phi(\mathrm{t})-\Phi(\mathrm{s})=\int_{\mathrm{s}}^{\mathrm{t}} \Phi^{\prime}(\mathrm{u}) \mathrm{du}
$$

for any $t, s \in[a, b]$.
Using the Hölder integral inequality we have

$$
\begin{align*}
|\Phi(t)-\Phi(s)| & =\left|\int_{s}^{t} \Phi^{\prime}(u) d u\right| \\
& \leq\left\{\begin{array}{l}
\left\|\Phi^{\prime}\right\|_{[a, b], \infty}|t-s| \text { if } p=\infty \\
\left\|\Phi^{\prime}\right\|_{[a, b], p}|t-s|^{1 / q} \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{3.8}
\end{align*}
$$

for any $t, s \in[a, b]$.
Using (3.8) we then have

$$
\begin{align*}
& |(\Phi \circ f)(x)-(\Phi \circ f)(y)| \\
& \leq\left\{\begin{array}{l}
\left\|\Phi^{\prime}\right\|_{[a, b], \infty}|f(x)-f(y)| \text { if } p=\infty \\
\left\|\Phi^{\prime}\right\|_{[a, b], p}|f(x)-f(y)|^{1 / q} \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{3.9}
\end{align*}
$$

for any $x, y \in \Omega$.
If we multiply (3.9) by $\frac{1}{2} \mathcal{w}(x) \mathcal{w}(y)$ and integrate, then we get

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|(\Phi \circ f)(x)-(\Phi \circ f)(y)| d v(x) d v(y) \tag{3.10}\\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left\|\Phi^{\prime}\right\|_{[a, b], \infty} \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)| d v(x) d v(y) \text { if } p=\infty \\
\frac{1}{2}\left\|\Phi^{\prime}\right\|_{[a, b], p} \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)|^{1 / q} d v(x) d v(y) \\
\text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right.
\end{align*}
$$

This proves the first branch of (3.7).
Using Jensen's integral inequality for concave function $\Psi(t)=t^{s}, s \in(0,1)$ we have for $s=\frac{1}{q}<1$ that

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-\mathrm{f}(\mathrm{y})|^{1 / \mathrm{q}} \mathrm{~d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y}) \\
& \leq\left(\int_{\Omega} \int_{\Omega} w(\mathrm{x}) w(\mathrm{y})|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})| \mathrm{d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y})\right)^{1 / \mathrm{q}}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \frac{1}{2}\left\|\Phi^{\prime}\right\|_{[a, b], p} \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)|^{1 / q} d v(x) d v(y) \\
& \leq \frac{1}{2}\left\|\Phi^{\prime}\right\|_{[a, b], p}\left(\int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)| d v(x) d v(y)\right)^{1 / q} \\
& =\left\|\Phi^{\prime}\right\|_{[a, b], p}\left(\frac{1}{2^{q}} \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)| d v(x) d v(y)\right)^{1 / q} \\
& =\left\|\Phi^{\prime}\right\|_{[a, b], p}\left(\frac{1}{2^{q-1}} \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)| d v(x) d v(y)\right)^{1 / q} \\
& =\frac{1}{2^{\frac{q-1}{q}}}\left\|\Phi^{\prime}\right\|_{[a, b], p}\left(R_{G}(f ; w)\right)^{1 / q}=\frac{1}{2^{1 / p}}\left\|\Phi^{\prime}\right\|_{[a, b], p} R_{G}^{1 / q}(f ; w)
\end{aligned}
$$

and the second part of (3.7) is proved.
The function $\Phi:[a, b] \rightarrow \mathbb{R}$ is called of r-H-Hölder type with the given constants $r \in(0,1]$ and $\mathrm{H}>0$ if

$$
|\Phi(\mathrm{t})-\Phi(\mathrm{s})| \leq \mathrm{H}|\mathrm{t}-\mathrm{s}|^{r}
$$

for any $t, s \in[a, b]$.
In the case when $r=1$, namely, there is the constant $L>0$ such that

$$
|\Phi(\mathrm{t})-\Phi(\mathrm{s})| \leq \mathrm{L}|\mathrm{t}-\mathrm{s}|
$$

for any $t, s \in[a, b]$, the function Φ is called L-Lipschitzian on $[a, b]$.
We have:
Theorem 4. Let $\Phi:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be a function of r -H-Hölder type on the closed interval $[\mathrm{a}, \mathrm{b}]$. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $\mathcal{w}(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$ and if $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}]$ is a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$, then

$$
\begin{equation*}
R_{G}(\Phi, f ; w) \leq \frac{1}{2^{1-r}} H R_{G}^{r}(f ; w) \tag{3.11}
\end{equation*}
$$

