Postulation of general unions of lines and +lines in positive characteristic

E. BALLICO¹ Department of Mathematics, University of Trento, 38123 Povo (TN), Italy ballico@science.unitn.it

ABSTRACT

A +line is a scheme $R \subset \mathbb{P}^r$ with a line as its reduction $L = R_{red}$ which is the union of L and a tangent vector $v \nsubseteq L$ with $v_{red} \in L$. Here we prove in arbitrary characteristic that for $r \geq 4$ a general union of lines and +lines has maximal rank. We use the case r = 3 proved by myself in a previous paper and adapt the characteristic zero proof of the case r > 3 given in the same paper.

RESUMEN

Una +línea es un esquema $R \subset \mathbb{P}^r$ con una línea como su reducción $L = R_{red}$ que es la unión de L y un vector tangente $\nu \nsubseteq L$, con $\nu_{red} \in L$. Acá demostramos que para $r \geq 4$ una unión general de líneas y +líneas tiene rango máximo en característica arbitraria. Usamos el caso r = 3 demostrado por el autor en un artículo anterior y adaptamos la demostración en característica cero del caso r > 3 dado en el mismo artículo anterior.

Keywords and Phrases: Hilbert function; decorated line; disjoint unions of lines. 2010 AMS Mathematics Subject Classification: 14N05.

 $^{^1\}mathrm{The}$ author was partially supported by MIUR and GNSAGA of INdAM (Italy).

1 Introduction

The aim of this note is to extend to the positive characteristic case a results in [1]. This extension is sufficient to extend [2, 3] to the positive characteristic case.

A scheme $X \subset \mathbb{P}^r$ is said to have maximal rank if $h^0(\mathcal{I}_X(t)) \cdot h^1(\mathcal{I}_X(t)) = 0$ for all $t \in \mathbb{N}$. Fix a line $L \subset \mathbb{P}^r$, $r \ge 2$, and $P \in L$. A tangent vector of \mathbb{P}^r with P as its support is a zero-dimensional scheme $Z \subset \mathbb{P}^r$ such that $\deg(Z) = 2$ and $Z_{red} = \{P\}$. The tangent vector Z is uniquely determined by P and the line $\langle Z \rangle$ spanned by Z. Conversely, for each line $D \subset \mathbb{P}^r$ with $P \in D$ there is a unique tangent vector v with $v_{red} = P$ and $\langle v \rangle = D$. A +line $M \subset \mathbb{P}^r$ supported by L and with nilradical supported by P is the union $v \cup L$ of L and a tangent vector v with P as its support and spanning a line $\langle v \rangle \neq L$. The set of all +lines of \mathbb{P}^r supported by L and with a nilradical at P is an irreducible variety of dimension r - 1 (the complement of L in the (r - 1)-dimensional projective space of all lines of \mathbb{P}^r containing P). Hence the set of all +lines of \mathbb{P}^r supported by L is parametrized by an irreducible variety of dimension r. For any +line R and every integer k > 0we have $h^0(\mathcal{O}_R(k)) = k + 2$ and $h^1(\mathcal{O}_R(k)) = 0$.

For any integers $r \ge 3$, $t \ge 0$, $c \ge 0$ with $(t, c) \ne (0, 0)$ let L(r, t, c) be the set of all schemes $X \subset \mathbb{P}^r$ which are the disjoint union of t lines and c +lines. Every element of L(r, c, t) has the map $k \mapsto (k+1)t + (k+2)c$ as its Hilbert function.

Consider the following statement.

Theorem 1.1. For all integers $r \ge 3$, $a \ge 0$ and $b \ge 0$, $(a, b) \ne (0, 0)$, a general union $X \subset \mathbb{P}^r$ of a lines and b +lines has maximal rank,

This statement was proved in [1] when either r = 3 or $r \ge 4$ and the algebraically closed base field has characteristic zero. The aim of this note is to prove Theorem 1.1 in positive characteristic (using the case r = 3 proved in [1]). Hence we may assume $r \ge 4$. We also use numerical lemmas and elementary remarks contained in [1]. We only need to change all parts which quote [4, Lemma 1.4] or [6], the only characteristic zero tool used in [1]. We recall that the case c = 0 is due to R. Hartshorne and A. Hirschowitz ([7]).

