# $Z_{k}$-Magic Labeling of Path Union of Graphs 

P. Jeyanthi ${ }^{1}$ K. Jeya Daisy ${ }^{2}$ and Andrea Semaničová-Feñovčíková ${ }^{3}$<br>${ }^{1}$ Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India<br>jeyajeyanthi@rediffmail.com<br>${ }^{2}$ Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India<br>jeyadaisy@yahoo.com<br>${ }^{3}$ Department of Applied Mathematics and Informatics, Technical University, Košice, Slovak Republic andrea.fenovcikova@tuke.sk


#### Abstract

For any non-trivial Abelian group $A$ under addition a graph $G$ is said to be $A$-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling $f^{+}$defined as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at $v$ is a constant. An $A$-magic graph $G$ is said to be $Z_{k}$-magic graph if the group $A$ is $Z_{k}$, the group of integers modulo $k$ and these graphs are referred as $k$-magic graphs. In this paper we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and $n$-pan graph are $Z_{k}$-magic graphs.


## RESUMEN

Para cualquier grupo Abeliano no-trivial $A$ bajo adición, un grafo $G$ se dice $A$-mágico si existe un etiquetado $f: E(G) \rightarrow A-\{0\}$ tal que el etiquetado de un vértice $f^{+}$ definido como $f^{+}(v)=\sum f(u v)$, tomado sobre todos los ejes $u v$ incidentes en $v$, es constante. Un grafo $A$-mágico $G$ se dice $Z_{k}$-mágico si el grupo $A$ es $Z_{k}$, el grupo de enteros módulo $k$ y estos se llaman grafos $k$-mágicos. En este paper demostramos que los grafos tales como la unión por caminos de ciclos, grafos de Petersen generalizados, concha, rueda, casco cerrado, rueda doble, flor, cilindro, el grafo total de un camino, lotos dentro de un círculo y $n$-sartenes son todos grafos $Z_{k}$-mágicos.

Keywords and Phrases: $A$-magic labeling, $Z_{k}$-magic labeling, $Z_{k}$-magic graph, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle, $n$-pan graph.

2010 AMS Mathematics Subject Classification: 05C78.

## 1 Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain conditions. A detailed survey was done by Gallian in [1]. If the labels of edges are distinct positive integers and for each vertex $v$ the sum of the labels of all edges incident with $v$ is the same for every vertex $v$ in the given graph then the labeling is called a magic labeling. Sedláček [10] introduced the concept of $A$-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [9] examined the $A$-magic property of the resulting graph obtained from the product of two $A$-magic graphs. Shiu, Lam and Sun [12] proved that the product and composition of $A$-magic graphs were also $A$-magic.

For any non-trivial Abelian group $A$ under addition a graph $G$ is said to be $A$-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling $f^{+} \operatorname{defined}$ as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at $v$ is a constant. An $A$-magic graph $G$ is said to be $Z_{k}$-magic graph if the group $A$ is $Z_{k}$, the group of integers modulo $k$. These $Z_{k}$-magic graphs are referred to as $k$-magic graphs. Shiu and Low [13] determined all positive integers $k$ for which fans and wheels have a $Z_{k}$-magic labeling with a magic constant 0 . Kavitha and Thirusangu [8] obtained a $Z_{k}$-magic labeling of two cycles with a common vertex. Motivated by the concept of $A$-magic graph in [10] and the results in [9, 12, 13] Jeyanthi and Jeya Daisy [2, 3, 4, 5, 6, 7] proved that some standard graphs admit $Z_{k}$-magic labeling. We use the following definitions in the subsequent section.

Definition 1.1. Let $G_{1}, G_{2}, \ldots, G_{n}, n \geq 2$, be copies of a graph $G$. Let $v_{i} \in V\left(G_{i}\right), i=1,2, \ldots, n$, be the vertex corresponding to the vertex $v \in V(G)$ in the $i^{t h}$ copy of $G_{i}$. We denoted by $P\left(n . G^{v}\right)$ the graph obtained by adding the edge $v_{i} v_{i+1}$, to $G_{i}$ and $G_{i+1}, 1 \leq i \leq n-1$, and we call $P\left(n . G^{v}\right)$ the path union of $n$ copies of the graph $G$.

Note, that up to isomorphism, we obtain $|V(G)|$ graphs $P\left(n . G^{v}\right)$. This operation was defined in [11].

Definition 1.2. A generalized Petersen graph $P(n, m), n \geq 3,1 \leq m<\frac{n}{2}$ is a 3-regular graph with the vertex set $\left\{u_{i}, v_{i}: i=1,2, \ldots, n\right\}$ and the edge set $\left\{u_{i} v_{i}, u_{i} u_{i+1}, v_{i} v_{i+m}: i=1,2, \ldots, n\right\}$, where the indices are taken over modulo $n$.

Definition 1.3. A shell graph $S_{n}, n \geq 4$, is obtained by taking $n-3$ concurrent chords in a cycle $C_{n}$. The vertex at which all the chords are concurrent is called an apex.

Definition 1.4. A wheel graph $W_{n}, n \geq 3$, is obtained by joining the vertices of a cycle $C_{n}$ to an extra vertex called the centre. The vertices of degree three are called rim vertices.

Definition 1.5. A helm graph $H_{n}, n \geq 3$, is obtained from a wheel $W_{n}$ by adjoining a pendant edge at each vertex of the wheel except the center.

Definition 1.6. A closed helm graph $C H_{n}, n \geq 3$, is obtained from a helm $H_{n}$ by joining each pendent vertex to form a cycle.

Definition 1.7. A double wheel graph $D W_{n}, n \geq 3$, is obtained by joining the vertices of two cycles $C_{n}$ to an extra vertex called the hub.

Definition 1.8. A flower graph $F l_{n}, n \geq 3$, is obtained from a helm $H_{n}$ by joining each pendent vertex to the central vertex of the helm.

Definition 1.9. A Cartesian product of a cycle $C_{n}, n \geq 3$, and a path on two vertices is called a cylinder graph $C_{n} \square P_{2}$.

Definition 1.10. A total graph $T(G)$ is a graph with the vertex set $V(G) \cup E(G)$ in which two vertices are adjacent whenever they are either adjacent or incident in $G$.

Definition 1.11. A lotus inside a circle $L C_{n}, n \geq 3$, is a graph obtained from a wheel $W_{n}$ by subdividing every edge forming the outer cycle and joining these new vertices to form a cycle.

Definition 1.12. An n-pan graph, $n \geq 3$, is obtained by attaching a pendent edge to a vertex of a cycle $C_{n}$.

## $2 Z_{k}$-Magic Labeling of Path Union of Graphs

In this section we prove that the graphs such as path union of cycle, generalized Petersen graph, shell, wheel, closed helm, double wheel, flower, cylinder, total graph of a path, lotus inside a circle and $n$-pan graph are $Z_{k}$-magic graphs.

Let $v$ be a vertex of a cycle $C_{r}, r \geq 3$. According to the symmetry all $P\left(n . C_{r}^{v}\right)$ are isomorphic. Thus we use the notation $P\left(n . C_{r}\right)$.