In particular, if Φ is L -Lipschitzian on $[\mathrm{a}, \mathrm{b}]$, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \leq \mathrm{LR}_{\mathrm{G}}(\mathrm{f} ; w) \tag{3.12}
\end{equation*}
$$

Demostración. We have

$$
\begin{equation*}
|(\Phi \circ f)(x)-(\Phi \circ f)(y)| \leq H|f(x)-f(y)|^{r} \tag{3.13}
\end{equation*}
$$

for any $x, y \in \Omega$.
If we multiply (3.13) by $\frac{1}{2} w(x) w(y)$ and integrate, then we get

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)|(\Phi \circ f)(x)-(\Phi \circ f)(y)| d v(x) d v(y) \\
& \leq \frac{1}{2} H \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)|^{r} d v(x) d v(y) \tag{3.14}
\end{align*}
$$

By Jensen's integral inequality for concave functions we also have

$$
\begin{align*}
& \int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)|^{r} d v(x) d v(y) \\
& \leq\left(\int_{\Omega} \int_{\Omega} w(x) w(y)|f(x)-f(y)| d v(x) d v(y)\right)^{r} \tag{3.15}
\end{align*}
$$

Therefore, by (3.14) and (3.15) we get

$$
\begin{aligned}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) & \leq \frac{1}{2} \mathrm{H}\left(\int_{\Omega} \int_{\Omega} w(\mathrm{x}) w(\mathrm{y})|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})| \mathrm{d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y})\right)^{\mathrm{r}} \\
& =\frac{1}{2^{1-r}} \mathrm{H}\left(\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(\mathrm{y})|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})| \mathrm{d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y})\right)^{r} \\
& =\frac{1}{2^{1-r}} \mathrm{HR}_{\mathrm{G}}^{\mathrm{r}}(\mathrm{f} ; w)
\end{aligned}
$$

and the inequality (3.11) is proved.

We have:

Theorem 5. Let $\Phi, \Psi:[a, b] \rightarrow \mathbb{R}$ be continuos functions on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b) with $\Psi^{\prime}(\mathrm{t}) \neq 0$ for $\mathrm{t} \in(\mathrm{a}, \mathrm{b})$. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $w(\mathrm{x}) \geq 0$ for v-a.e. $\mathrm{x} \in \Omega$ and $\int_{\Omega} w(x) \mathrm{d} v(x)=1$ and if $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}]$ is a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$, then

$$
\begin{equation*}
\inf _{\mathrm{t} \in(\mathrm{a}, \mathrm{~b})}\left|\frac{\Phi^{\prime}(\mathrm{t})}{\Psi^{\prime}(\mathrm{t})}\right| \mathrm{R}_{\mathrm{G}}(\Psi, f ; w) \leq \mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \leq \sup _{\mathrm{t} \in(\mathrm{a}, \mathrm{~b})}\left|\frac{\Phi^{\prime}(\mathrm{t})}{\Psi^{\prime}(\mathrm{t})}\right| \mathrm{R}_{\mathrm{G}}(\Psi, f ; w) \tag{3.16}
\end{equation*}
$$

Demostración. By the Cauchy's mean value theorem, for any $t, s \in[a, b]$ with $t \neq s$ there exists a ξ between t and s such that

$$
\frac{\Phi(\mathrm{t})-\Phi(\mathrm{s})}{\Psi(\mathrm{t})-\Psi(\mathrm{s})}=\frac{\Phi^{\prime}(\xi)}{\Psi^{\prime}(\xi)}
$$