2 Proof of Theorem 1.1

For all integers $r \ge 3$ and $k \ge 0$ let $H_{r,k}$ denote the following statement:

 $\begin{array}{l} \textbf{Assertion} \ H_{r,k}, \ r \geq 3, \ k \geq 0 : \ \mathrm{Fix} \ (t,c) \in \mathbb{N}^2 \setminus \{(0,0)\} \ \mathrm{and} \ \mathrm{take} \ \mathrm{a} \ \mathrm{general} \ X \in L(r,t,c). \ \mathrm{If} \\ (k+1)t + (k+2)c \geq \binom{r+k}{k}, \ \mathrm{then} \ h^0(\mathcal{I}_X(k)) = 0. \ \mathrm{If} \ (k+1)t + (k+2)c \leq \binom{r+k}{k}, \ \mathrm{then} \ h^1(\mathcal{I}_X(k)) = 0. \end{array}$

For all integers $r \ge 3$ and $k \ge 0$ define the integers $\mathfrak{m}_{r,k}$ and $\mathfrak{n}_{r,k}$ by the relations

$$(k+1)\mathfrak{m}_{r,k} + \mathfrak{n}_{r,k} = \binom{r+k}{r}, \ 0 \le \mathfrak{n}_{r,k} \le k$$

$$(2.1)$$

From (2.1) for the pairs (\mathbf{r}, \mathbf{k}) and $(\mathbf{r}, \mathbf{k} - 1)$ we get

$$\mathfrak{m}_{r,k-1} + (k+1)(\mathfrak{m}_{r,k} - \mathfrak{m}_{r,k-1}) + \mathfrak{n}_{r,k} - \mathfrak{n}_{r,k-1} = \binom{r+k-1}{r-1}$$
(2.2)

for all k > 0.

For all integers $r \ge 3$ and $k \ge 0$ set $u_{r,k} := \lceil \binom{r+k}{r} / (k+2) \rceil$ and $v_{r,k} := (k+2)u_{r,k} - \binom{r+k}{r}$. We have

$$(k+2)(u_{r,k} - v_{r,k}) + (k+1)v_{r,k} = \binom{r+k}{r}, \ 0 \le v_{r,k} \le k+1$$
(2.3)

As in [1] we need the following assumption $B_{r,k}$:

Assumption $B_{r,k}$, $r \ge 4$, k > 0. Fix a hyperplane $H \subset \mathbb{P}^r$. There is $X \in L(r, \mathfrak{m}_{r,k} - \mathfrak{n}_{r,k}, \mathfrak{n}_{r,k})$ such that the support of the nilradical sheaf of X is contained in H and $\mathfrak{h}^0(\mathcal{I}_X(k)) = 0$.

For all $X \in L(r, \mathfrak{m}_{r,k} - \mathfrak{n}_{r,k}, \mathfrak{n}_{r,k})$ we have $h^0(\mathcal{O}_X(k)) = \binom{r+k}{r}$ and so $h^1(\mathcal{I}_X(k)) = h^0(\mathcal{I}_X(k))$.

Lemma 2.1. We have $\mathfrak{m}_{r,k} - \mathfrak{m}_{r,k-1} \ge \mathfrak{n}_{r,k-1} + \mathfrak{n}_{r,k}$ if $r \ge 4$ and $k \ge 2$.

Proof. Assume $\mathfrak{m}_{r,k} - \mathfrak{m}_{r,k-1} \le \mathfrak{n}_{r,k-1} + \mathfrak{n}_{r,k} - 1$. From (2.1) we get

$$m_{r,k-1} + kn_{r,k-1} + (k+2)n_{r,k} - k - 1 \ge \binom{r+k-1}{r-1}$$

Since $n_{r,k-1} \le k-1$ and $n_{r,k} \le k$, we get $m_{r,k-1} \ge \binom{r+k-1}{r-1} - 2k^2 + 1$. Since $km_{r,k-1} \le \binom{r+k-1}{r}$ and $\binom{r+k-1}{r-1} - \binom{r+k-1}{r} = (r-1)\binom{r+k-1}{r}$, we get

$$2k^3 - k \ge (r-1)\binom{r+k-1}{r}$$
(2.4)

This inequality is false if r = 4 and $k \ge 2$, because it is equivalent to the inequality $k(2k^2 - 1) \ge (k+3)(k+2)(k+1)k/8$. Since the right of (2.4) is an increasing function of r, we conclude for all $r \ge 5$ and $k \ge 2$.

