Postulation of general unions of lines and + lines in positive characteristic

E. Ballico ${ }^{1}$
Department of Mathematics, University of Trento, 38123 Povo (TN), Italy
ballico@science.unitn.it

Abstract

A + line is a scheme $R \subset \mathbb{P}^{r}$ with a line as its reduction $L=R_{\text {red }}$ which is the union of L and a tangent vector $v \nsubseteq \mathrm{~L}$ with $v_{\text {red }} \in \mathrm{L}$. Here we prove in arbitrary characteristic that for $r \geq 4$ a general union of lines and + lines has maximal rank. We use the case $r=3$ proved by myself in a previous paper and adapt the characteristic zero proof of the case $r>3$ given in the same paper.

RESUMEN

Una +línea es un esquema $R \subset \mathbb{P}^{r}$ con una línea como su reducción $L=R_{\text {red }}$ que es la unión de L y un vector tangente $v \nsubseteq \mathrm{~L}$, con $v_{\text {red }} \in \mathrm{L}$. Acá demostramos que para $\mathrm{r} \geq 4$ una unión general de líneas y +líneas tiene rango máximo en característica arbitraria. Usamos el caso $r=3$ demostrado por el autor en un artículo anterior y adaptamos la demostración en característica cero del caso $\mathrm{r}>3$ dado en el mismo artículo anterior.

Keywords and Phrases: Hilbert function; decorated line; disjoint unions of lines.

2010 AMS Mathematics Subject Classification: 14N05.

[^0]
1 Introduction

The aim of this note is to extend to the positive characteristic case a results in [1]. This extension is sufficient to extend $[2,3]$ to the positive characteristic case.

A scheme $X \subset \mathbb{P}^{r}$ is said to have maximal rank if $h^{0}\left(\mathcal{I}_{X}(t)\right) \cdot h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t \in \mathbb{N}$. Fix a line $L \subset \mathbb{P}^{r}, r \geq 2$, and $P \in L$. A tangent vector of \mathbb{P}^{r} with P as its support is a zero-dimensional scheme $Z \subset \mathbb{P}^{r}$ such that $\operatorname{deg}(Z)=2$ and $Z_{\text {red }}=\{P\}$. The tangent vector Z is uniquely determined by P and the line $\langle\mathrm{Z}\rangle$ spanned by Z. Conversely, for each line $\mathrm{D} \subset \mathbb{P}^{r}$ with $\mathrm{P} \in \mathrm{D}$ there is a unique tangent vector v with $v_{\text {red }}=\mathrm{P}$ and $\langle v\rangle=\mathrm{D}$. A + line $M \subset \mathbb{P}^{r}$ supported by L and with nilradical supported by P is the union $v \cup \mathrm{~L}$ of L and a tangent vector v with P as its support and spanning a line $\langle v\rangle \neq \mathrm{L}$. The set of all +lines of \mathbb{P}^{r} supported by L and with a nilradical at P is an irreducible variety of dimension $r-1$ (the complement of L in the ($r-1$)-dimensional projective space of all lines of \mathbb{P}^{r} containing P). Hence the set of all + lines of \mathbb{P}^{r} supported by L is parametrized by an irreducible variety of dimension r. For any + line R and every integer $k>0$ we have $h^{0}\left(\mathcal{O}_{R}(k)\right)=k+2$ and $h^{1}\left(\mathcal{O}_{R}(k)\right)=0$.

For any integers $r \geq 3, t \geq 0, c \geq 0$ with $(t, c) \neq(0,0)$ let $L(r, t, c)$ be the set of all schemes $X \subset \mathbb{P}^{r}$ which are the disjoint union of t lines and $c+$ lines. Every element of $L(r, c, t)$ has the map $k \mapsto(k+1) t+(k+2) c$ as its Hilbert function.