This implies that

$$
\begin{align*}
\inf _{\tau \in(\mathrm{a}, \mathrm{~b})}\left|\frac{\Phi^{\prime}(\tau)}{\Psi^{\prime}(\tau)}\right||\Psi(\mathrm{t})-\Psi(\mathrm{s})| & \leq|\Phi(\mathrm{t})-\Phi(\mathrm{s})| \\
& \leq \sup _{\tau \in(\mathrm{a}, \mathrm{~b})}\left|\frac{\Phi^{\prime}(\tau)}{\Psi^{\prime}(\tau)}\right||\Psi(\mathrm{t})-\Psi(\mathrm{s})| \tag{3.17}
\end{align*}
$$

for any $t, s \in[a, b]$.
Therefore, we have

$$
\begin{align*}
\inf _{\tau \in(a, b)}\left|\frac{\Phi^{\prime}(\tau)}{\Psi^{\prime}(\tau)}\right||\Psi(f(x))-\Psi(f(y))| & \leq|\Phi(f(x))-\Phi(f(y))| \\
& \leq \sup _{t \in(a, b)}\left|\frac{\Phi^{\prime}(\tau)}{\Psi^{\prime}(\tau)}\right||\Psi(f(x))-\Psi(f(y))| \tag{3.18}
\end{align*}
$$

for any $x, y \in \Omega$.
If we multiply (3.18) by $\frac{1}{2} \mathcal{w}(x) w(y)$ and integrate, we get the desired result (3.16).

Corollary 2. Let $\Phi:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ be a continuos function on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b). If w is as in Theorem 5, then we have

$$
\begin{equation*}
\inf _{t \in(a, b)}\left|\Phi^{\prime}(t)\right| R_{G}(f ; w) \leq R_{G}(\Phi, f ; w) \leq \sup _{t \in(a, b)}\left|\Phi^{\prime}(t)\right| R_{G}(f ; w) \tag{3.19}
\end{equation*}
$$

We also have:

Theorem 6. Let $\Phi:[a, b] \rightarrow \mathbb{R}$ be an absolutely continuous function on the closed interval $[\mathrm{a}, \mathrm{b}]$. If $w: \Omega \rightarrow \mathbb{R}$ is a v-measurable function with $\mathcal{w}(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) \mathrm{d} v(x)=1$
and if $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}]$ is a v-measurable function with $\Phi \circ \mathrm{f} \in \mathrm{L}_{w}(\Omega, v)$, then

$$
\begin{align*}
& \mathrm{R}_{\mathrm{G}}(\Phi, f ; w) \\
& \leq\left\{\begin{array}{l}
\left\|\Phi^{\prime}\right\|_{[a, b], \infty} M(f ; w) \text { if } p=\infty \\
\left\|\Phi^{\prime}\right\|_{[a, b], p} M^{1 / q}(f ; w) \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{3.20}\\
& \leq\left\{\begin{array}{l}
\frac{1}{2}(b-a)\left\|\Phi^{\prime}\right\|_{[a, b], \infty} \text { if } p=\infty, \\
\frac{1}{2^{1 / q}}(b-a)^{1 / q}\left\|\Phi^{\prime}\right\|_{[a, b], p} \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right.
\end{align*}
$$

where $M(f ; w)$ is defined by

$$
\begin{equation*}
M(f ; w):=\int_{\Omega} w(x)\left|f(x)-\frac{a+b}{2}\right| d v(x) \tag{3.21}
\end{equation*}
$$

Demostración. From the inequality (3.8) we have

$$
\begin{align*}
& \left|(\Phi \circ f)(x)-\Phi\left(\frac{a+b}{2}\right)\right| \\
& \leq\left\{\begin{array}{l}
\left\|\Phi^{\prime}\right\|_{[a, b], \infty}\left|f(x)-\frac{a+b}{2}\right| \text { if } p=\infty \\
\left\|\Phi^{\prime}\right\|_{[a, b], p}\left|f(x)-\frac{a+b}{2}\right|^{1 / q} \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{3.22}
\end{align*}
$$

for any $x \in \Omega$.
Now, if we multiply (3.22) by $w(x)$ and integrate, then we get

$$
\begin{align*}
& \int_{\Omega} w(x)\left|(\Phi \circ f)(x)-\Phi\left(\frac{a+b}{2}\right)\right| d v(x) \\
& \leq\left\{\begin{array}{l}
\left\|\Phi^{\prime}\right\|_{[a, b], \infty} \int_{\Omega} w(x)\left|f(x)-\frac{a+b}{2}\right| d v(x) \text { if } p=\infty \\
\left\|\Phi^{\prime}\right\|_{[a, b], p} \int_{\Omega} w(x)\left|f(x)-\frac{a+b}{2}\right|^{1 / q} d v(x) \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{3.23}
\end{align*}
$$