Theorem 2.1. Let $r \geq 3$ and $n \geq 2$ be integers. The path union of a cycle $P\left(n . C_{r}\right)$ is $Z_{k}$-magic for $k \geq 3$ when $r$ is odd.

Proof. Let the vertex set and the edge set of $P\left(n . C_{r}\right)$ be $V\left(P\left(n . C_{r}\right)\right)=\left\{v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(P\left(n . C_{r}\right)\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, where the index $i$ is taken over modulo $r$.

Let $a, k$ be positive integers, $k>2 a$. Thus $k \geq 3$.

For $r$ is odd, we define an edge labeling $f: E\left(P\left(n . C_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i}^{1} v_{i+1}^{1}\right)=f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r, \\
a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}k-2 a, & \text { for } i=1,3, \ldots, r, j=2,3, \ldots, n-1, \\
2 a, & \text { for } i=2,4, \ldots, r-1, j=2,3, \ldots, n-1,\end{cases} \\
& f\left(v_{1}^{j} v_{1}^{j+1}\right)=2 a, \quad \text { for } j=1,2, \ldots, n-1 .
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . C_{r}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for every vertex $v$ in $V\left(P\left(n . C_{r}\right)\right)$.

An example of a $Z_{10}$-magic labeling of $P\left(4 . C_{5}\right)$ is shown in Figure 1.


Figure 1: A $Z_{10}$-magic labeling of $P\left(4 . C_{5}\right)$.

Up to isomorphism there are two graphs obtained by attaching $n$ copies of a generalized Petersen graph $P(r, m), r \geq 3,1 \leq m \leq \frac{r-1}{2}$ to a path $P_{n}$ to get a graph $P\left(n . P(r, m)^{v}\right)$. We deal with the case when $v$ is a vertex in the outer polygon of $P(r, m)$.

Theorem 2.2. Let $r \geq 3, m \leq \frac{r-1}{2}$ and $n \geq 2$ be positive integers. The path union of a generalized Petersen graph $P\left(n . P(r, m)^{v}\right)$, where $v$ is a vertex in the outer polygon of $P(r, m)$, is $Z_{k}$-magic for $k \geq 5$ when $r$ is odd.

Proof. Let the vertex set and the edge set of $P\left(n \cdot P(r, m)^{v}\right)$ be $V\left(P\left(n \cdot P(r, m)^{v}\right)\right)=\left\{u_{i}^{j}, v_{i}^{j}: 1 \leq\right.$ $i \leq r, 1 \leq j \leq n\}$ and $E\left(P\left(n . P(r, m)^{v}\right)\right)=\left\{u_{i}^{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r, 1 \leq\right.$ $j \leq n\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\} \cup\left\{v_{i}^{j} v_{i+m}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$, where the index $i$ is taken over modulo $r$.

Let $a, k$ be positive integers, $k>4 a$. Thus $k \geq 5$.

Define an edge labeling $f: E\left(P\left(n \cdot P(r, m)^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i}^{j} v_{i+m}^{j}\right)=a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(u_{i}^{j} v_{i}^{j}\right)=k-2 a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r, \\
3 a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)=a, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1, \\
& f\left(v_{i}^{n} v_{i+m}^{n}\right)= \begin{cases}k-a, & \text { for } n \text { is odd, } \\
a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} v_{i}^{n}\right)= \begin{cases}2 a, & \text { for } n \text { is odd, } \\
k-2 a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
k-3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd }, \\
k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}4 a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
k-4 a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . P(r, m)^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in V\left(P\left(n . P(r, m)^{v}\right)\right)$. Thus $V\left(P\left(n . P(r, m)^{v}\right)\right)$ is a $Z_{k}$-magic graph.

An example of a $Z_{15}$-magic labeling of $P\left(5 . P(5,2)^{v}\right)$ is shown in Figure 2.


Figure 2: A $Z_{15}$-magic labeling of $P\left(5 \cdot P(5,2)^{v}\right)$.

Theorem 2.3. Let $r \geq 4$ and $n \geq 2$ be positive integers. The path union of a shell graph $P\left(n . S_{r}^{v}\right)$, where $v \in V\left(S_{r}\right)$ is the vertex of degree $r-1$, is $Z_{k}$-magic for $k \geq 2 r-3$ when $r$ is odd and for $k \geq r-1$ when $k$ is even.

Proof. Let the vertex set and the edge set of $P\left(n . S_{r}^{v}\right)$ be $V\left(P\left(n . S_{r}^{v}\right)\right)=\left\{v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(P\left(n . S_{r}^{v}\right)\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{1}^{j} v_{i}^{j}: 3 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq\right.$ $j \leq n-1\}$ with the index $i$ taken over modulo $r$.

We consider the following two cases according to the parity of r .
Case (i): when $r$ is odd.
Let $a, k$ be positive integers, $k>2(r-2) a$. Thus $k \geq 2 r-3$.
Define an edge labeling $f: E\left(P\left(n . S_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\left.\left.\left.\begin{array}{rl}
f\left(v_{1}^{1} v_{i}^{1}\right) & =2 a, \quad \text { for } i=3,4, \ldots, r-1, \\
f\left(v_{1}^{1} v_{2}^{1}\right) & =f\left(v_{r}^{1} v_{1}^{1}\right)=a, \\
f\left(v_{i}^{1} v_{i+1}^{1}\right) & =k-a, \quad \text { for } i=2,3, \ldots, r-1, \\
f\left(v_{1}^{j} v_{1}^{j+1}\right) & = \begin{cases}k-2 a(r-2), & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
2 a(r-2), & \text { for } j=2,4, \ldots \text { and } j \leq n-1,\end{cases} \\
f\left(v_{1}^{j} v_{i}^{j}\right) & =a, \quad \text { for } i=3,4, \ldots, r-1, j=2,3, \ldots, n-1,
\end{array}\right\} \begin{array}{ll}
f\left(v_{i}^{j} v_{i+1}^{j}\right) & = \begin{cases}\frac{(r-3) a}{2}, & \text { for } i=2,4, \ldots, r-1, j=2,3, \ldots, n-1, \\
k-\frac{(r-1) a}{2}, & \text { for } i=3,5, \ldots, r-2, j=2,3, \ldots, n-1,\end{cases} \\
f\left(v_{1}^{j} v_{2}^{j}\right) & =f\left(v_{r}^{j} v_{1}^{j}\right)=k-\frac{(r-3) a}{2}, \quad \text { for } j=2,3, \ldots, n-1,
\end{array}\right\} \begin{array}{ll}
k-2 a, & \text { for } i=3,4, \ldots, r-1 \text { and } n \text { is odd, }, \\
2 a, & \text { for } i=3,4, \ldots, r-1 \text { and } n \text { is even },
\end{array}\right\} \begin{array}{ll}
f\left(v_{1}^{n} v_{i}^{n}\right) & = \begin{cases}k, & \text { for } n \text { is even, },\end{cases} \\
f\left(v_{1}^{n} v_{2}^{n}\right) & =f\left(v_{r}^{n} v_{1}^{n}\right)= \begin{cases}k-a, & \text { for } n \text { is odd }, \\
a, & \text { for } i=2,3, \ldots, r-1 \text { and } n \text { is odd },\end{cases} \\
f\left(v_{i}^{n} v_{i+1}^{n}\right) & = \begin{cases}a, & \text { for } i=2,3, \ldots, r-1 \text { and } n \text { is even. } \\
k-a,\end{cases}
\end{array}
$$

Then the induced vertex labeling $f^{+}: V\left(p\left(n . S_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . S_{r}^{v}\right)\right)$.