Consider the following statement.
Theorem 1.1. For all integers $r \geq 3, a \geq 0$ and $b \geq 0,(a, b) \neq(0,0)$, a general union $X \subset \mathbb{P}^{r}$ of a lines and $\mathrm{b}+$ lines has maximal rank,

This statement was proved in [1] when either $r=3$ or $r \geq 4$ and the algebraically closed base field has characteristic zero. The aim of this note is to prove Theorem 1.1 in positive characteristic (using the case $r=3$ proved in [1]). Hence we may assume $r \geq 4$. We also use numerical lemmas and elementary remarks contained in [1]. We only need to change all parts which quote [4, Lemma 1.4] or [6], the only characteristic zero tool used in [1]. We recall that the case $\mathbf{c}=0$ is due to R . Hartshorne and A. Hirschowitz ([7]).

2 Proof of Theorem 1.1

For all integers $r \geq 3$ and $k \geq 0$ let $H_{r, k}$ denote the following statement:
Assertion $H_{r, k}, r \geq 3, k \geq 0$: $\operatorname{Fix}(t, c) \in \mathbb{N}^{2} \backslash\{(0,0)\}$ and take a general $X \in L(r, t, c)$. If $(k+1) t+(k+2) c \geq\binom{ r+k}{k}$, then $h^{0}\left(\mathcal{I}_{X}(k)\right)=0$. If $(k+1) t+(k+2) c \leq\binom{ r+k}{k}$, then $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$.

For all integers $r \geq 3$ and $k \geq 0$ define the integers $m_{r, k}$ and $n_{r, k}$ by the relations

$$
\begin{equation*}
(k+1) m_{r, k}+n_{r, k}=\binom{r+k}{r}, 0 \leq n_{r, k} \leq k \tag{2.1}
\end{equation*}
$$

From (2.1) for the pairs (r, k) and $(r, k-1)$ we get

$$
\begin{equation*}
m_{r, k-1}+(k+1)\left(m_{r, k}-m_{r, k-1}\right)+n_{r, k}-n_{r, k-1}=\binom{r+k-1}{r-1} \tag{2.2}
\end{equation*}
$$

for all $k>0$.
For all integers $r \geq 3$ and $k \geq 0$ set $u_{r, k}:=\left\lceil\binom{ r+k}{r} /(k+2)\right\rceil$ and $v_{r, k}:=(k+2) u_{r, k}-\binom{r+k}{r}$. We have

$$
\begin{equation*}
(k+2)\left(u_{r, k}-v_{r, k}\right)+(k+1) v_{r, k}=\binom{r+k}{r}, 0 \leq v_{r, k} \leq k+1 \tag{2.3}
\end{equation*}
$$

As in [1] we need the following assumption $B_{r, k}$:
Assumption $B_{r, k}, r \geq 4, k>0$. Fix a hyperplane $H \subset \mathbb{P}^{r}$. There is $X \in L\left(r, m_{r, k}-\right.$ $\left.n_{r, k}, n_{r, k}\right)$ such that the support of the nilradical sheaf of X is contained in H and $h^{0}\left(\mathcal{I}_{X}(k)\right)=0$.

For all $X \in L\left(r, m_{r, k}-n_{r, k}, n_{r, k}\right)$ we have $h^{0}\left(\mathcal{O}_{X}(k)\right)=\binom{r+k}{r}$ and so $h^{1}\left(\mathcal{I}_{X}(k)\right)=h^{0}\left(\mathcal{I}_{X}(k)\right)$.
Lemma 2.1. We have $m_{r, k}-m_{r, k-1} \geq n_{r, k-1}+n_{r, k}$ if $r \geq 4$ and $k \geq 2$.