By Jensen's integral inequality for concave functions we have

$$
\begin{equation*}
\int_{\Omega} w(x)\left|f(x)-\frac{a+b}{2}\right|^{1 / q} d v(x) \leq\left(\int_{\Omega} w(x)\left|f(x)-\frac{a+b}{2}\right| d v(x)\right)^{1 / q} \tag{3.24}
\end{equation*}
$$

On making use of (3.2), (3.23) and (3.24) we get the first inequality in (3.20).
The last part of (3.20) follows by the fact that

$$
\left|f(x)-\frac{a+b}{2}\right| \leq \frac{1}{2}(b-a)
$$

for any $x \in \Omega$.

4. Bounds for Special Convexity

When some convexity properties for the function Φ are assumed, then other bounds can be derived as follows.

Theorem 7. Let $w: \Omega \rightarrow \mathbb{R}$ be a v-measurable function with $w(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$ and $f: \Omega \rightarrow[a, b]$ be a v-measurable function with $\Phi \circ f \in L_{w}(\Omega, v)$. Assume also that $\Phi:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ is a continuous function on $[\mathrm{a}, \mathrm{b}]$.
(i) If $|\Phi|$ is concave on $[\mathrm{a}, \mathrm{b}]$, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \leq|\Phi(\mathrm{E}(\mathrm{f} ; w))| \tag{4.1}
\end{equation*}
$$

(ii) If $|\Phi|$ is convex on $[\mathrm{a}, \mathrm{b}]$, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \leq \frac{1}{\mathrm{~b}-\mathrm{a}}[(\mathrm{~b}-\mathrm{E}(\mathrm{f} ; w))|\Phi(\mathrm{a})|+(\mathrm{E}(\mathrm{f} ; w)-\mathrm{a}) \Phi|(\mathrm{b})|] \tag{4.2}
\end{equation*}
$$

Demostración. (i) If $|\Phi|$ is concave on $[a, b]$, then by Jensen's inequality we have

$$
\begin{equation*}
\int_{\Omega} w(x)|(\Phi \circ f)(x)| d v(x) \leq\left|\Phi\left(\int_{\Omega} w(x) f(x) d v(x)\right)\right| \tag{4.3}
\end{equation*}
$$

From (3.2) for $\gamma=0$ we also have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \leq \int_{\Omega} w(x)|(\Phi \circ \mathrm{f})(\mathrm{x})| \mathrm{d} v(\mathrm{x}) \tag{4.4}
\end{equation*}
$$

This is an inequality of interest in itself.
On utilizing (4.3) and (4.4) we get (4.1).
(ii) Since $|\Phi|$ is convex on $[a, b]$, then for any $t \in[a, b]$ we have

$$
|\Phi(\mathrm{t})|=\left|\Phi\left(\frac{(\mathrm{b}-\mathrm{t}) \mathrm{a}+\mathrm{b}(\mathrm{t}-\mathrm{a})}{\mathrm{b}-\mathrm{a}}\right)\right| \leq \frac{(\mathrm{b}-\mathrm{t})|\Phi(\mathrm{a})|+(\mathrm{t}-\mathrm{a}) \Phi|(\mathrm{b})|}{\mathrm{b}-\mathrm{a}}
$$

This implies that

$$
\begin{equation*}
|(\Phi \circ f)(x)| \leq \frac{(b-f(x))|\Phi(a)|+(f(x)-a) \Phi|(b)|}{b-a} \tag{4.5}
\end{equation*}
$$

for any $x \in \Omega$.
If we multiply (4.5) by $\boldsymbol{w}(x)$ and integrate, then we get

$$
\begin{aligned}
& \int_{\Omega} w(x)|(\Phi \circ f)(x)| d v(x) \\
& \leq \frac{1}{b-a}\left[\left(b \int_{\Omega} w(x) d v(x)-\int_{\Omega} w(x) f(x) d v(x)\right)|\Phi(a)|\right. \\
& \left.+\left(\int_{\Omega} w(x) f(x) d v(x)-a \int_{\Omega} w(x) d v(x)\right) \Phi|(b)|\right]
\end{aligned}
$$

which, together with (4.4), produces the desired result (4.2).