Lemma 2.2. Fix an integer $r \ge 4$ and assume that Theorem 1.1 is true in \mathbb{P}^{r-1} . Then $B_{r,k}$ is true for all k > 0.

Proof. Since the case k = 1 is true ([1, Remark 3]), we may assume $k \ge 2$ and use induction on k. By Lemma 2.1 we have $\mathfrak{m}_{r,k} - \mathfrak{m}_{r,k-1} \ge \mathfrak{n}_{r,k-1} + \mathfrak{n}_{r,k}$. Fix a solution $X \in L(r, \mathfrak{m}_{r,k-1} - \mathfrak{n}_{r,k-1}, \mathfrak{n}_{r,k-1})$ of $B_{r,k-1}$, say $X = A \sqcup B$ with $A \in L(r, \mathfrak{m}_{r,k-1} - \mathfrak{n}_{r,k-1}, 0)$, $B \in L(r, 0, \mathfrak{n}_{r,k-1})$ and the tangent vectors of B have support $S \subset H$. By semicontinuity we may assume that no irreducible component of X_{red} is contained in H, that no tangent vector associated to the nilradical of B is contained in H and that S is a general subset of H with cardinality $\mathfrak{n}_{r,k-1}$. Let $C_1 \subset H$ be a general union of $\mathfrak{m}_{r,k} - \mathfrak{m}_{r,k-1} - \mathfrak{n}_{r,k-1}$ lines. Let $C_2 \subset H$ be a general union of $\mathfrak{n}_{r,k-1}$ lines, each of them containing a different point of S. Let $E \subset H$ be a general union of $\mathfrak{n}_{r,k}$ + lines. Since S is

general, $C_1 \cup C_2 \cup E$ is a general element of $L(r-1, \mathfrak{m}_{r,k} - \mathfrak{m}_{r,k-1} - \mathfrak{n}_{r,k}, r_{n,k})$. Since Theorem 1.1 is true in \mathbb{P}^{r-1} , by (2.2) we get $\mathfrak{h}^1(\mathsf{H}, \mathcal{I}_{C_1 \cup C_2 \cup F}(k)) = 0$ and $\mathfrak{h}^0(\mathsf{H}, \mathcal{I}_{C_1 \cup C_2 \cup E}(k)) = \mathfrak{m}_{r,k-1} - \mathfrak{n}_{r,k-1}$. Deforming A with $B \cup C_1 \cup C_2 \cup E$ fixed, we may assume $A \cap (B \cup C_1 \cup C_2 \cup E) = \emptyset$ and that $\mathfrak{h}^i(\mathsf{H}, \mathcal{I}_{C_1 \cup C_2 \cup E \cup (A \cap H)}(k)) = 0$, i = 0, 1. Since $A \cap (B \cup C_1 \cup C_2 \cup E) = \emptyset$, $Y := A \cup B \cup C_1 \cup C_2 \cup E$ is a disjoint union of $\mathfrak{n}_{r,k}$ +lines with support in H (even contained in H), $\mathfrak{m}_{r,k} - 2\mathfrak{n}_{r,k-1} - \mathfrak{n}_{r,k}$ lines and $\mathfrak{n}_{r,k-1}$ sundials in the sense of [5]. Hence Y is a flat limit of a family of elements $L(r, \mathfrak{m}_{r,k-1} - \mathfrak{n}_{r,k-1}, \mathfrak{n}_{r,k-1})$ whose nilpotent sheaf is contained in H ([7], [5]). By the semicontinuity theorem to prove $B_{r,k}$ it is sufficient to prove that $\mathfrak{h}^0(\mathcal{I}_Y(k)) = 0$. Since no tangent vector of B is contained in H, then $\operatorname{Res}_{H}(Y) = X$ and $Y \cap H = C_1 \cup C_2 \cup E \cup (A \cap H)$. Since $\mathfrak{h}^0(\mathcal{I}_X(k-1)) = 0$ and $\mathfrak{h}^0(\mathsf{H}, \mathcal{I}_{C_1 \cup C_2 \cup E \cup (A \cap H)}(k)) = 0$, a residual exact sequence gives $\mathfrak{h}^0(\mathcal{I}_Y(k)) = 0$.