Case (ii): when $r$ is even.
Let $a, k$ be positive integers, $k>(r-2) a$. Thus $k \geq r-1$.

Define an edge labeling $f: E\left(P\left(n . S_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ in the following way.

$$
\begin{aligned}
& f\left(v_{1}^{1} v_{i}^{1}\right)=a, \quad \text { for } i=3,4, \ldots, r-1, \\
& f\left(v_{1}^{1} v_{2}^{1}\right)=k-a \text {, } \\
& f\left(v_{r}^{1} v_{1}^{1}\right)=2 a \text {, } \\
& f\left(v_{i}^{1} v_{i+1}^{1}\right)= \begin{cases}a, & \text { for } i=2,4, \ldots, r-2, \\
k-2 a, & \text { for } i=3,5, \ldots, r-1,\end{cases} \\
& f\left(v_{1}^{j} v_{1}^{j+1}\right)= \begin{cases}k-a(r-2), & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
a(r-2), & \text { for } j=2,4, \ldots \text { and } j \leq n-1,\end{cases} \\
& f\left(v_{1}^{j} v_{i}^{j}\right)=\frac{k}{2}, \quad \text { for } i=3,4, \ldots, r-1, j=2,3, \ldots, n-1 \text {, } \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=\left\{\begin{array}{lll}
\frac{3 k}{4}, & \text { for } i=2,3, \ldots, r-1, j=2,3, \ldots, n-1 \text { and } k \equiv 0 \quad(\bmod 4), \\
\frac{3 k+2}{4}, & \text { for } i=2,4, \ldots, r-2, j=2,3, \ldots, n-1 \text { and } k \equiv 2 \quad(\bmod 4), \\
\frac{3 k-2}{4}, & \text { for } i=3,5, \ldots, r-1, j=2,3, \ldots, n-1 \text { and } k \equiv 2 \quad(\bmod 4),
\end{array}\right. \\
& f\left(v_{1}^{j} v_{2}^{j}\right)= \begin{cases}\frac{k}{4}, & \text { for } j=2,3, \ldots, n-1 \text { and } k \equiv 0 \\
\frac{k-2}{4}, & \text { for } j=2,3, \ldots, n-1 \text { and } k \equiv 2 \quad(\bmod 4), \\
\bmod 4),\end{cases} \\
& f\left(v_{r}^{j} v_{1}^{j}\right)=\left\{\begin{array}{lll}
\frac{k}{4}, & \text { for } j=2,3, \ldots, n-1 \text { and } k \equiv 0 \quad(\bmod 4), \\
\frac{k+2}{4}, & \text { for } j=2,3, \ldots, n-1 \text { and } k \equiv 2 \quad(\bmod 4),
\end{array}\right. \\
& f\left(v_{1}^{n} v_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=3,4, \ldots, r-1 \text { and } n \text { is odd, } \\
a, & \text { for } i=3,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{n} v_{2}^{n}\right)= \begin{cases}a, & \text { for } n \text { is odd, } \\
k-a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(v_{r}^{n} v_{1}^{n}\right)= \begin{cases}k-2 a, & \text { for } n \text { is odd, } \\
2 a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,4, \ldots, r-2 \text { and } n \text { is odd } \\
2 a, & \text { for } i=3,5, \ldots, r-1 \text { and } n \text { is odd, } \\
a, & \text { for } i=2,4, \ldots, r-2 \text { and } n \text { is even, } \\
k-2 a, & \text { for } i=3,5, \ldots, r-1 \text { and } n \text { is even. }\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . S_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . S_{r}^{v}\right)\right)$. Thus $P\left(n . S_{r}^{v}\right)$ is a $Z_{k}$-magic graph for $r$ is even.

An example of a $Z_{11}$-magic labeling of $P\left(3 . S_{7}^{v}\right)$ is shown in Figure 3.
According to the symmetry of wheels there exist two non isomorphic graphs $P\left(n . W_{r}^{v}\right)$. We deal with the case when $v$ is a rim vertex, that is a vertex of degree three in $W_{r}$.

Theorem 2.4. Let $r \geq 4$ and $n \geq 2$ be integers. The path union of a wheel graph $P\left(n . W_{r}^{v}\right)$, where $v \in V\left(W_{r}\right)$ is a vertex of degree 3, is $Z_{k}$-magic for $k \geq r$ when $r$ is odd and for $k \geq 2 r-1$ when $r$


Figure 3: A $Z_{11}$-magic labeling of $P\left(3 . S_{7}^{v}\right)$.
is even.

Proof. Let the vertex set and the edge set of $P\left(n . W_{r}^{v}\right)$ be $V\left(P\left(n . W_{r}^{v}\right)\right)=\left\{w_{j}, v_{i}^{j}: 1 \leq i \leq r, 1 \leq\right.$ $j \leq n\}$ and $E\left(P\left(n . W_{r}^{v}\right)\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{w_{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, where the index $i$ is taken over modulo $r$.

We consider the following two cases according to the parity of $r$.
Case (i): when $r$ is odd.
Let $a, k$ be positive integers, $k>(r-1) a$. This implies $k \geq r$.
Define an edge labeling $f: E\left(P\left(n \cdot W_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(w_{j} v_{i}^{j}\right)=a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(w_{j} v_{1}^{j}\right)=k-(r-1) a, \quad \text { for } j=1,2, \ldots, n-1, \\
& f\left(v_{i}^{1} v_{i+1}^{1}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r, \\
k-2 a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}\frac{(r-1) a}{2}, & \text { for } i=1,3, \ldots, r, j=2,3, \ldots, n-1, \\
k-\frac{(r+1) a}{2}, & \text { for } i=2,4, \ldots, r-1, j=2,3, \ldots, n-1,\end{cases} \\
& f\left(w_{n} v_{1}^{n}\right)= \begin{cases}(r-1) a, & \text { for } n \text { is odd, } \\
k-(r-1) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} v_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
2 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
k-2 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{j} v_{1}^{j+1}\right)= \begin{cases}a(r-3), & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
k-a(r-3), & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

This means that for the induced vertex labeling $f^{+}: V\left(P\left(n . W_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for
all $u \in V\left(P\left(n . W_{r}^{v}\right)\right)$.
Case (ii): when $r$ is even.
Let $a, k$ be positive integers, $k>2(r-1) a$.
Define an edge labeling $f: E\left(P\left(n . W_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ in the following way.

$$
\begin{aligned}
f\left(w_{1} v_{1}^{j}\right) & =f\left(w_{n} v_{1}^{n}\right)=k-(r-1) a, \\
f\left(w_{1} v_{i}^{1}\right) & =f\left(w_{n} v_{i}^{n}\right)=a, \quad \text { for } i=2,3, \ldots, r, \\
f\left(v_{i}^{1} v_{i+1}^{1}\right) & =f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r-1, \\
k-2 a, & \text { for } i=2,4, \ldots, r\end{cases} \\
f\left(w_{j} v_{1}^{j}\right) & =k-2(r-1) a, \quad \text { for } j=2,3, \ldots, n-1, \\
f\left(w_{j} v_{i}^{j}\right) & =2 a, \quad \text { for } i=2,3, \ldots, r, j=2,3, \ldots, n-1, \\
f\left(v_{i}^{j} v_{i+1}^{j}\right) & =k-a, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1, \\
f\left(v_{1}^{j} v_{1}^{j+1}\right) & =r a, \quad \text { for } j=1,2, \ldots, n-1 .
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . W_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . W_{r}^{v}\right)\right)$. Hence $f^{+}$is constant that means $P\left(n . W_{r}^{v}\right)$ admits a $Z_{k}$-magic labeling.