In order to state other results we need the following definitions:
Definition 1 ([19]). We say that a function $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ belongs to the class $\mathrm{P}(\mathrm{I})$ if it is nonnegative and for all $\mathrm{x}, \mathrm{y} \in \mathrm{I}$ and $\mathrm{t} \in[0,1]$ we have

$$
\mathrm{f}(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}) \leq \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})
$$

It is important to note that $P(I)$ contains all nonnegative monotone, convex and quasi convex functions, i.e. functions satisfying

$$
\mathrm{f}(\mathrm{tx}+(1-\mathrm{t}) \mathrm{y}) \leq \operatorname{máx}\{\mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y})\}
$$

for all $x, y \in I$ and $t \in[0,1]$.
For some results on P-functions see [19] and [28] while for quasi convex functions, the reader can consult [18].

Definition $2([3])$. Let s be a real number, $\mathrm{s} \in(0,1]$. A function $\mathrm{f}:[0, \infty) \rightarrow[0, \infty)$ is said to be s-convex (in the second sense) or Breckner s-convex if

$$
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y)
$$

for all $\mathrm{x}, \mathrm{y} \in[0, \infty)$ and $\mathrm{t} \in[0,1]$.
For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25], [27] and [29].
Theorem 8. Let $w: \Omega \rightarrow \mathbb{R}$ be a v-measurable function with $\mathcal{w}(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$ and $f: \Omega \rightarrow[a, b]$ be a v-measurable function with $\Phi \circ f \in \mathrm{~L}_{w}(\Omega, v)$. Assume also that $\Phi:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ is a continuous function on $[\mathrm{a}, \mathrm{b}]$.
(i) If $|\Phi|$ belongs to the class P on $[a, b]$, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; \boldsymbol{w}) \leq|\Phi(\mathrm{a})|+\Phi|(\mathrm{b})| ; \tag{4.6}
\end{equation*}
$$

(ii) If $|\Phi|$ is quasi convex on $[\mathbf{a}, \mathbf{b}]$, then

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\Phi, \mathrm{f} ; w) \leq \operatorname{máx}\{|\Phi(\mathrm{a})|, \Phi|(\mathrm{b})|\} ; \tag{4.7}
\end{equation*}
$$

(iii) If $|\Phi|$ is Breckner s-convex on $[\mathrm{a}, \mathrm{b}]$, then

$$
\begin{align*}
\mathrm{R}_{\mathrm{G}}(\Phi, f ; w) & \leq \frac{1}{(\mathrm{~b}-\mathrm{a})^{s}}\left[|\Phi(\mathrm{a})| \int_{\Omega} w(x)(b-f(x))^{s} d v(x)\right. \\
& \left.+\Phi|(b)| \int_{\Omega} w(x)(f(x)-a)^{s} d v(x)\right] \\
& \leq \frac{1}{(b-a)^{s}}\left[|\Phi(a)|(b-E(f ; w))^{s} d v(x)\right. \\
& \left.+\Phi|(b)|(E(f ; w)-a)^{s} d v(x)\right] . \tag{4.8}
\end{align*}
$$

Demostración. (i) Since $|\Phi|$ belongs to the class P on $[a, b]$, then for any $t \in[a, b]$ we have

$$
|\Phi(\mathrm{t})|=\left|\Phi\left(\frac{(\mathrm{b}-\mathrm{t}) \mathrm{a}+\mathrm{b}(\mathrm{t}-\mathrm{a})}{\mathrm{b}-\mathrm{a}}\right)\right| \leq|\Phi(\mathrm{a})|+\Phi|(\mathrm{b})|
$$

This implies that

$$
\begin{equation*}
|(\Phi \circ f)(x)| \leq|\Phi(a)|+\Phi|(b)| \tag{4.9}
\end{equation*}
$$

for any $x \in \Omega$.
If we multiply (4.9) by $w(x)$ and integrate, then we get

$$
\begin{equation*}
\int_{\Omega} w(x)|(\Phi \circ f)(x)| d v(x) \leq|\Phi(a)|+\Phi|(b)| \tag{4.10}
\end{equation*}
$$

which, together with (4.4), produces the desired result (4.6).
(ii) Goes in a similar way.
(iii) By Breckner s-convexity we have