Proof. Assume $m_{r, k}-m_{r, k-1} \leq n_{r, k-1}+n_{r, k}-1$. From (2.1) we get

$$
m_{r, k-1}+k n_{r, k-1}+(k+2) n_{r, k}-k-1 \geq\binom{ r+k-1}{r-1}
$$

Since $n_{r, k-1} \leq k-1$ and $n_{r, k} \leq k$, we get $m_{r, k-1} \geq\binom{ r+k-1}{r-1}-2 k^{2}+1$. Since $k m_{r, k-1} \leq\binom{ r+k-1}{r}$ and $k\binom{r+k-1}{r-1}-\binom{r+k-1}{r}=(r-1)\binom{r+k-1}{r}$, we get

$$
\begin{equation*}
2 k^{3}-k \geq(r-1)\binom{r+k-1}{r} \tag{2.4}
\end{equation*}
$$

This inequality is false if $r=4$ and $k \geq 2$, because it is equivalent to the inequality $k\left(2 k^{2}-1\right) \geq$ $(k+3)(k+2)(k+1) k / 8$. Since the right hand side of (2.4) is an increasing function of r, we conclude for all $r \geq 5$ and $k \geq 2$.

Lemma 2.2. Fix an integer $\mathrm{r} \geq 4$ and assume that Theorem 1.1 is true in \mathbb{P}^{r-1}. Then $\mathrm{B}_{\mathrm{r}, \mathrm{k}}$ is true for all $\mathrm{k}>0$.

Proof. Since the case $k=1$ is true ([1, Remark 3]), we may assume $k \geq 2$ and use induction on k. By Lemma 2.1 we have $m_{r, k}-m_{r, k-1} \geq n_{r, k-1}+n_{r, k}$. Fix a solution $X \in L\left(r, m_{r, k-1}-\right.$ $\left.n_{r, k-1}, n_{r, k-1}\right)$ of $B_{r, k-1}$, say $X=A \sqcup B$ with $A \in L\left(r, m_{r, k-1}-n_{r, k-1}, 0\right), B \in L\left(r, 0, n_{r, k-1}\right)$ and the tangent vectors of B have support $S \subset H$. By semicontinuity we may assume that no irreducible component of $X_{\text {red }}$ is contained in H , that no tangent vector associated to the nilradical of B is contained in H and that S is a general subset of H with cardinality $n_{r, k-1}$. Let $C_{1} \subset H$ be a general union of $m_{r, k}-m_{r, k-1}-n_{r, k}-n_{r, k-1}$ lines. Let $C_{2} \subset H$ be a general union of $n_{r, k-1}$ lines, each of them containing a different point of S. Let $E \subset H$ be a general union of $n_{r, k}+$ lines. Since S is
general, $C_{1} \cup C_{2} \cup E$ is a general element of $L\left(r-1, m_{r, k}-m_{r, k-1}-n_{r, k}, r_{n, k}\right)$. Since Theorem 1.1 is true in \mathbb{P}^{r-1}, by (2.2) we get $h^{1}\left(H, \mathcal{I}_{C_{1} \cup C_{2} \cup F}(k)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{C_{1} \cup C_{2} \cup E}(k)\right)=m_{r, k-1}-n_{r, k-1}$. Deforming A with $B \cup C_{1} \cup C_{2} \cup E$ fixed, we may assume $A \cap\left(B \cup C_{1} \cup C_{2} \cup E\right)=\emptyset$ and that $h^{i}\left(H, \mathcal{I}_{C_{1} \cup C_{2} \cup E \cup(A \cap H)}(k)\right)=0, i=0,1$. Since $A \cap\left(B \cup C_{1} \cup C_{2} \cup E\right)=\emptyset, Y:=A \cup B \cup C_{1} \cup C_{2} \cup E$ is a disjoint union of $n_{r, k}+$ lines with support in H (even contained in H), $m_{r, k}-2 n_{r, k-1}-n_{r, k}$ lines and $n_{r, k-1}$ sundials in the sense of [5]. Hence Y is a flat limit of a family of elements $L\left(r, m_{r, k-1}-\right.$ $\left.n_{r, k-1}, n_{r, k-1}\right)$ whose nilpotent sheaf is contained in H ([7], [5]). By the semicontinuity theorem to prove $B_{r, k}$ it is sufficient to prove that $h^{0}\left(\mathcal{I}_{Y}(k)\right)=0$. Since no tangent vector of B is contained in H, then $\operatorname{Res}_{H}(Y)=X$ and $Y \cap H=C_{1} \cup C_{2} \cup E \cup(A \cap H)$. Since $h^{0}\left(\mathcal{I}_{X}(k-1)\right)=0$ and $h^{0}\left(H, \mathcal{I}_{C_{1} \cup C_{2} \cup E \cup(A \cap H)}(k)\right)=0$, a residual exact sequence gives $h^{0}\left(\mathcal{I}_{Y}(k)\right)=0$.