An example of a $Z_{12}$-magic labeling of $P\left(3 \cdot W_{6}^{v}\right)$ is shown in Figure 4.


Figure 4: A $Z_{12}$-magic labeling of $P\left(3 \cdot W_{6}^{v}\right)$.

In the next theorem we deal with the path union of a closed helm graph $P\left(n . C H_{r}^{v}\right)$, where $v$ is a vertex of degree three in $C H_{r}$.

Theorem 2.5. Let $r \geq 4$ and $n \geq 2$ be integers. The path union of a closed helm graph $P\left(n . C H_{r}^{v}\right)$, where $v$ is a vertex of degree 3 in $C H_{r}$, is $Z_{k}$-magic for $k \geq r$ when $r$ is odd and for even $k \geq r$ when $r$ is even.

Proof. Let the vertex set and the edge set of $P\left(n . C H_{r}^{v}\right)$ be $V\left(P\left(n . C H_{r}^{v}\right)\right)=\left\{w_{j}, v_{i}^{j}, u_{i}^{j}: 1 \leq i \leq\right.$ $r, 1 \leq j \leq n\}$ and $E\left(P\left(n . C H_{r}^{v}\right)\right)=\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \cup\left\{w_{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, where the index $i$ is taken over modulo $r$.

Case (i): when $r$ is odd.
Let $a, k$ be positive integers, $k>(r-1) a$. Thus $k \geq r$.
Define an edge labeling $f: E\left(P\left(n . C H_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(w_{j} v_{1}^{j}\right)=k-(r-1) a, \quad \text { for } j=1,2, \ldots, n-1, \\
& f\left(w_{j} v_{i}^{j}\right)=a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}(r-1) a, & \text { for } i=1,3, \ldots, r, j=1,2, \ldots, n-1, \\
k-(r-1) a, & \text { for } i=2,4, \ldots, r-1, j=1,2, \ldots, n-1,\end{cases} \\
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}(r-1) a, & \text { for } i=1,3, \ldots, r, \\
k-(r-2) a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(v_{i}^{j} u_{i}^{j}\right)=k-a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(v_{1}^{j} u_{1}^{j}\right)=k-(r-1) a, \quad \text { for } j=1,2, \ldots, n-1, \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}\frac{(r-1) a}{2}, & \text { for } i=1,3, \ldots, r, j=2,3, \ldots, n-1, \\
k-\frac{(r-3) a}{2}, & \text { for } i=2,4, \ldots, r-1, j=2,3, \ldots, n-1,\end{cases} \\
& f\left(w_{n} v_{1}^{n}\right)= \begin{cases}(r-1) a, & \text { for } n \text { is odd, } \\
k-(r-1) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} v_{i}^{n}\right)=, \begin{cases}k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{n} u_{1}^{n}\right)= \begin{cases}(r-1), & \text { for } n \text { is odd, } \\
k-(r-1) a, & \text { for } n \text { is even },\end{cases} \\
& f\left(v_{i}^{n} u_{i}^{n}\right)= \begin{cases}a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-(r-1) a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
(r-1) a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
(r-1) a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
k-(r-1) a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}k-(r-1) a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
(r-2) a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
(r-1) a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
k-(r-2) a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}k-(r-1) a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
(r-1) a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n \cdot C H_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . C H_{r}^{v}\right)\right)$.

Case (ii): when $r$ is even.
Let $a$ be a positive integer and $k>(r-2) a$ be an even integer. Thus $k \geq r$.
Define an edge labeling $f: E\left(P\left(n . C H_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ such that

$$
\begin{aligned}
& f\left(w_{1} v_{1}^{1}\right)=k-(r-1) a, \\
& f\left(w_{1} v_{i}^{1}\right)=a, \quad \text { for } i=2,3, \ldots, r, \\
& f\left(v_{i}^{1} v_{i+1}^{1}\right)= \begin{cases}(r-1) a, & \text { for } i=1,3, \ldots, r-1, \\
k-(r-1) a, & \text { for } i=2,4, \ldots, r,\end{cases} \\
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}(r-1) a, & \text { for } i=1,3, \ldots, r-1, \\
k-(r-2) a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(v_{1}^{1} u_{1}^{1}\right)=(r-1) a, \\
& f\left(v_{i}^{1} u_{i}^{1}\right)=k-a, \quad \text { for } i=2,3, \ldots, r, \\
& f\left(w_{j} v_{i}^{j}\right)=f\left(v_{i}^{j} u_{i}^{j}\right)=f\left(v_{i}^{j} v_{i+1}^{j}\right)=\frac{k}{2}, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1, \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}\frac{k}{4}, & \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1 \text { and } k \equiv 0(\bmod 4), \\
\frac{k-2}{4}, & \text { for } i=1,3, \ldots, r-1, j=2,3, \ldots, n-1 \operatorname{and} k \equiv 2(\bmod 4), \\
\frac{k+2}{4}, & \text { for } i=2,4, \ldots, r, j=2,3, \ldots, n-1 \text { and } k \equiv 2(\bmod 4),\end{cases} \\
& f\left(w_{n} v_{1}^{n}\right)= \begin{cases}(r-1) a, & \text { for } n \text { is odd, } \\
k-(r-1) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} v_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{n} u_{1}^{n}\right)= \begin{cases}k-(r-1) a, & \text { for } n \text { is odd, } \\
(r-1) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} u_{i}^{n}\right)= \begin{cases}a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-(r-1) a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is odd, } \\
(r-1) a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is odd, } \\
(r-1) a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is even, } \\
k-(r-1) a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}k-(r-1) a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is odd, } \\
(r-2) a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is odd, } \\
(r-1) a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is even, } \\
k-(r-2) a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}k-r a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
r a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . C H_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$
$V\left(P\left(n . C H_{r}^{v}\right)\right)$. Hence $f^{+}$is constant equal to $0(\bmod k)$. Therefore $P\left(n . C H_{r}^{v}\right)$ is a $Z_{k}$-magic graph.

An example of a $Z_{6}$-magic labeling of $P\left(3 . C H_{6}^{v}\right)$ is shown in Figure 5.


Figure 5: A $Z_{12}$-magic labeling of $P\left(3 . C H_{6}^{v}\right)$.