$$
|\Phi(\mathrm{t})|=\left|\Phi\left(\frac{(\mathrm{b}-\mathrm{t}) \mathrm{a}+\mathrm{b}(\mathrm{t}-\mathrm{a})}{\mathrm{b}-\mathrm{a}}\right)\right| \leq\left(\frac{\mathrm{b}-\mathrm{t}}{\mathrm{~b}-\mathrm{a}}\right)^{s}|\Phi(\mathrm{a})|+\left(\frac{\mathrm{t}-\mathrm{a}}{\mathrm{~b}-\mathrm{a}}\right)^{s} \Phi|(\mathrm{~b})|
$$

for any $t \in[a, b]$.
This implies that

$$
\begin{equation*}
|(\Phi \circ f)(x)| \leq \frac{1}{(b-a)^{s}}\left[(b-f(x))^{s}|\Phi(a)|+(f(x)-a)^{s} \Phi|(b)|\right] \tag{4.11}
\end{equation*}
$$

for any $x \in \Omega$.
If we multiply (4.11) by $w(x)$ and integrate, then we get

$$
\begin{align*}
\int_{\Omega} w(x)|(\Phi \circ f)(x)| d v(x) & \leq \frac{1}{(b-a)^{s}}\left[|\Phi(a)| \int_{\Omega} w(x)(b-f(x))^{s} d v(x)\right. \\
& \left.+\Phi|(b)| \int_{\Omega} w(x)(f(x)-a)^{s} d v(x)\right] \tag{4.12}
\end{align*}
$$

which, together with (4.4), produces the first part of (4.8).
The last part follows by Jensen's integral inequality for concave functions, namely

$$
\int_{\Omega} w(x)(b-f(x))^{s} d v(x) \leq\left(b-\int_{\Omega} w(x) f(x) d v(x)\right)^{s}
$$

and

$$
\int_{\Omega} w(x)(f(x)-a)^{s} d v(x) \leq\left(\int_{\Omega} w(x) f(x) d v(x)-a\right)^{s}
$$

where $s \in(0,1)$.

5. Some Examples

Let $\mathrm{f}: \Omega \rightarrow[0, \infty)$ be a v-measurable function and $w: \Omega \rightarrow \mathbb{R}$ a ν-measurable function with $w(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$. We define, for the function $\Phi(t)=t^{p}, p>0$, the generalized (p, f)-mean difference $R_{G}(p, f ; w)$ by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\mathrm{p}, \mathrm{f} ; w):=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y)\left|f^{p}(x)-f^{p}(y)\right| \mathrm{d} v(x) \mathrm{d} v(\mathrm{y}) \tag{5.1}
\end{equation*}
$$

and the generalized (p, f)-mean deviation $M_{D}(p, f ; w)$ by

$$
\begin{equation*}
M_{D}(p, f ; w):=\int_{\Omega} w(x)\left|f^{p}(x)-E(p, f ; w)\right| d v(x) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
E(p, f ; w):=\int_{\Omega} f^{p}(y) w(y) d v(y) \tag{5.3}
\end{equation*}
$$

is the generalized (p, f)-expectation.
If $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}] \subset[0, \infty)$ is a v-measurable function, then by (3.1) we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\mathrm{p}, \mathrm{f} ; w) \leq \frac{1}{2}\left(\mathrm{~b}^{\mathrm{p}}-\mathrm{a}^{\mathrm{p}}\right) \tag{5.4}
\end{equation*}
$$

By (3.7) we have

$$
\begin{equation*}
R_{G}(p, f ; w) \leq p \delta_{p}(a, b) R_{G}(f ; w) \tag{5.5}
\end{equation*}
$$

where

$$
\delta_{p}(a, b):=\left\{\begin{array}{l}
b^{p-1} \text { if } p \geq 1, \\
a^{p-1} \text { if } p \in(0,1)
\end{array}\right.
$$

and

$$
\begin{equation*}
R_{G}(p, f ; w) \leq \frac{p}{2^{1 / \alpha}}\left[\frac{b^{\alpha(p-1)+1}-a^{\alpha(p-1)+1}}{\alpha(p-1)+1}\right]^{1 / \alpha} R_{G}^{1 / \beta}(f ; w) \tag{5.6}
\end{equation*}
$$

where $\alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1$.
From (3.20) we also have