Lemma 2.3. Assume $\mathrm{r} \geq 4$ and that Theorem 1.1 is true in $\mathrm{H}=\mathbb{P}^{r-1}$. Fix an integer $\mathrm{k} \geq 2$ and assume that $\mathrm{H}_{r, k-1}$ is true. Fix integers $\mathrm{a} \geq 0, \mathrm{~b} \geq 0$, $\mathrm{e} \geq 0$ such that $\mathrm{e} \leq 2\lfloor(\mathrm{k}+2) / 2\rfloor$, $(\mathrm{k}+2) \mathrm{a}+(\mathrm{k}+1) \mathrm{b}+4\lfloor(\mathrm{k}+2) / 2\rfloor \leq\binom{\mathrm{r}+\mathrm{k}-1}{\mathrm{r}-1}$. Let $\mathrm{X} \subset \mathrm{H}$ be a general union of $\mathrm{a}+$ lines, b lines and e tangent vectors. Then $\mathrm{h}^{1}\left(\mathrm{H}, \mathcal{I}_{\mathrm{X}}(\mathrm{k})\right)=0$.

Proof. It is sufficient to do the case $e=\lfloor(k+2) / 2\rfloor$. Let $A \subset H$ be a general union of a lines and b 2-lines.

First assume that k is even. Let $L_{1}, L_{2} \subset H$ be general lines. Fix a general $S_{i} \subset L_{i}$ with $\sharp\left(S_{i}\right)=k / 2$ and a general $P_{i} \in L_{i}, i=1,2$. Let $v_{i} \subset H$ be a general tangent vector of H with P_{i} as its support; in particular we assume $v_{i} \nsubseteq L_{i}$. Let $E_{i} \subset L_{i}$ be the union of the $k / 2$ tangent vectors of L_{i} with $\left(E_{i}\right)_{r e d}=S_{i}$. Set $Y:=A \cup E_{1} \cup v_{1} \cup E_{2} \cup v_{2}$. Let R_{i} the +lines with L_{i} as their supports and with ν_{i} as the tangent vectors associated to their nilpotent sheaf. We have $h^{0}\left(\mathcal{O}_{A \cup E_{1} \cup E_{2} \cup v_{1} \cup v_{2}}(k)\right)=h^{0}\left(\mathcal{O}_{A \cup R_{1} \cup R_{2}}(k)\right), h^{1}\left(\mathcal{O}_{A \cup E_{1} \cup E_{2} \cup v_{1} \cup v_{2}}(k)\right)=h^{1}\left(\mathcal{O}_{A \cup R_{1} \cup R_{2}}(k)\right)$ and $h^{0}\left(\mathcal{I}_{A \cup E_{1} \cup E_{2} \cup v_{1} \cup v_{2}}(k)\right)=h^{0}\left(\mathcal{I}_{A \cup R_{1} \cup R_{2}}(k)\right)$. Therefore we have $h^{1}\left(\mathcal{I}_{A \cup E_{1} \cup E_{2} \cup v_{1} \cup v_{2}}(k)\right)=$ $h^{1}\left(\mathcal{I}_{A \cup R_{1} \cup R_{2}}(k)\right)$. Since $(k+2) a+(k+1) b+2(k+2) \leq\binom{ r+k-1}{r-1}$ and Theorem 1.1 is true in \mathbb{P}^{r-1}, we have $h^{1}\left(\mathcal{I}_{A \cup R_{1} \cup R_{2}}(k)\right)=0$. Hence $h^{1}\left(\mathcal{I}_{A \cup E_{1} \cup E_{2} \cup v_{1} \cup v_{2}}(k)\right)=0$. The semicontinuity theorem gives $h^{1}\left(H, \mathcal{I}_{X}(k)\right)=0$.