Theorem 2.6. Let $r \geq 3$ and $n \geq 2$ be integers. The path union of a double wheel graph $P\left(n . D W_{r}^{v}\right)$, where $v \in V\left(D W_{r}\right)$ is a vertex of degree 3 , is $Z_{k}$-magic for $k \geq 5$ when $r$ is odd.

Proof. Let the vertex set and the edge set of $C\left(n . D W_{r}^{v}\right)$ be $V\left(P\left(n . D W_{r}^{v}\right)\right)=\left\{v_{j}, v_{i}^{j}, u_{i}^{j}: 1 \leq i \leq\right.$ $r, 1 \leq j \leq n\}$ and $E\left(P\left(n . D W_{r}^{v}\right)\right)=\left\{v_{j} v_{i}^{j}, v_{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq\right.$ $j \leq n\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\}$ with index $i$ taken over modulo $r$.

Let $a, k$ be positive integers, $k>4 a$. Thus $k \geq 5$.

For $r$ is odd we define an edge labeling $f: E\left(P\left(n \cdot D W_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(v_{j} v_{i}^{j}\right)=2 a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(v_{j} u_{i}^{j}\right)=k-2 a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r, \\
3 a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)=a, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1, \\
& f\left(v_{n} v_{i}^{n}\right)= \begin{cases}k-2 a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
2 a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{n} u_{i}^{n}\right)= \begin{cases}2 a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even },\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,2, \ldots, r-1 \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,2, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{r}^{n} v_{1}^{n}\right)= \begin{cases}a, & \text { for } n \text { is odd, } \\
k-a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
k-3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}4 a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
k-4 a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . D W_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . D W_{r}^{v}\right)\right)$.

An example of a $Z_{7}$-magic labeling of $P\left(3 . D W_{7}^{v}\right)$ is shown in Figure 6.
Theorem 2.7. Let $r \geq 3$ and $n \geq 2$ be positive integers. The path union of a flower graph $P\left(n . F l_{r}^{v}\right)$, where $v \in V\left(F l_{r}\right)$ is the vertex of degree 4, is $Z_{k}$-magic for $k \geq 5$ when $r$ is odd and for $k \geq 3$ when $k$ is even.

Proof. Let the vertex set and the edge set of $P\left(n . F l_{r}^{v}\right)$ be $V\left(P\left(n . F l_{r}^{v}\right)\right)=\left\{w_{j}, v_{i}^{j}, u_{i}^{j}: 1 \leq i \leq\right.$ $r, 1 \leq j \leq n\}$ and $E\left(P\left(n . F l_{r}^{v}\right)\right)=\left\{w_{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \cup\left\{w_{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{1}^{j} v_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, with index $i$ taken over modulo $r$.

Case (i): when $r$ is odd.


Figure 6: A $Z_{7}$-magic labeling of $P\left(3 . D W_{7}^{v}\right)$.

Let $a, k$ be positive integers, $k>4 a$. This means $k \geq 5$.
Define an edge labeling $f: E\left(P\left(n . F l_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(w_{j} v_{i}^{j}\right)=f\left(v_{i}^{j} u_{i}^{j}\right)=a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(u_{i}^{j} w_{j}\right)=k-a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(v_{i}^{1} v_{i+1}^{1}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r, \\
k-3 a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1, \\
& f\left(w_{n} v_{i}^{n}\right)=f\left(v_{i}^{n} u_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} w_{n}\right)= \begin{cases}a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even },\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
k-3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{j} v_{1}^{j+1}\right)= \begin{cases}k-4 a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
4 a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . F l_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . F l_{r}^{v}\right)\right)$.

Case (ii): when $r$ is even.
Let $a, k$ be positive integers, $k>2 a$. Thus $k \geq 3$.

Define an edge labeling $f: E\left(P\left(n . F l_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(w_{1} v_{1}^{1}\right)=f\left(v_{1}^{1} u_{1}^{1}\right)=2 a, \\
& f\left(u_{1}^{1} w_{1}\right)=k-2 a, \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1 \text {, } \\
& f\left(w_{j} v_{i}^{j}\right)=f\left(v_{i}^{j} u_{i}^{j}\right)=a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(w_{j} u_{i}^{j}\right)=k-a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(w_{n} v_{1}^{n}\right)=f\left(v_{1}^{n} u_{1}^{n}\right)= \begin{cases}k-2 a, & \text { for } n \text { is odd, } \\
2 a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} u_{1}^{n}\right)= \begin{cases}2 a, & \text { for } n \text { is odd, } \\
k-2 a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} v_{i}^{n}\right)=f\left(v_{i}^{n} u_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(w_{n} u_{i}^{n}\right)= \begin{cases}a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{j} v_{1}^{j+1}\right)= \begin{cases}k-2 a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
2 a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

The induced vertex labeling $f^{+}: V\left(P\left(n . F l_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in V\left(P\left(n . F l_{r}^{v}\right)\right)$.

An example of a $Z_{10}$-magic labeling of $P\left(4 . F l_{3}^{v}\right)$ is shown in Figure 7.


Figure 7: A $Z_{10}$-magic labeling of $P\left(4 . F l_{3}^{v}\right)$.
Let $v$ be a vertex of a cylinder graph $C_{r} \square P_{2}, r \geq 3$. According to the symmetry all $P\left(n .\left(C_{r} \square P_{2}\right)^{v}\right)$ are isomorphic. Thus we use the notation $P\left(n .\left(C_{r} \square P_{2}\right)\right)$.

Theorem 2.8. Let $r \geq 3, n \geq 2$ be integers. The path union of a cylinder graph $P\left(n .\left(C_{r} \square P_{2}\right)\right)$ is $Z_{k}$-magic for $k \geq 5$ when $r$ is odd.

Proof. Let the vertex set and the edge set of $P\left(n \cdot\left(C_{r} \square P_{2}\right)\right)$ be $V\left(P\left(n \cdot\left(C_{r} \square P_{2}\right)\right)\right)=\left\{v_{i}^{j}, u_{i}^{j}: 1 \leq\right.$ $i \leq r, 1 \leq j \leq n\}$ and $E\left(P\left(n .\left(C_{r} \square P_{2}\right)\right)\right)=\left\{u_{i}^{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r, 1 \leq\right.$ $j \leq n\} \cup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, with index $i$ taken over modulo $r$.

Let $a, k$ be positive integers, $k>4 a$. Thus $k \geq 5$.
For $r$ odd we define an edge labeling $f: E\left(P\left(n .\left(C_{r} \square P_{2}\right)\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}^{j} u_{i}^{j}\right) & =k-2 a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
f\left(v_{i}^{j} v_{i+1}^{j}\right) & =a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1, \\
f\left(u_{i}^{1} u_{i+1}^{1}\right) & = \begin{cases}k-a, & \text { for } i=1,3, \ldots, r, \\
3 a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
f\left(u_{i}^{j} u_{i+1}^{j}\right) & =a, \quad \text { for } i=1,2, \ldots, r, j=2,3, \ldots, n-1, \\
f\left(v_{i}^{n} v_{i+1}^{n}\right) & = \begin{cases}k-a, & \text { for } n \text { is odd, } \\
a, & \text { for } n \text { is even, }\end{cases} \\
f\left(v_{i}^{n} u_{i}^{n}\right) & = \begin{cases}2 a, & \text { for } n \text { is odd, } \\
k-2 a, & \text { for } n \text { is even, }\end{cases} \\
f\left(u_{i}^{n} u_{i+1}^{n}\right) & = \begin{cases}a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
k-3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
3 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
f\left(u_{1}^{j} u_{1}^{j+1}\right) & = \begin{cases}4 a, & \text { for } j=1,3, \ldots, j \leq n-1, \\
k-4 a, & \text { for } j=2,4, \ldots, j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n .\left(C_{r} \square P_{2}\right)\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0 \equiv k$ for all $v \in$ $V\left(P\left(n .\left(C_{r} \square P_{2}\right)\right)\right)$. Hence $f^{+}$is constant and is equal to $0 \equiv k$.