Lemma 2.3. Assume $r \ge 4$ and that Theorem 1.1 is true in $H = \mathbb{P}^{r-1}$. Fix an integer $k \ge 2$ and assume that $H_{r,k-1}$ is true. Fix integers $a \ge 0$, $b \ge 0$, $e \ge 0$ such that $e \le 2\lfloor (k+2)/2 \rfloor$, $(k+2)a + (k+1)b + 4\lfloor (k+2)/2 \rfloor \le \binom{r+k-1}{r-1}$. Let $X \subset H$ be a general union of a +lines, b lines and e tangent vectors. Then $h^1(H, \mathcal{I}_X(k)) = 0$.

Proof. It is sufficient to do the case $e = \lfloor (k+2)/2 \rfloor$. Let $A \subset H$ be a general union of a lines and b 2-lines.

First assume that k is even. Let $L_1, L_2 \subset H$ be general lines. Fix a general $S_i \subset L_i$ with $\sharp(S_i) = k/2$ and a general $P_i \in L_i$, i = 1, 2. Let $v_i \subset H$ be a general tangent vector of H with P_i as its support; in particular we assume $v_i \notin L_i$. Let $E_i \subset L_i$ be the union of the k/2 tangent vectors of L_i with $(E_i)_{red} = S_i$. Set $Y := A \cup E_1 \cup v_1 \cup E_2 \cup v_2$. Let R_i the +lines with L_i as their supports and with v_i as the tangent vectors associated to their nilpotent sheaf. We have $h^0(\mathcal{O}_{A \cup E_1 \cup E_2 \cup v_1 \cup v_2}(k)) = h^0(\mathcal{O}_{A \cup R_1 \cup R_2}(k))$, $h^1(\mathcal{O}_{A \cup E_1 \cup E_2 \cup v_1 \cup v_2}(k)) = h^1(\mathcal{O}_{A \cup R_1 \cup R_2}(k))$ and $h^0(\mathcal{I}_{A \cup E_1 \cup E_2 \cup v_1 \cup v_2}(k)) = h^0(\mathcal{I}_{A \cup R_1 \cup R_2}(k))$. Therefore we have $h^1(\mathcal{I}_{A \cup E_1 \cup E_2 \cup v_1 \cup v_2}(k)) = h^1(\mathcal{I}_{A \cup R_1 \cup R_2}(k))$. Since $(k+2)a + (k+1)b + 2(k+2) \leq \binom{r+k-1}{r-1}$ and Theorem 1.1 is true in \mathbb{P}^{r-1} , we have $h^1(\mathcal{I}_{A \cup R_1 \cup R_2}(k)) = 0$. Hence $h^1(\mathcal{I}_{A \cup E_1 \cup E_2 \cup v_1 \cup v_2}(k)) = 0$. The semicontinuity theorem gives $h^1(H, \mathcal{I}_X(k)) = 0$.

Now assume that k is even. Let $F_i \subset L_i$ be any disjoint union of (k + 1)/2 tangent vectors. We have $h^0(\mathcal{O}_{A \cup F_1 \cup F_2}(k)) = h^0(\mathcal{O}_{A \cup L_1 \cup L_2}(k))$, $h^1(\mathcal{O}_{A \cup F_1 \cup F_2}(k)) = h^1(\mathcal{O}_{A \cup L_1 \cup L_2}(k))$ and $h^0(\mathcal{I}_{A \cup F_1 \cup F_2}(k)) = h^0(\mathcal{I}_{A \cup L_1 \cup L_2}(k))$. Therefore we obtain $h^1(\mathcal{I}_{A \cup F_1 \cup F_2}(k)) = h^1(\mathcal{I}_{A \cup L_1 \cup L_2}(k))$. Since $(k + 2)a + (k + 1)b + 2(k + 1) \leq \binom{r+k-1}{r-1}$ and Theorem 1.1 is true in \mathbb{P}^{r-1} , we have $h^1(\mathcal{I}_{A \cup L_1 \cup L_2}(k)) = 0$. Therefore $h^1(\mathcal{I}_{A \cup F_1 \cup F_2}(k)) = 0$.