Now assume that k is even. Let $F_{i} \subset L_{i}$ be any disjoint union of $(k+1) / 2$ tangent vectors. We have $h^{0}\left(\mathcal{O}_{A \cup F_{1} \cup F_{2}}(k)\right)=h^{0}\left(\mathcal{O}_{A \cup L_{1} \cup L_{2}}(k)\right), h^{1}\left(\mathcal{O}_{A \cup F_{1} \cup F_{2}}(k)\right)=h^{1}\left(\mathcal{O}_{A \cup L_{1} \cup L_{2}}(k)\right)$ and $h^{0}\left(\mathcal{I}_{A \cup F_{1} \cup F_{2}}(k)\right)=h^{0}\left(\mathcal{I}_{A \cup L_{1} \cup L_{2}}(k)\right)$. Therefore we obtain $h^{1}\left(\mathcal{I}_{A \cup F_{1} \cup F_{2}}(k)\right)=h^{1}\left(\mathcal{I}_{A \cup L_{1} \cup L_{2}}(k)\right)$. Since $(k+2) a+(k+1) b+2(k+1) \leq\binom{ r+k-1}{r-1}$ and Theorem 1.1 is true in \mathbb{P}^{r-1}, we have $h^{1}\left(\mathcal{I}_{A \cup L_{1} \cup L_{2}}(k)\right)=0$. Therefore $h^{1}\left(\mathcal{I}_{A \cup F_{1} \cup F_{2}}(k)\right)=0$. The semicontinuity theorem gives $h^{1}\left(\mathrm{H}, \mathcal{I}_{\mathrm{X}}(\mathrm{k})\right)=0$.