$$
\begin{align*}
& R_{G}(p, f ; w) \\
& \leq\left\{\begin{array}{l}
\delta_{p}(a, b) M(f ; w), \\
p\left(\frac{b^{\alpha(p-1)+1}-a^{\alpha(p-1)+1}}{\alpha(p-1)+1}\right)^{1 / \alpha} M^{1 / \beta}(f ; w) \text { if } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1
\end{array}\right. \tag{5.7}\\
& \leq\left\{\begin{array}{l}
\frac{1}{2}(b-a) \delta_{p}(a, b), \\
\frac{1}{2^{1 / \beta}}(b-a)^{1 / \beta} p\left(\frac{b^{\alpha(p-1)+1}-a^{\alpha(p-1)+1}}{\alpha(p-1)+1}\right)^{1 / \alpha} \text { if } \alpha>1, \frac{1}{\alpha}+\frac{1}{\beta}=1
\end{array}\right.
\end{align*}
$$

where $M(f ; w)$ is defined by (3.21).
If $p \in(0,1)$, then the function $|\Phi(t)|=t^{p}$ is concave on $[a, b] \subset[0, \infty)$ and by (4.1) we have

$$
\begin{equation*}
R_{G}(p, f ; w) \leq E^{p}(f ; w) \tag{5.8}
\end{equation*}
$$

For $p \geq 1$ the function $|\Phi(t)|=t^{p}$ is convex on $[a, b] \subset[0, \infty)$ and by (4.2) we have

$$
\begin{equation*}
R_{G}(p, f ; w) \leq \frac{1}{b-a}\left[(b-E(f ; w)) a^{p}+(E(f ; w)-a) b^{p}\right] \tag{5.9}
\end{equation*}
$$

Let $\mathrm{f}: \Omega \rightarrow[0, \infty)$ be a v-measurable function and $w: \Omega \rightarrow \mathbb{R}$ a v-measurable function with $w(x) \geq 0$ for v-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) d v(x)=1$. We define, for the function $\Phi(t)=\ln t$, the generalized (ln,f)-mean difference $\mathrm{R}_{\mathrm{G}}(\ln , \mathrm{f} ; \boldsymbol{w})$ by

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\ln , \mathrm{f} ; w):=\frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(\mathrm{y})|\ln \mathrm{f}(\mathrm{x})-\ln \mathrm{f}(\mathrm{y})| \mathrm{d} v(\mathrm{x}) \mathrm{d} v(\mathrm{y}) \tag{5.10}
\end{equation*}
$$

and the generalized (\mathbf{p}, \mathbf{f})-mean deviation $M_{D}(\ln , f ; w)$ by

$$
\begin{equation*}
M_{\mathrm{D}}(\ln , f ; w):=\int_{\Omega} w(x)|\ln f(x)-E(\ln , f ; w)| d v(x) \tag{5.11}
\end{equation*}
$$

where

$$
\begin{equation*}
E(\ln , f ; w):=\int_{\Omega} w(y) \ln f(y) d v(y) \tag{5.12}
\end{equation*}
$$

is the generalized (\ln , \mathbf{f})-expectation.
If $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}] \subset[0, \infty)$ is a v-measurable function, then by (3.1) we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\ln , \mathrm{f} ; w) \leq \frac{1}{2}(\ln \mathrm{~b}-\ln \mathrm{a}) \tag{5.13}
\end{equation*}
$$

By (3.7) we have

$$
\begin{align*}
& R_{G}(\ln , f ; w) \\
& \leq\left\{\begin{array}{l}
\frac{1}{a} R_{G}(f ; w) \\
\frac{1}{2^{1 / p}}\left(\frac{b^{p-1}-a^{p-1}}{(p-1) b^{p-1} a^{p-1}}\right)^{1 / p} R_{G}^{1 / q}(f ; w) \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{5.14}
\end{align*}
$$

By (3.20) we have

$$
\begin{align*}
& R_{G}(\ln , f ; w) \\
& \leq\left\{\begin{array}{l}
\frac{1}{a} M(f ; w), \\
\left(\frac{b^{p-1}-a^{p-1}}{(p-1) b^{p-1} a^{p-1}}\right)^{1 / p} M^{1 / q}(f ; w) \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right. \tag{5.15}\\
& \leq\left\{\begin{array}{l}
\frac{1}{2}\left(\frac{b}{a}-1\right), \\
\frac{1}{2^{1 / q}}(b-a)^{1 / q}\left(\frac{b^{p-1}-a^{p-1}}{(p-1) b^{p-1} a^{p-1}}\right)^{1 / p} \text { if } p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right.
\end{align*}
$$