An example of a $Z_{9}$-magic labeling of $P\left(3 .\left(C_{7} \square P_{2}\right)\right)$ is shown in Figure 8.


Figure 8: A $Z_{9}$-magic labeling of $P\left(3 .\left(C_{7} \square P_{2}\right)^{v}\right)$.

Theorem 2.9. Let $r \geq 5$ and $n \geq 2$ be positive integers. The path union of a total graph of a path $P\left(n . T\left(P_{r}\right)^{v}\right)$, where $v \in V\left(T\left(P_{r}\right)\right)$ is a vertex of degree two, is $Z_{k}$-magic for $k \geq 3$.

Proof. Let the vertex set and the edge set of $P\left(n \cdot T\left(P_{r}\right)^{v}\right)$ be $V\left(P\left(n \cdot T\left(P_{r}\right)^{v}\right)\right)=\left\{u_{i}^{j}: 1 \leq i \leq\right.$ $r, 1 \leq j \leq n\} \cup\left\{v_{i}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\}$ and $E\left(P\left(n \cdot T\left(P_{r}\right)^{v}\right)\right)=\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r-1,1 \leq\right.$ $j \leq n\} \cup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r-2,1 \leq j \leq n\right\} \cup\left\{u_{i+1}^{j} v_{i}^{j}: 1 \leq i \leq r-1,1 \leq j \leq n\right\} \cup\left\{u_{i}^{j} v_{i}^{j}: 1 \leq i \leq\right.$ $r-1,1 \leq j \leq n\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\}$.

We consider the following two cases according to the parity of $r$.
Case (i): when $r$ is odd.
Let $a, k$ be positive integers, $k>2 a$. Thus $k \geq 3$.
Define an edge labeling $f: E\left(P\left(n \cdot T\left(P_{r}\right)^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r, \\
2 a, & \text { for } i=2,4, \ldots, r-3,\end{cases} \\
& f\left(u_{r-1}^{1} u_{r}^{1}\right)=f\left(v_{1}^{1} v_{2}^{1}\right)=a, \\
& f\left(v_{i}^{1} v_{i+1}^{1}\right)= \begin{cases}2 a, & \text { for } i=3,5, \ldots, r, \\
a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(u_{1}^{1} v_{1}^{1}\right)=a, \\
& f\left(u_{2}^{1} v_{2}^{1}\right)=k-a, \\
& f\left(u_{i}^{1} v_{i}^{1}\right)=k-2 a, \quad \text { for } i=3,4, \ldots, r-2, \\
& f\left(u_{r-1}^{1} v_{r-1}^{1}\right)=k-a, \\
& f\left(v_{1}^{1} u_{2}^{1}\right)=k-2 a, \\
& f\left(v_{i}^{1} u_{i+1}^{1}\right)=k-a, \quad \text { for } i=2,3, \ldots, r-1, \\
& f\left(u_{1}^{j} v_{1}^{j}\right)=f\left(u_{2}^{j} v_{1}^{j}\right)=a, \quad \text { for } j=2,3, \ldots, n-1, \\
& f\left(u_{1}^{j} u_{2}^{j}\right)=f\left(u_{r-1}^{j} u_{r}^{j}\right)=k-a, \quad \text { for } j=2,3, \ldots, n-1, \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)=k-2 a, \quad \text { for } i=2,3, \ldots, r-2, j=2,3, \ldots, n-1, \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-2 a, \quad \text { for } i=1,2, \ldots, r-2, j=2,3, \ldots, n-1, \\
& f\left(u_{i}^{j} v_{i}^{j}\right)=f\left(u_{i+1}^{j} v_{i}^{j}\right)=2 a, \quad \text { for } i=2,3, \ldots, r-2, j=2,3, \ldots, n-1, \\
& f\left(u_{r}^{j} v_{r-1}^{j}\right)=f\left(u_{r-1}^{j} v_{r-1}^{j}\right)=a, \quad \text { for } j=2,3, \ldots, n-1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& f\left(u_{r-1}^{n} u_{r}^{n}\right)= \begin{cases}k-a, & \text { for } n \text { is odd, } \\
a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=2,4, \ldots, r-3 \text { and } n \text { is odd, } \\
a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even, } \\
2 a, & \text { for } i=2,4, \ldots, r-3 \text { and } n \text { is odd },\end{cases} \\
& f\left(v_{1}^{n} v_{2}^{n}\right)= \begin{cases}k-a, & \text { for } n \text { is odd, } \\
a, & \text { for } n \text { is even },\end{cases} \\
& f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-2 a, & \text { for } i=3,5, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
2 a, & \text { for } i=3,5, \ldots, r \text { and } n \text { is even }, \\
a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even }\end{cases} \\
& f\left(u_{1}^{n} v_{1}^{n}\right)= \begin{cases}k-a, & \text { for } n \text { is odd, } \\
a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{2}^{n} v_{2}^{n}\right)= \begin{cases}a, & \text { for } n \text { is odd, } \\
k-a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} v_{i}^{n}\right)= \begin{cases}2 a, & \text { for } i=3,4, \ldots, r-2 \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=3,4, \ldots, r-2 \text { and } n \text { is even },\end{cases} \\
& f\left(u_{r-1}^{n} v_{r-1}^{n}\right)= \begin{cases}a, & \text { for } n \text { is odd, } \\
k-a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{n} u_{2}^{n}\right)= \begin{cases}2 a, & \text { for } n \text { is odd }, \\
k-2 a, & \text { for } n \text { is even },\end{cases} \\
& f\left(v_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=2,3, \ldots, r-1 \text { and } n \text { is odd, } \\
k-a, & \text { for } i=2,3, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}k-2 a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
2 a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n \cdot T\left(P_{r}\right)^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . T\left(P_{r}\right)^{v}\right)\right)$.