Proof of Theorem 1.1: By [1] we may assume $r \geq 4$. By induction on r we may also assume that Theorem 1.1 is true in \mathbb{P}^{r-1}. By [1, Remark 3] it is sufficient to prove $H_{r, k}$ for all integers $k \geq 1$. $H_{r, 1}$ is true ([1, Lemma 3]). Hence we may assume $k \geq 2$ and that $H_{r, k-1}$ is true. By [1, Remark 4] it is sufficient to prove $H_{r, k}$ for the pairs ($\left.t, c\right)$ such that either $t=0$ and $\binom{r+k}{r}-k-1 \leq c(k+2) \leq\binom{ r+k}{r}$ or $t(k+1)+(k+2) c=\binom{r+k}{r}$ and $c>0$; in the former case either
$\nu_{r, k}=0$ and $c=u_{r, k}$ or $v_{r, k}>0$ and $c=u_{r, k}-1$; in the latter case we have $t+c \geq u_{r, k}$. If $c<n_{r, k-1}$, then we use step (b) of the proof of Theorem 1 in [1], because we gave a characteristic free proof of $B_{r, k}$ (Lemma 2.2). The case $c \geq n_{r, k-1}$ and $t \geq m_{r, k-1}-n_{r, k-1}$ was proved as step (a1) without using the characteristic zero assumption. Hence we may assume $c \geq n_{r, k-1}$ and $t<m_{r, k-1}-n_{r, k-1}$, i.e. the case of step (a2) of the proof in [1].
(i) Assume $t=0$ and hence either $v_{r, k}=0$ and $c=u_{r, k}$ or $v_{r, k}>0$ and $c=u_{r, k}-1$. Fix a general $U \in L\left(r, 0, v_{r, k-1}, u_{r, k-1}-v_{r, k-1}\right)$, say $U=A \sqcup B$ with A the union of the $v_{r, k-1}$ lines. By $H_{r, k-1}$ we have $h^{i}\left(\mathcal{I}_{\mathrm{u}}(\mathrm{k}-1)\right)=0, \mathfrak{i}=0,1$. It is easy to check using (2.3) that $u_{r, k}>u_{r, k-1}$. Hence $c \geq u_{r, k-1}$. Let $E \subset H$ be a general union of $c-u_{r, k-1}+$ lines. We may assume $\left.E \cap(H \cap U)\right)=\emptyset$. Let $G \subset H$ be a general union of $v_{r, k-1}$ tangent vectors of H with the only restriction that $\mathrm{G}_{\text {red }}=A \cap H$. For general A (and hence a general $\left.A \cap H\right)$) the scheme $E \cup G$ is a general union inside H of $\mathfrak{u}_{r, k}-\mathfrak{u}_{\mathrm{k}-1}$ + lines and $v_{r, k-1}$ tangent vectors. We have $v_{r, k-1} \leq k$. Using (2.3) for the integer $k-1$ is easy to check that if $v_{r, k-1}>0$, then $u_{r, k-1}-v_{r, k-1} \geq 2(k+2)-2 v_{r, k-1}$. Hence Lemma 2.3 gives $h^{1}\left(H, \mathcal{I}_{\text {E } \cup G}(k)\right)=0$. Since $B \cap H$ is a general union of
(ii) Assume $t>0, c>0, t(k+1)+(k+2) c=\binom{r+k}{r}$ and $t<m_{r, k-1}-n_{r, k-1}$. First assume $\mathrm{t} \leq 2\lfloor(\mathrm{k}+2) / 2\rfloor$. In this case we may use the proof given in [1] (step (a2)) quoting Lemma 2.3 instead of [4, Lemma 1.4] for the postulation of the t tangent vectors, because $m_{r, k-1}-t \geq 2 k+2$ in this case. Therefore we may assume $t \geq k+1$. Since $t<m_{r, k-1}-n_{r, k-1}$, we have $k \geq 3$ and $k t<\binom{r+k-1}{r}$. Set $d:=\left\lfloor\left(\binom{r+k-1}{r}-k t\right) /(k+1)\right\rfloor$ and $z:=(k+1) d+k t-\binom{r+k}{r}$. We have $0 \leq z \leq k+1$. Fix a general $W \in L(r, t, d)$. Since $H_{r, x}$ holds for $x=k-1, k-2$, we have $h^{0}\left(\mathcal{I}_{W}(k-2)\right)=0$ and $h^{1}\left(\mathcal{I}_{W}(k)\right)=0$ and $h^{0}\left(\mathcal{I}_{W}(k)\right)=z$. Since S is general in H and $\sharp(S)=z$, we get $h^{i}\left(\mathcal{I}_{W \cup S}(k-1)\right)=0, i=0,1$. Since $k t+(k+1) t+z=\binom{r+k-1}{r}$ and $t(k+1)+(k+2) c=\binom{r+k}{r}$, we get

$$
\begin{equation*}
\mathrm{t}+\mathrm{d}+(\mathrm{k}+2)(\mathrm{c}-\mathrm{d}-\mathrm{z})+(\mathrm{k}+1) \mathrm{z}=\binom{\mathrm{r}+\mathrm{k}-1}{\mathrm{r}-1} \tag{2.5}
\end{equation*}
$$