Now, observe that the function $|\Phi(t)|=|\ln t|$ is convex on $(0,1)$ and concave on $[1, \infty)$. If $\mathrm{f}: \Omega \rightarrow[\mathrm{a}, \mathrm{b}] \subset(0,1)$ is a v-measurable function, then by (4.2) we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\ln , \mathrm{f} ; w) \leq \frac{1}{\mathrm{~b}-\mathrm{a}}[(\mathrm{~b}-\mathrm{E}(\mathrm{f} ; w))|\ln \mathrm{a}|+(\mathrm{E}(\mathrm{f} ; w)-\mathrm{a})|\ln \mathrm{b}|] \tag{5.16}
\end{equation*}
$$

and if $f: \Omega \rightarrow[a, b] \subset[1, \infty)$, then by (4.1) we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}(\ln , f ; w) \leq \ln (\mathrm{E}(\mathrm{f} ; w)) \tag{5.17}
\end{equation*}
$$

The interested reader may state similar bounds for functions Φ such as $\Phi(t)=\exp t, t \in \mathbb{R}$ or $\Phi(t)=t \ln t, t>0$. We omit the details.

Acknowledgement. The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

Referencias

[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975.
[3] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[4] W. W. Breckner and G. Orbán, Continuity Properties of Rationally s-Convex Mappings with v Values in an Ordered Topological Linear Space. Universitatea "Babeş-Bolyai", Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
[5] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Sonin identity, Comp. Math. Modelling, 50 (2005), 599-609.
[6] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Korkine identity, J. Appl. Math. \& Computing, 22 (2006), no. 3, 305-315.
[7] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of an empirical distribution. Appl. Math. Lett. 19 (2006), no. 3, 283-293.
[8] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I), Appl. Math. Lett. 20 (2007), no. 7, 782-789.
[9] P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of continuous distributions defined on finite intervals (II), Comput. Math. Appl. 52 (2006), no. 10-11, 1555-1562.
[10] P. Cerone and S. S. Dragomir, A survey on bounds for the Gini mean difference. Advances in inequalities from probability theory and statistics, 81-111, Adv. Math. Inequal. Ser., Nova Sci. Publ., New York, 2008.
[11] P. Cerone and S. S. Dragomir, Bounds for the r-weighted Gini mean difference of an empirical distribution. Math. Comput. Modelling 49 (2009), no. 1-2, 180-188.
[12] X.-L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure \& Appl. Math., 3(2) (2002), Article. 29.
[13] H. A. David, Gini's mean difference rediscovered, Biometrika, 55 (1968), 573.
[14] S. S. Dragomir, Weighted f-Gini mean difference for convex and symmetric functions in linear spaces. Comput. Math. Appl. 60 (2010), no. 3, 734-743.
[15] S. S. Dragomir, Bounds in terms of Gâteaux derivatives for the weighted f-Gini mean difference in linear spaces. Bull. Aust. Math. Soc. 83 (2011), no. 3, 420-434.
[16] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[17] S. S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49.
[18] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
[19] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[20] J. L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom. Statist., 54 (1972), 305-316.
[21] C. Gini, Variabilità e Metabilità, contributo allo studia della distribuzioni e relationi statistiche, Studi Economica-Gicenitrici dell' Univ. di Coglani, 3 (1912), art 2, 1-158.
[22] G. M. Giorgi, Bibliographic portrait of the Gini concentration ratio, Metron, XLVIII(1-4) (1990), 103-221.
[23] G. M. Giorgi, Alcune considerazioni teoriche su di un vecchio ma per sempre attuale indice: il rapporto di concentrazione del Gini, Metron, XLII(3-4) (1984), 25-40.
[24] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press.
[25] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[26] M. Kendal and A. Stuart The Advanced Theory of Statistics, Volume 1, Distribution Theory, Fourth Edition, Charles Griffin \& Comp. Ltd., London, 1977.
[27] U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35.
[28] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[29] E. Set, M. E. Özdemir and M. Z. Sarikaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82.