Proof of Theorem 1.1: By [1] we may assume $r \ge 4$. By induction on r we may also assume that Theorem 1.1 is true in \mathbb{P}^{r-1} . By [1, Remark 3] it is sufficient to prove $H_{r,k}$ for all integers $k \ge 1$. $H_{r,1}$ is true ([1, Lemma 3]). Hence we may assume $k \ge 2$ and that $H_{r,k-1}$ is true. By [1, Remark 4] it is sufficient to prove $H_{r,k}$ for the pairs (t,c) such that either t = 0 and $\binom{r+k}{r} - k - 1 \le c(k+2) \le \binom{r+k}{r}$ or $t(k+1) + (k+2)c = \binom{r+k}{r}$ and c > 0; in the former case either

 $v_{r,k} = 0$ and $c = u_{r,k}$ or $v_{r,k} > 0$ and $c = u_{r,k} - 1$; in the latter case we have $t + c \ge u_{r,k}$. If $c < n_{r,k-1}$, then we use step (b) of the proof of Theorem 1 in [1], because we gave a characteristic free proof of $B_{r,k}$ (Lemma 2.2). The case $c \ge n_{r,k-1}$ and $t \ge m_{r,k-1} - n_{r,k-1}$ was proved as step (a1) without using the characteristic zero assumption. Hence we may assume $c \ge n_{r,k-1}$ and $t < m_{r,k-1} - n_{r,k-1}$, i.e. the case of step (a2) of the proof in [1].

(i) Assume t = 0 and hence either $v_{r,k} = 0$ and $c = u_{r,k}$ or $v_{r,k} > 0$ and $c = u_{r,k} - 1$. Fix a general $U \in L(r, 0, v_{r,k-1}, u_{r,k-1} - v_{r,k-1})$, say $U = A \sqcup B$ with A the union of the $v_{r,k-1}$ lines. By $H_{r,k-1}$ we have $h^i(\mathcal{I}_U(k-1)) = 0$, i = 0, 1. It is easy to check using (2.3) that $u_{r,k} > u_{r,k-1}$. Hence $c \ge u_{r,k-1}$. Let $E \subset H$ be a general union of $c - u_{r,k-1}$ +lines. We may assume $E \cap (H \cap U)) = \emptyset$. Let $G \subset H$ be a general union of $v_{r,k-1}$ tangent vectors of H with the only restriction that $G_{red} = A \cap H$. For general A (and hence a general $A \cap H$)) the scheme $E \cup G$ is a general union inside H of $u_{r,k} - u_{k-1}$ +lines and $v_{r,k-1}$ tangent vectors. We have $v_{r,k-1} \le k$. Using (2.3) for the integer k - 1 is easy to check that if $v_{r,k-1} > 0$, then $u_{r,k-1} - v_{r,k-1} \ge 2(k+2) - 2v_{r,k-1}$. Hence Lemma 2.3 gives $h^1(H, \mathcal{I}_{E \cup G}(k)) = 0$. Since $B \cap H$ is a general union of

(ii) Assume t > 0, c > 0, $t(k+1) + (k+2)c = \binom{r+k}{r}$ and $t < m_{r,k-1} - n_{r,k-1}$. First assume $t \le 2\lfloor (k+2)/2 \rfloor$. In this case we may use the proof given in [1] (step (a2)) quoting Lemma 2.3 instead of [4, Lemma 1.4] for the postulation of the t tangent vectors, because $m_{r,k-1} - t \ge 2k+2$ in this case. Therefore we may assume $t \ge k+1$. Since $t < m_{r,k-1} - n_{r,k-1}$, we have $k \ge 3$ and $kt < \binom{r+k-1}{r}$. Set $d := \lfloor (\binom{r+k-1}{r} - kt)/(k+1) \rfloor$ and $z := (k+1)d + kt - \binom{r+k}{r}$. We have $0 \le z \le k+1$. Fix a general $W \in L(r,t,d)$. Since $H_{r,x}$ holds for x = k - 1, k - 2, we have $h^0(\mathcal{I}_W(k-2)) = 0$ and $h^1(\mathcal{I}_W(k)) = 0$ and $h^0(\mathcal{I}_W(k)) = z$. Since S is general in H and $\sharp(S) = z$, we get $h^i(\mathcal{I}_{W\cup S}(k-1)) = 0$, i = 0, 1. Since $kt + (k+1)t + z = \binom{r+k-1}{r}$ and $t(k+1) + (k+2)c = \binom{r+k}{r}$, we get

$$t + d + (k+2)(c - d - z) + (k+1)z = \binom{r+k-1}{r-1}$$
(2.5)

Claim 1: We have $c \ge d + z$.