Case (ii): when $r$ is even.
Let $a, k$ be positive integers, $k>2 a$. Thus $k \geq 3$.
Define an edge labeling $f: E\left(P\left(n \cdot T\left(P_{r}\right)^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}^{1} u_{i+1}^{1}\right)=f\left(v_{i}^{1} v_{i+1}^{1}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r-1, \\
k-2 a, & \text { for } i=2,4, \ldots, r,\end{cases} \\
& f\left(v_{1}^{1} u_{1}^{1}\right)=k-a, \\
& f\left(v_{i}^{1} u_{i}^{1}\right)=a, \quad \text { for } i=2,3, \ldots, r-1, \\
& f\left(v_{i}^{1} u_{i+1}^{1}\right)=2 a, \quad \text { for } i=1,2, \ldots, r-2, \\
& f\left(v_{r-1}^{1} u_{r}^{1}\right)=a \text {, } \\
& f\left(u_{1}^{j} v_{1}^{j}\right)=f\left(u_{2}^{j} v_{1}^{j}\right)=a, \quad \text { for } j=2,3, \ldots, n-1, \\
& f\left(u_{1}^{j} u_{2}^{j}\right)=f\left(u_{r-1}^{j} u_{r}^{j}\right)=k-a, \quad \text { for } j=2,3, \ldots, n-1, \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)=k-2 a, \quad \text { for } i=2,3, \ldots, r-2, j=2,3, \ldots, n-1, \\
& f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-2 a, \quad \text { for } i=1,2, \ldots, r-2, j=2,3, \ldots, n-1, \\
& f\left(u_{i}^{j} v_{i}^{j}\right)=f\left(u_{i+1}^{j} v_{i}^{j}\right)=2 a, \quad \text { for } i=2,3, \ldots, r-2, j=2,3, \ldots, n-1, \\
& f\left(u_{r}^{j} v_{r-1}^{j}\right)=f\left(u_{r-1}^{j} v_{r-1}^{j}\right)=a, \quad \text { for } j=2,3, \ldots, n-1 \text {, } \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)=f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is odd, } \\
2 a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is even, } \\
k-2 a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{n} v_{1}^{n}\right)= \begin{cases}a, & \text { for } n \text { is odd, } \\
k-a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} v_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,3, \ldots, r-1 \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r-1 \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}k-2 a, & \text { for } i=1,2, \ldots, r-2 \text { and } n \text { is odd, } \\
2 a, & \text { for } i=1,2, \ldots, r-2 \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{r-1}^{n} u_{r}^{n}\right)= \begin{cases}k-a, & \text { for } n \text { is odd, } \\
a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}2 a, & \text { for } j=1,3, \ldots \text { and } j \leq n-1, \\
k-2 a, & \text { for } j=2,4, \ldots \text { and } j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n . T\left(P_{r}\right)^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . T\left(P_{r}\right)^{v}\right)\right)$. Hence $P\left(n \cdot T\left(P_{r}\right)^{v}\right)$ is a $Z_{k}$-magic graph.

An example of a $Z_{5}$-magic labeling of $P\left(5 . T\left(P_{6}\right)^{v}\right)$ is shown in Figure 9.


Figure 9: A $Z_{5}$-magic labeling of $P\left(5 . T\left(P_{6}\right)^{v}\right)$.

Theorem 2.10. Let $r \geq 3$ and $n \geq 2$ be integers. Let $v$ is a vertex of degree 2 in $L C_{r}$. The path union of a lotus inside a circle graph $P\left(n . L C_{r}^{v}\right)$, is $Z_{k}$-magic for $k \geq r$.

Proof. Let the vertex set and the edge set of $P\left(n . L C_{r}^{v}\right)$ be $V\left(P\left(n . L C_{r}^{v}\right)\right)=\left\{w_{j}, v_{i}^{j}, u_{i}^{j}: 1 \leq i \leq\right.$ $r, 1 \leq j \leq n\}$ and $E\left(P\left(n \cdot L C_{r}^{v}\right)\right)=\left\{w_{j} v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq\right.$ $n\} \cup\left\{v_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{u_{1}^{j} u_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, where the index $i$ is taken over modulo $r$.

We consider the following two cases according to the parity of $r$.

Case (i): when $r$ is odd.

Let $a, k$ be positive integers, $k>(r-1) a$. Thus $k \geq r$.

Define an edge labeling $f: E\left(P\left(n . L C_{r}^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ in the following way.

$$
\begin{aligned}
& f\left(w_{j} v_{1}^{j}\right)=k-(r-1) a, \quad \text { for } j=1,2, \ldots, n-1, \\
& f\left(w_{j} v_{i}^{j}\right)=a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1 \text {, } \\
& f\left(v_{1}^{j} u_{1}^{j}\right)=(r-2) a, \quad \text { for } j=1,2, \ldots, n-1, \\
& f\left(v_{i}^{j} u_{i}^{j}\right)=k-2 a, \quad \text { for } i=2,3, \ldots, r, j=1,2, \ldots, n-1, \\
& f\left(v_{i}^{j} u_{i+1}^{j}\right)=a, \quad \text { for } i=1,2, \ldots, r, j=1,2, \ldots, n-1 \text {, } \\
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r, \\
2 a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)=\left\{\begin{array}{l}
k-\frac{(r-1) a}{2}, \quad \text { for } i=1,3, \ldots, r, j=2,3, \ldots, n-1, \\
\frac{(r+1) a}{2}, \quad \text { for } i=2,4, \ldots, r-1, j=2,3, \ldots, n-1,
\end{array}\right. \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}k-(r-3) a, & \text { for } j=1,3, \ldots, j \leq n-1, \\
(r-3) a, & \text { for } j=2,4, \ldots, j \leq n-1,\end{cases} \\
& f\left(w_{n} v_{1}^{n}\right)= \begin{cases}(r-1) a, & \text { for } n \text { is odd, } \\
k-(r-1) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} v_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{n} u_{1}^{n}\right)= \begin{cases}k-(r-2) a, & \text { for } n \text { is odd, } \\
(r-2) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} u_{i}^{n}\right)= \begin{cases}2 a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,3, \ldots, r \text { and } n \text { is even }, \\
2 a, & \text { for } i=2,4, \ldots, r-1 \text { and } n \text { is even } .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n \cdot L C_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$ $V\left(P\left(n . L C_{r}^{v}\right)\right)$.

Case (ii): when $r$ is even.
Let $a, k$ be positive integers, $k>(r-1) a$. Thus $k \geq r$.