Claim 1: We have $\mathrm{c} \geq \mathrm{d}+z$.
Proof of Claim 1: Assume $\mathrm{c} \leq \mathrm{d}+\mathrm{z}-1$. From (2.5) we get $\mathrm{t}+\mathrm{d}+(\mathrm{k}+1) \mathrm{z}-(\mathrm{k}+1) \geq\binom{\mathrm{r}+\mathrm{k}-1}{\mathrm{r}-1}$ and hence $k(t+d)+(k+1) k z-(k+1) k \geq k\binom{r+k-1}{r-1}$. Since $k t+(k+1) d+z=\binom{r+k-1}{r}$ and $z \leq k$, we get $(k+1) k^{2}-k(k+1)-k \geq k\binom{r+k-1}{r-1}-\binom{r+k-1}{r}$, i.e. $k^{3}-2 k \geq(r-1)\binom{r+k-1}{r}$. Call $\phi(r, k)$ the difference between the right hand side and the left hand side of this inequality. We have $\phi(r, k)=(r-1)\binom{r+k-1}{r}-k^{3}+2 k$, which is positive if $r \geq 4$ and $k \geq 2$.

Let $M \subset H$ be a general union of $c-d-z+$ lines of H. Let $N \subset H$ be z general lines of H, each of them containing a different point of Z. Since S is general, $M \cup N$ has the Hilbert function of a general element of $\mathrm{L}(\mathrm{r}-1, z, \mathrm{c}-\mathrm{d}-z)$ and hence it has maximal rank. By (2.5) we have $h^{1}\left(H, \mathcal{I}_{M \cup N}(k)\right)=0$ and $h^{0}\left(\mathcal{I}_{M \cup N}(k)\right)=t+d$. Let $Z \subset \mathbb{P}^{r}$ be a general union of $z+$ lines of \mathbb{P}^{r} with N as their support. We have $G \cap H=N$ and $\operatorname{Res}_{H}(Z)=S$. Since $W \cup M \cup Z \in L(r, t, c)$, it is sufficient to prove that $h^{i}\left(\mathcal{I}_{W \cup M \cup Z}(k)\right)=0, \mathfrak{i}=0,1$. Since $\operatorname{Res}_{H}(W \cup M \cup Z)=W \cup S$, we have $h^{i}\left(\mathcal{I}_{\operatorname{Res}_{\mathrm{H}}(W \cup M \cup Z)}(k-1)\right)=0$. Since $W \cap H$ is a general union of $d+c$ points of H and $(W \cup M \cup Z)=(W \cap H) \cup M \cup N$ as schemes, (2.5) gives $h^{i}\left(H, \mathcal{I}_{H \cap(W \cup M \cup Z}(k)\right)=0$. Apply the

Castelnuovo's lemma.

References

[1] E. Ballico, Postulation of general unions of lines and decorated lines, Note Mat. 35 (2015), no. 1, 1-13.
[2] E. Ballico, Postulation of disjoint unions of lines and a multiple point II, Mediterr. J. Math. 13 (2016), no. 4, 1449-1463.
[3] E. Ballico, Postulation of general unions of lines and double points in a higher dimensional projective space, Acta Math. Vietnam. 41 (2016), no. 3, 495-504.
[4] A. Bernardi, M. V. Catalisano, A. Gimigliano and M. Idà, Secant varieties to osculating varieties of Veronese embeddings of \mathbb{P}^{n},J. Algebra 321 (2009), no. 3, 982-1004.
[5] E. Carlini, M. V. Catalisano and A. V. Geramita, 3-dimensional sundials, Cent. Eur. J. Math. 9 (2011), no. 5, 949-971.
[6] C. Ciliberto and R. Miranda, Interpolations on curvilinear schemes, J. Algebra 203 (1998), no. 2, 677-678.
[7] R. Hartshorne and A. Hirschowitz, Droites en position générale dans \mathbb{P}^{n}, Algebraic Geometry, Proceedings, La Rábida 1981, 169-188, Lect. Notes in Math. 961, Springer, Berlin, 1982.

[^0]: ${ }^{1}$ The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