 $\begin{array}{l} \textit{Proof of Claim 1: Assume } c \leq d+z-1. \ \textit{From (2.5) we get } t+d+(k+1)z-(k+1) \geq \binom{r+k-1}{r-1} \\ \textit{and hence } k(t+d)+(k+1)kz-(k+1)k \geq k\binom{r+k-1}{r-1}. \ \textit{Since } kt+(k+1)d+z=\binom{r+k-1}{r} \\ \textit{and hence } k(t+d)+(k+1)kz-(k+1)k \geq k\binom{r+k-1}{r-1}-\binom{r+k-1}{r}, \ \textit{i.e. } k^3-2k \geq (r-1)\binom{r+k-1}{r}. \ \textit{Call } k \leq r, \ \textit{k) the difference between the right hand side and the left hand side of this inequality. We have } \varphi(r,k) = (r-1)\binom{r+k-1}{r}-k^3+2k, \ \textit{which is positive if } r \geq 4 \ \textit{and } k \geq 2. \end{array}$

Let $M \subset H$ be a general union of $\mathbf{c} - \mathbf{d} - \mathbf{z}$ +lines of H. Let $N \subset H$ be \mathbf{z} general lines of H, each of them containing a different point of Z. Since S is general, $M \cup N$ has the Hilbert function of a general element of $L(\mathbf{r} - \mathbf{1}, \mathbf{z}, \mathbf{c} - \mathbf{d} - \mathbf{z})$ and hence it has maximal rank. By (2.5) we have $h^1(H, \mathcal{I}_{M \cup N}(k)) = 0$ and $h^0(\mathcal{I}_{M \cup N}(k)) = \mathbf{t} + \mathbf{d}$. Let $Z \subset \mathbb{P}^r$ be a general union of \mathbf{z} +lines of \mathbb{P}^r with N as their support. We have $G \cap H = N$ and $\operatorname{Res}_H(Z) = S$. Since $W \cup M \cup Z \in L(\mathbf{r}, \mathbf{t}, \mathbf{c})$, it is sufficient to prove that $h^i(\mathcal{I}_{W \cup M \cup Z}(k)) = 0$, $\mathbf{i} = 0, 1$. Since $\operatorname{Res}_H(W \cup M \cup Z) = W \cup S$, we have $h^i(\mathcal{I}_{\operatorname{Res}_H(W \cup M \cup Z)}(k-1)) = 0$. Since $W \cap H$ is a general union of $\mathbf{d} + \mathbf{c}$ points of H and $(W \cup M \cup Z) = (W \cap H) \cup M \cup N$ as schemes, (2.5) gives $h^i(H, \mathcal{I}_{H \cap (W \cup M \cup Z}(k)) = 0$. Apply the

Castelnuovo's lemma.

References

- E. Ballico, Postulation of general unions of lines and decorated lines, Note Mat. 35 (2015), no. 1, 1–13.
- [2] E. Ballico, Postulation of disjoint unions of lines and a multiple point II, Mediterr. J. Math. 13 (2016), no. 4, 1449–1463.
- [3] E. Ballico, Postulation of general unions of lines and double points in a higher dimensional projective space, Acta Math. Vietnam. 41 (2016), no. 3, 495–504.
- [4] A. Bernardi, M. V. Catalisano, A. Gimigliano and M. Idà, Secant varieties to osculating varieties of Veronese embeddings of Pⁿ,J. Algebra 321 (2009), no. 3, 982–1004.
- [5] E. Carlini, M. V. Catalisano and A. V. Geramita, 3-dimensional sundials, Cent. Eur. J. Math. 9 (2011), no. 5, 949–971.
- [6] C. Ciliberto and R. Miranda, Interpolations on curvilinear schemes, J. Algebra 203 (1998), no. 2, 677–678.
- [7] R. Hartshorne and A. Hirschowitz, Droites en position générale dans Pⁿ, Algebraic Geometry, Proceedings, La Rábida 1981, 169–188, Lect. Notes in Math. 961, Springer, Berlin, 1982.