Define an edge labeling $f: E\left(P\left(n . L C_{r}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
& f\left(w_{1} v_{1}^{1}\right)=k-(r-1) a, \\
& f\left(w_{1} v_{i}^{1}\right)=a, \quad \text { for } i=2,3, \ldots, r, \\
& f\left(v_{1}^{1} u_{1}^{1}\right)=(r-2) a, \\
& f\left(v_{i}^{1} u_{i}^{1}\right)=k-2, \quad \text { for } i=2,3, \ldots, r, \\
& f\left(v_{i}^{1} u_{i+1}^{1}\right)=a, \quad \text { for } i=1,2, \ldots, r, \\
& f\left(u_{i}^{1} u_{i+1}^{1}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r-1, \\
2 a, & \text { for } i=2,4, \ldots, r,\end{cases} \\
& f\left(w_{j} v_{i}^{j}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r-1, j=2,3, \ldots, n-1, \\
k-a, & \text { for } i=2,4, \ldots, r, j=2,3, \ldots, n-1,\end{cases} \\
& f\left(v_{i}^{j} u_{i}^{j}\right)= \begin{cases}k-2 a, & \text { for } i=1,3, \ldots, r-1, j=2,3, \ldots, n-1, \\
k-a, & \text { for } i=2,4, \ldots, r, j=2,3, \ldots, n-1,\end{cases} \\
& f\left(v_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r-1, j=1,2, \ldots, n-1, \\
2 a, & \text { for } i=2,4, \ldots, r, j=1,2, \ldots, n-1,\end{cases} \\
& f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r-1, j=2,3, \ldots, n-1, \\
a, & \text { for } i=2,4, \ldots, r, j=2,3, \ldots, n-1,\end{cases} \\
& f\left(w_{n} v_{1}^{n}\right)= \begin{cases}(r-1) a, & \text { for } n \text { is odd, } \\
k-(r-1) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(w_{n} v_{i}^{n}\right)= \begin{cases}k-a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{1}^{n} u_{1}^{n}\right)= \begin{cases}k-(r-2) a, & \text { for } n \text { is odd, } \\
(r-2) a, & \text { for } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} u_{i}^{n}\right)= \begin{cases}2 a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=2,3, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(v_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is odd, } \\
a, & \text { for } i=1,2, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is odd, } \\
k-2 a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is odd, } \\
k-a, & \text { for } i=1,3, \ldots, r-1 \text { and } n \text { is even, } \\
2 a, & \text { for } i=2,4, \ldots, r \text { and } n \text { is even, }\end{cases} \\
& f\left(u_{1}^{j} u_{1}^{j+1}\right)= \begin{cases}k-r a, & \text { for } j=1,3, \ldots, j \leq n-1, \\
r a, & \text { for } j=2,4, \ldots, j \leq n-1 .\end{cases}
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n \cdot L C_{r}^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in$
$V\left(P\left(n . L C_{r}^{v}\right)\right)$. Hence $f^{+}$is constant and is equal to $\equiv 0(\bmod k)$.

An example of a $Z_{10}$-magic labeling of $P\left(3 . L C_{6}^{v}\right)$ is shown in Figure 10.


Figure 10: A $Z_{10}$-magic labeling of $P\left(3 \cdot L C_{6}^{v}\right)$.
In the last theorem we deal with the path union of an $r$-pan graph $P\left(n .(r \text {-pan })^{v}\right)$, where $v$ is a vertex of degree two in an $r$-pan graph.

Theorem 2.11. Let $r \geq 3, n \geq 2$ be integers. The path union of an $r$-pan graph $P\left(n .(r-p a n)^{v}\right)$, where $v$ is a vertex of degree two in an r-pan graph, is $Z_{k}$-magic for $k \geq 5$ when $r$ is odd.

Proof. Let $v$ be a vertex of degree two in an $r$-pan graph. Let the vertex set and the edge set of $P\left(n .(r \text {-pan })^{v}\right)$ be $V\left(P\left(n .(r \text {-pan })^{v}\right)\right)=\left\{w_{j}, v_{i}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}$ and $E\left(P\left(n .(r \text {-pan })^{v}\right)\right)=$ $\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq i \leq r, 1 \leq j \leq n\right\} \cup\left\{v_{1}^{j} w_{j}: 1 \leq j \leq n\right\} \cup\left\{w_{1}^{j} w_{1}^{j+1}: 1 \leq j \leq n-1\right\}$, where the index $i$ is taken over modulo $r$.

Let $a, k$ be positive integers, $k>2 a$. Thus $k \geq 5$.
For $r$ odd we define an edge labeling $f: E\left(P\left(n .(r-\mathrm{pan})^{v}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}^{1} v_{i+1}^{1}\right) & =f\left(v_{i}^{n} v_{i+1}^{n}\right)= \begin{cases}k-a, & \text { for } i=1,3, \ldots, r \\
a, & \text { for } i=2,4, \ldots, r-1,\end{cases} \\
f\left(v_{i}^{j} v_{i+1}^{j}\right) & = \begin{cases}k-2 a, & \text { for } i=1,3, \ldots, r, j=2,3, \ldots, n-1, \\
2 a, & \text { for } i=2,4, \ldots, r-1, j=2,3, \ldots, n-1,\end{cases} \\
f\left(v_{1}^{1} w_{1}\right) & =f\left(v_{1}^{n} w_{n}\right)=2 a, \\
f\left(v_{1}^{j} w_{j}\right) & =4 a, \quad \text { for } j=2,3, \ldots, n-1, \\
f\left(w_{1}^{j} w_{1}^{j+1}\right) & =k-2 a, \quad \text { for } j=1,2, \ldots, n-1 .
\end{aligned}
$$

Then the induced vertex labeling $f^{+}: V\left(P\left(n .(r-\operatorname{pan})^{v}\right)\right) \rightarrow Z_{k}$ is $f^{+}(u) \equiv 0(\bmod k)$ for all $u \in V\left(P\left(n .(r \text {-pan })^{v}\right)\right)$. This means that $P\left(n .(r \text {-pan })^{v}\right)$ is a $Z_{k}$-magic graph.

An example of a $Z_{9}$-magic labeling of $P\left(4 .(5-\mathrm{pan})^{v}\right)$ is illustrated in Figure 11.


Figure 11: A $Z_{9}$-magic labeling of $P\left(4 .(5-\mathrm{pan})^{v}\right)$.

## Acknowledgment

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0116 and by VEGA 1/0233/18.

## References

[1] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2018, \# DS6.
[2] P. Jeyanthi and K. Jeya Daisy, $Z_{k}$-magic labeling of subdivision graphs, Discrete Math. Algorithm. Appl., 8(3) (2016), 19 pages, DOI: 10.1142/ S1793830916500464.
[3] P. Jeyanthi and K. Jeya Daisy, $Z_{k}$-magic labeling of open star of graphs, Bull. Inter. Math. Virtual Inst., 7 (2017), 243-255.
[4] P. Jeyanthi and K. Jeya Daisy, Certain classes of $Z_{k}$-magic graphs, J. Graph Labeling, 4(1) (2018), 38-47.
[5] P. Jeyanthi and K. Jeya Daisy, $Z_{k}$-magic labeling of some families of graphs, J. Algorithm Comput., 50(2) (2018), 1-12.
[6] P. Jeyanthi and K. Jeya Daisy, $Z_{k}$-magic labeling of cycle of graphs, Int. J. Math. Combin., 1 (2019), 88-102.
[7] P. Jeyanthi and K. Jeya Daisy, Some results on $Z_{k}$-magic labeling, Palestine J. Math., 8(2) (2019), 400-412.
[8] K. Kavitha and K. Thirusangu, Group magic labeling of cycles with a common vertex, Int. J. Comput. Algorithm, 2 (2013), 239-242.
[9] R.M. Low and S.M. Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.
[10] J. Sedláček, On magic graphs, Math. Slov., 26 (1976), 329-335.
[11] S.C. Shee and Y.S. Ho, The cordiality of the path-union of $n$ copies of a graph, Discrete Math., 151(1-3) (1996), 221-229.
[12] W.C. Shiu, P.C.B. Lam and P.K. Sun, Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167 (2004), 97-107.
[13] W.C. Shiu and R.M. Low, $Z_{k}$-magic labeling of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309-316.

